
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА
(РОСАВИАЦИЯ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

Кафедра вычислительных машин, комплексов, систем и сетей

Н.И. Романчева

ПОСТРОЕНИЕ НЕЙРОННЫХ СЕТЕЙ
РАЗЛИЧНОЙ АРХИТЕКТУРЫ

Учебно-методическое пособие
по выполнению лабораторных работ № 3–4

направления 09.03.01
и лабораторных работ № 1–2

направления 25.03.03

для студентов II курса
очной формы обучения

Москва
ИД Академии Жуковского

2025

 УДК 004.032.26
 ББК 6Ф7.3
 Р69

Рецензент:

Терентьев А.И. – канд. техн. наук, доцент

Р69
 Романчева Н.И.

Построение нейронных сетей различной архитектуры [Текст] : учеб-
но-методическое пособие по выполнению лабораторных работ № 3–4 на-
правления 09.03.01 и лабораторных работ № 1–2 направления 25.03.03 /
Н.И. Романчева. – М.: ИД Академии Жуковского, 2025. – 40 с.

Данное учебно-методическое пособие издается в соответствии с рабочи-
ми программами учебных дисциплин «Методы машинного обучения и ней-
ронные сети» и «Нейронные сети» по учебным планам направлений подготов-
ки 09.03.01 и 25.03.03 для студентов очной формы обучения.

Рассмотрено и одобрено на заседаниях кафедры 25.01.2025 г. и методи-
ческого совета 28.01.2025 г.

УДК 004.032.26
ББК 6Ф7.3

В авторской редакции

Подписано в печать 14.05.2025 г.
Формат 60х84/16 Печ. л. 2,5 Усл. печ. л. 2,325

Заказ № 1073/0325-УМП10 Тираж 25 экз.

Московский государственный технический университет ГА
125993, Москва, Кронштадтский бульвар, д. 20

Издательский дом Академии имени Н. Е. Жуковского
125167, Москва, 8-го Марта 4-я ул., д. 6А

Тел.: (499) 755-55-43
E-mail: zakaz@itsbook.ru

© Московский государственный технический
 университет гражданской авиации, 2025

2.

-learning
art Pole

 *

2. 3(1)

2.1.

2.2.

 2.4.

 ,

2.4.2.

import tensorflow as tf
from tensorflow.keras import layers, models

x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = models.Sequential([
 layers.Flatten(input_shape=(28, 28)),
 layers.Dense(128, activation='relu'),
 layers.Dropout(0.2),
 layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

model.fit(x_train, y_train, epochs=20, validation_data=(x_test, y_test))

test_loss, test_acc = model.evaluate(x_test, y_test)
print("Test accuracy:", test_acc)

Image.open(path).convert('L'

img.resize((28, 28))
np.array(img) / 255.0

np.expand_dims(img_array, axis=0)
model.predict(img_array)

np.argmax(prediction)
print

except Exception as e

"Training history:"
"Train Loss:" 'loss'
"Train Accuracy:" 'accuracy'
"Test Loss:" 'val_loss'
"Test Accuracy:" 'val_accuracy'

'accuracy' '
' 'g'

'val_accuracy' '
' 'y'
' '

' '
' '

' '

' '
' '

for in
for in

'center' 'center'

-32- -64-3
- -3 .

2.5.

2.6.

 3. 4(2)
 -LEARNING

 CART POLE

3.1.

3.2.

2.

 3.3

 3.3.2.

S

s

asQ

3.3.3 Q-

tttttt
new sQrsQsQ

ttsQ

tsQ

tt sQr

 greedy

s

3.3.5. Cart Pole)
 -

 -

import gym
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd

CartPole
env = gym.make('CartPole-v1')

n_buckets = (1, 1, 6, 3)

- -

= 36)
state_bounds = list(zip(env.observation_space.low, env.observation_space.high))
state_bounds[1] = [-0.5, 0.5] #
state_bounds[3] = [-math.radians(50), math.radians(50)] #

Q-
n_actions = env.action_space.n #
q_table = np.zeros(n_buckets + (n_actions,))

-

epsilon = lambda i: max(0.01, min(1, 1.0 - math.log10((i + 1) / 25)))

alpha = lambda i: max(0.01, min(0.5, 1.0 - math.log10((i + 1) / 25)))

gamma = 0.99

def discretize_state(obs):

 ratios = [(obs[i] + abs(state_bounds[i][0])) / (state_bounds[i][1] -
state_bounds[i][0]) for i in range(len(obs))]
 discretized_obs = [int(round((n_buckets[i] - 1) * ratios[i])) for i in
range(len(obs))] #
 discretized_obs = [min(n_buckets[i] - 1, max(0, discretized_obs[i])) for i in
range(len(obs))] # ,

 return tuple(discretized_obs)

-
num_episodes = 1000
rewards_per_episode = []
epsilon_values = []
for episode in range(num_episodes):
 state = discretize_state(env.reset()) #
 done = False
 total_reward = 0
 while not done:
 -
 if np.random.random() < epsilon(episode):
 action = env.action_space.sample()

 else:

 action = np.argmax(q_table[state]) -

 next_state, reward, done, _ = env.step(action)
 next_state = discretize_state(next_state)

 -
 best_next_action = np.argmax(q_table[next_state])
 q_table[state][action] += alpha(episode) * (reward + gamma *
q_table[next_state][best_next_action] - q_table[state][action])

 state = next_state
 total_reward += reward

 epsilon_values.append(epsilon(episode))
 rewards_per_episode.append(total_reward)

 if (episode + 1) % 100 == 0:
 print("Episode:", episode + 1)

env.close()

plt.plot(range(num_episodes), epsilon_values)
plt.title('Epsilon Decay')
plt.xlabel('Episode')
plt.ylabel('Epsilon Value')
plt.show()

plt.plot(range(num_episodes), rewards_per_episode)
plt.title('Rewards per Episode')
plt.xlabel('Episode')
plt.ylabel('Total Reward')
plt.show()

DataFrame Q-

q_table_df = pd.DataFrame(q_table.reshape(-1, n_actions), columns=[f"Action {i}"
for i in range(n_actions)])
q_table_df.index.name = 'State'
print("\nQ-table:")
print(q_table_df)

3.4.

3.5.

