Органическая химия

Методическое пособие

1. Учебный план дисциплины.

Дисциплина «Органическая химия» изучается студентами заочного факультета, обучающимися по направление подготовки 25.03.01 — «Техническая эксплуатация летательных аппаратов и двигателей». В объеме 108 часов. Аудиторные занятия 12 часов. В том числе: лекции 8 часов, практические занятия 4 часа на 8 и 9 семестре обучения. Каждый студент выполняет контрольное домашнее задание и сдает зачет.

2. Основные сведения по дисциплине.

2.1 Целевая установка.

Целью освоения дисциплины «Органическая химия» является формирование у обучаемых необходимых знаний и умений, а также привитие практических навыков по возможности знания и применения на практике фундаментальных знаний по свойствам, составу и особенностям применения всего ассортимента органических соединений, использующихся при эксплуатации воздушных судов в гражданской авиации, в том числе ГСМ. Бакалавр-механик по эксплуатации воздушных судов и двигателей в процессе изучения дисциплины «Органическая химия» должен формировать общепрофессиональных и профессиональные компетенции производственно-технологической деятельности, а именно:

способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики

готовность собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии;

знать:

- общие вопросы химического строения и реакционной способности органических веществ;
- принципы классификации органических соединений и номенклатуру; основные способы получения органических соединений различных классов;
 - химические и физические свойства органических соединений;
 - область применения различных классов органических соединений. уметь:
 - составлять уравнения простейших химических реакций органических соединений;
 - различать основные классы органических соединений, правильно называть соединения с разными функциональными группами;

- свободно ориентироваться в терминологии при освоении последующих курсов, предусматривающих углубленное изучение специальных вопросов, касающихся ГСМ, в том числе химмотологии и материаловедения;
 - грамотно составлять технические задания на проведение физико-химических испытаний органических соединений;
 - понимать содержание нормативных и других технических документов, правильно определяя технические термины, касающиеся различных классов органических соединений, которые встречаются в последних.

владеть:

- навыками обращения с веществами, использующимися в качестве ГСМ в ГА (в том числе по их опасности).

Дисциплины, для которых данная дисциплина является предшествующей:

- Химмотология и контроль качества ГСМ;
- Технологические процессы топливообеспечения;
- Выпускная квалификационная работа.

Общие методические указания.

В соответствии с назначением применяемых горюче-смазочных материалов и спецжидкостей, конструкционных и вспомогательных материалов и их особенностей с точки зрения их химического состава и свойств изучаемый материал разбит на разделы:

РАЗДЕЛ 1. ПРЕДМЕТ ОРГАНИЧЕСКОЙ ХИМИИ

Тема 1.1. Введение. Классификация органических соединений.

Цели и задачи дисциплины «Органическая химия». Структура дисциплины. Краткие сведения из истории развития науки органической химии. Классификация органических соединений.

Самостоятельная работа студентов №1. (2 часа).

Литература: [1, с. 549-550, 2 с.5-9 ч.1].

Тема 1.2. Сырьевые источники органических соединений.

Происхождение нефти, Процессы нефтепереработки. Применение органических соединений при эксплуатации воздушных судов. Строение и классификация органических соединений.

Самостоятельная работа студентов №2. (2 часа)

Темы для самостоятельного изучения: Сырьевые источники органических соединений.

Литература: [1, с. 550-561; 2, с.20: 35-79;3, с.6].

РАЗДЕЛ 2. СТРОЕНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Тема 2.1. Теория химического строения органических веществ.

Общие сведения. Ионная и ковалентная связь. Природа одинарной, двойной и тройной связи. Гибридизация. Геометрия молекул. Изомеризация. Предельные и непредельные углеводороды (алканы, алкены, алкадиены).

Самостоятельная работа студентов №3. (8 часов)

Литература: [1, с. 550-561; 2, с. 11-28].

Самостоятельная работа студентов №4. (2 часа)

К теме 2 Теория химического строения и классификация органических соединений.

основные положения теории строения органических веществ Бутлерова.

Явления изомеризации. Виды изомеров характерны для органических веществ, связь со структурой и видами связей в органических соединениях.

Влияние явления изомеризации на физические и эксплуатационные свойства ГСМ.

Литература: та же

РАЗДЕЛ 3. КЛАССЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Лекция 2. (2 часа)

Тема 3.1. Парафиновые и олефиновые углеводороды

Тема 3.2. Ацетиленовые и галогенпроизводные углеводороды.

Определение данного класса углеводородов. Физические и химические свойства.

Литература: [1, с. 561-565, 2, с. 20-33 ч.1;34-45 ч.1].

Самостоятельная работа студентов №3. (12 часов)

Определение и особенности структуры и свойств предельных и непредельных углеводородов. Их структура, номенклатура, основные физические и химические свойства, способы получения, области применения и особенности применения при эксплуатации и ремонте воздушных судов и обслуживании наземной техники аэропортов.

Литература: 1-2;4

Тема 3.3. Ацетиленовые и галагенпроизводные углеводороды.

Распространение в природе данного класса углеводородов. Номенклатура, способы получения, применение в эксплуатации авиатехники. Применение углеводородов в ГСМ ГА.

Альдегиды и кетоны: назначение и применение в ГА.

Практическое занятие №1. Свойста предельных и непредельных углеводородов (алканы, алкены, алкадиены) и их влияние на эксплуатационные характеристики ГСМ (2 часа).

Литература: [1, с. 561-565, 2, с. 34-45 ч.1].

Обзорная лекция 3. (4 часа)

Тема 3.4. Одноатомные и многоатомные спирты.

Тема 3.5. Альдегиды и кетоны.

Тема 3.6. Карбоновые кислоты.

Тема 3.7. Нитросоединения.

Определение данного класса органических соединений. Физические и химические свойства, распространение в природе.

Литература: [1, с. 570-573.2, 45-54 ч.1].

Самостоятельная работа студентов №4. (16 часов)

Тема 3.4. Одноатомные и многоатомные спирты.

Тема 3.5. Альдегиды и кетоны.

Тема 3.6. Карбоновые кислоты.

Тема 3.7. Нитросоединения.

Номенклатура, способы получения, применение в эксплуатации авиатехники данного класса органических соединений. Применение одноатомных спиртов в ГА, их общая формула, номенклатура и способы их получения. Практическое применение альдегидов и кетонов в ГСМ ГА. Одно и многоосновные карбоновые кислоты. Предельные и непредельные карбоновые кислоты, применение в эксплуатации авиатехники Применение карбоновых кислот в ГА. Отдельные классы азотсодержащих соединений (амины, амиды и пр.) Практическое применение нитросоединений В ГСМ ГА.

Литература: [1, с. 584-587, 2 с45-71 ч.1, 3].

Тема 3.8. Эфиры.

Тема 3.9. Карбоциклические соединения. Ароматические соединения.

Тема 3.10. Гетероорганические соединения.

Определение данного класса органических соединений. Физические и химические свойства, распространение в природе.

Литература: [1, с. 573-574;578-579.2,с.76-84 ч.1].

Практическое занятие №2. Свойства карбоновые кислот. Непредельные и предельные, одно и многоосновные карбоновые кислоты. Примеры их использования в ГСМ (2 часа).

Литература: [1, с. 573-574;578-579.232,с.76-84 ч.1].

Самостоятельная работа студентов №5. (20 часа).

Простые и сложные эфиры. Номенклатура, способы получения, применение в эксплуатации авиатехники. Роль эфиров в ГСМ. Виды изомерии. Карбоновые кислоты. Непредельные и предельные, одно и многоосновные карбоновые кислоты. Роль ароматических соединений в ГСМ ГА. Ароматические сульфокислоты. Ароматические нитросоединения.

Литература: [1, с. 573-574; 578-579, 23 2,с.76-84 ч.1; с. 2-44 ч.2].

Самостоятельная работа студентов №6. (8 часов).

Тема 3.11. Производные Ароматических соединений.

Определение данного класса органических соединений. Физические и химические свойства, распространение в природе. Номенклатура, способы получения, применение в эксплуатации авиатехники. Ароматические углеводороды. Производные ароматических углеводородов. Ароматические галогенпроизводные.

Литература [1, с. 573-574; 578-579, 23 2,с.76-84 ч.1; с. 2-44 ч.2].

РАЗДЕЛ 4 СИЛОКСАНЫ

Тема 4.1. Свойства и область применения силоксанов.

Самостоятельная работа студентов №6. (6 часов).

Особенности этого класса органических соединений. Физические и химические свойства, распространение в природе. Номенклатура, способы получения, применение в эксплуатации авиатехники. Силоксаны и другие гетероорганические соединения.

Литература [1, с. 587-603. 2, С.44-48 Ч.2].

Методические указания.

Раздел 1.

При изучении группового, химического и элементного состава нефти необходимо учитывать наличие в сырой нефти газообразных углеводородов, воды и минеральных примесей, от которых нефть очищают перед началом переработки. Следует обратить внимание на свойства, входящих в состав нефтей органических соединений содержащих серу, кислород, азот и другие элементы таблицы Менделеева.

При изучении методов переработки нефти необходимо обратить внимание на методы, повышающие качественные показатели товарной продукции, связанные с ее переработкой: каталитический крекинг, риформинг, гидроочистку с использованием сложных катализаторов и водорода при высоких температурах и давлениях.

Рассматривая методы очистки топлив (щелочную, селективную, гидроочистку) необходимо обратить особое внимание на свойства меркаптановых соединений и способы их удаления из товарных топлив.

Вопросы для самопроверки.

- 1. Каков элементный и групповой состав нефти?
- 2. Какие кислородсодержащие соединения входят в состав нефти?
- 3. Какие соединения серы входят в состав нефтей? Почему их присутствие нежелательно в составе авиатоплив?
- 4. Какие продукты получают при первичной переработке нефти?
- 5. В чем преимущество вторичных процессов переработки нефтей?
- 6. Почему в продуктах первичной переработки нефти присутствуют вредные соединения? Назовите их?
- 7. Что такое термический крекинг?
- 8. Чем отличается термический крекинг от каталитического?
- 9. При каких условиях проводят гидрокрекинг и как он влияет на качество товарного продукта?
- 10. Какие методы очистки топливных дистиллятов используются при получении реактивных топлив?

Раздел 2

Студенту следует разобраться в вопросе, как влияет структура органических соединений на их физические, химические и эксплуатационные свойства товарной продукции, включающей органические соединения. Понять, как влияет тип связей (одинарная, двойная, тройная) в углеводородах на вышеперечисленные свойства. Разобраться в различиях между ионной и ковалентной связью. Понять природу одинарной, двойной и тройной связи. Гибридизации. Геометрии молекул. Изомеризации.

Вопросы для самопроверки.

- основные положения теории строения органических веществ Бутлерова.

- сформулируйте суть явления изомеризации. Какие виды изомеров характерны для органических веществ и как это явление связано с структурой и видами связей в органических соединениях?
- как влияет явление изомеризации на физические и эксплуатационные свойства ГСМ?
- напишите структурные формулы и назовите изомерные углеводороды состава: a) C6H14; б) C7H16 и C8H18 Укажите изомеры, содержащие третичные атомы углерода.
- какие из перечисленных соединений являются изомерами и почему:

$$\mathbf{H}_{2}\mathbf{C} = \mathbf{C} - \mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H}_{2}$$
 \mid С \mathbf{H}_{3} изопрен

$$HC \equiv C-CH_2-CH_2-CH_3$$
 пентин-1

$$H_3C-C \equiv C - CH_2-CH_3$$
 пентин-2

$${
m H_3C-CH--C≡CH} \begin{tabular}{c} | & & \\ & C{
m H_3} & 3{
m -metuлбytuh-1} \end{tabular}$$

Структурные изомеры С4Н8

- у каких из приведенных соединений возможны цис- и транс- изомеры? Объясните суть подобного типа изомерии.
- в чем сущность явления электронной гибридизации и как это явление сказывается на прочность химических связей и свойства органических веществ?
- приведите примеры пространственной изомерии.
- сформулируйте разницу между гомологами и изомерами.
- что такое радикалы и чем они отличаются от молекул? Приведите примеры. Сформулируйте правило правильного названия радикалов.

Раздел 3

Углеводороды. Студент разобраться должен В разных ОТЛИЧИЯХ гомологических углеводородов (предельных рядов И непредельных углеводородов (алканов, алкенов, алкадиенов). Знать общую формулу каждого из этих гомологических рядов, заучить наизусть названия первых десяти членлв гомологического ряда парафиновых углеводородов. Понять значение этих классов углеводородов в составе товарных сортов ГСМ и других комплектующих изделий при эксплуатации воздушных судов и наземного оборудования предприятий ГА. Уметь увязать физические, и химические углеводородов, входящих В состав товарных эксплуатационными характеристиками различных ГСМ и других материалов.

Вопросы для самопрверки.

- напишите общую формулу гомологических рядов алканов, алкенов и алкадиенов.
- -перечислите первые десять членов гомологического ряда алканов.
- назовите первые члены гомологических рядов алкенов и алкадиенов и поясните особенности для каждого ряда.
- назовите следующие углеводороды по рациональной и систематической номенклатуре:
- a) CH₃CH₂CH=CHCH(CH₃)CH₂CH₃; б) CH₃CH₂C(CH₂CH₃)=CHCH₂CH₃;
- B) $CH_3CH_2C(=CH_2)CH(CH_3)CH_2CH_3$; Γ) $(CH_3)_2CHCH_2CH=C(C_2H_5)CH(CH_3)_2$.
- назовите следующие алкены:
- B) $CH_3CH_2C(=CH_2)CH_2CH_3$; Γ) $(CH_3)_3CCH_2CH=CH_2$;
- д) $CH_2 = C(C_2H_5)CH(CH_3)CH_2CH_3$; e) $(CH_3)_2CHCH = CHCH_2C(CH_3)_3$.
- напишите структурные формулы изомерных углеводородов состава C_5H_{10} и назовите их.

Назовите следующие углеводороды:

- a) $CH_2 = C = CHCH_3$;
- б) $CH_2 = CHCH = CH_2$;
- B) $CH_2 = C(CH_3) CH = CHCH_3$;
- Γ) CH₂ = CHCH = CHCH₃;
- $_{\rm H}$) $\rm CH_2 = CHCH_2CH = CH_2$.

Назовите соединения. В каждом случае укажите тип диена:

- a) $CH_3CH_2CH = CH CH = CH_2$; 6) $CH_3 C(C_2H_5) = CH CH = CH_2$;
- B) $CH_2 = C(C_2H_5) CH_2 C(CH_3) = CH_2$; Γ) $CH_2 = C(CH_3) CH = C(CH_3)C_2H_5$;
- $_{\rm H}$) $_{\rm CH_3C(C_2H_5)} = C = C(CH_3) CH(CH_3)_2$;
- e) $CH_2 = C(CH_3) CH_2 CH(CH_3) CH_2 CH = CH_2$.
- 3. Напишите структурные формулы изомерных диеновых углеводородов состава C_5H_8 . Углеводороды назовите.
- опишите источники сырья и методы промышленного получения алканов, алкенов и алкадиенов. как алканы, алкены и алкадиены используются в ГСМ? Опишите особенности их поведения при эксплуатации.

Ацетиленовые и галагенпроизводные углеводороды.

Распространение в природе данного класса углеводородов. Номенклатура, способы получения, применение в эксплуатации авиатехники. Студент должен знать общую формулу гомологического ряда этих соединений. Понимать какие химические элементы относятся к галогенам. Знать, где применяются эти соединения в ГСМ, уплотнительных материалах и системах охлаждения оборудования ВС и наземной инфраструктуры предприятий ГА, а также при проведении ремонтных работ.

Одноатомные и многоатомные спирты. : Назначение и применение в ГА.

Необходимо усвоить общую формулу этих классов соединений и уметь отличать эти соединения по формуле от других классов органических соединений. Студент должен понять место данных классов органических соединений в практике применения товарных марок ГСМ, в том числе в топливах и маслах и смазках, а также их место в составе гидрожикостей, ПОЖ, антифризах. Имкть понятие о их роли в производстве и применении биотоплив.

Альдегиды и кетоны: Назначение и применение в ГА.

Необходимо усвоить общую формулу этих классов соединений и уметь отличать эти соединения по формуле от других классов органических соединени. Студент должен понять место данных классов органических соединений в практике применения товарных марок ГСМ, в том числе влияние появления данных классов соединений на эксплуатационные свойства товарных топлив и масел (в том числе на стабильность товарных продуктов).

Вопросы для самопроверки.

- напишите общую формулу для гомологического ряда альдегидов, спиртов и кетонов.
- назовите функциональные группы характерные для каждого из перечисленных классов органических соединений
- являются ли эти соединения углеводородами? Ответ поясните.
- напишите химические реакции получения альдегидов, спиртов и кетонов.
- объясните разницу между одноатомными и многоатомными спиртами.

- как влияет количество гидроксильных групп на свойства спиртов?
- приведите примеры использования разных классов спиртов для обслуживания и эксплуатации авиационной техники.
- назовите перечисленные соединения СН₃ОН; СН₃ СН₂ ОН;

$$CH_3 - CH_2 - CH_2 - OH$$
 $CH_3 - CH_2 - CH_2 - CH_2 OH$

$$\begin{array}{c|c} CH_2-CH-CH_3 \\ & \\ & \\ OH & CH_3 \\ & CH_2OH-CH_2OH; & CH_2OH-CHOH-CH_3 \\ & CH_2OH-CH_2-CHOH-CH_3 \\ & CH_3 \\ & \\ & \\ CH_2OH-C-CH_3 & CH_2-CH-CH_2 \\ \end{array}$$

- назовите данные соединения:

- объясните сущность явлений, приводящих к образованию в товарных ГСМ кислородсодержащих веществ типа альдегидов и кетонов. Оцените как их присутствие влияет на стабильность товарных продуктов.

Карбоновые кислоты. Необходимо усвоить общую формулу этих классов соединений и уметь отличать эти соединения по формуле от других классов органических соединений. Студент должен понять место данных классов органических соединений в практике применения товарных марок ГСМ, в том числе влияние появления данных классов соединений на эксплуатационные свойства товарных топлив и масел (в том числе на стабильность товарных продуктов). Их применение в производстве компонентов синтетических авиамасел и смазок. Знать суть реакции этерификации.

Вопросы для самопровери.

- напишите общую формулу для гомологического ряда карбоновых кислот
- назовите функциональную группу, характерную для этого класса органических соединений
- являются ли эти соединения углеводородами? Ответ поясните.
- напишите химические реакции получения карбоновых кислот.
- какие процессы происходят в товарных ГСМ, приводящие к образованию в их составе карбоновых кислот?
- как влияет на стабильность нефтепродуктов присутствие в них карбоновых кислот?
- назовите перечисленные соединения:

- назовите тип приведенной реакции. Поясните какие ГСМ получают по такой схеме. Уточните исходные продукты таких реакций:

//
$$R-C-OH+HO-R^*\longrightarrow R-C-O-R^*+H_2O$$

- какие органические соединения соответствуют общим формулам такого вида: $C_nH_{2n-1}-COOH; C_nH_{2n-3}-COOH \ C_nH_{2n}(COOH)_2$
- какие карбоновые кислоты называют высшими или синтетическими и как их применяют в производстве ГСМ?

Нитросоединения Необходимо усвоить общую формулу этого класса соединений и уметь отличать эти соединения по формуле от других классов органических соединени. Студент должен понять его место в практике применения в составе каучуков, спецтоплив, присадок к товарным ГСМ. Различать отдельные классы азотсодержащих соединений (амины, амиды и пр.) **Простые и сложные эфиры**. Номенклатура, способы получения, применение в эксплуатации авиатехники. Роль эфиров в ГСМ. Виды изомерии

Карбоциклические соединения. Ароматические соединения. Нафтеновые углеводороды. Их общая химическая формула. Основные физические и химические свойства. Их достоинства, улучшающие эксплуатационные свойства топлив и масел. Возможности применения в качестве конструкционных перспективных материалов для авиатехники.

Ароматические соединения и их производные. Их общая химическая формула. Физические химические свойства, влияющие на качественные эксплуатационные характеристики топлив, масел, В TOM числе свойства антидетонационные бензинов, нагарообразование топлив экологические свойства ГСМ.

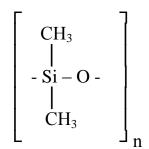
Вопросы для самопроверки.

- 1. Напишите структурные формулы следующих соединений:
- а) о-ксилол; б) изопропилбензол; в) втор.-бутилбензол; г) 1,2,3-триметилбензол;
- д) п-этилстирол.
- 2. Назовите следующие углеводороды:

$$CH_2CHCH_3$$
 CH_3
 C

3. Охарактеризуйте особенности строения соединений, проявляющих ароматичность.

- 4. Приведите примеры использования ароматических углеводородов и их производных при производстве ГСМ.
- 5. Что такое фенолформальдегидные смолы и для чего они используются в авиации?
- 6. Какие типы ароматических соединений используются в качестве загущающих присадок к маслам и гидрожидкостям?


Раздел 4.

Силоксаны. Студент должен понять особенности химического строения, физические и химические свойства этого класса соединений, распространение в природе. Номенклатуру, способы получения области их применения в объектах ГА,улучшающие эксплуатационные характеристики авиамасел и спецжидкостей.

Вопросы для самопроверки.

- 1. Что такое силоксаны? Опишите особенности их строения, физических и химических свойств. В чем их основные преимущества?
- 2. Назовите химические соединения, отвечающие данным общим формулам:

$$\begin{bmatrix} C_2 H_5 \\ | \\ -Si - O - \\ | \\ C_2 H_5 \end{bmatrix}_n$$

- 3. Для каких целей применяют полисилоксаны при производстве специальных типов ГСМ?
- 4. Что такое ПМС-200 и для чего применяется эта жидкость в ГСМ?
- 5. Что такое меркаптаны и какова их роль при эксплуатации двигателей?
- 6. Опишите способы контроля присутствия меркаптанов в товарной продукции.
- 7. Какими методами доводят содержание меркаптанов до требований, предъявляемым к товарным ГСМ?
 - 3. Методические указания к выполнению контрольных работ.

В соответствии с учебной программой каждый студент выполняет одну контрольную работу, которая содержит пять вопросов по всем разделам курса.

Первый вопрос рассматривает сырье, методы производства ГСМ и свойства различных групп углеводородов. Второй вопрос посвящен изучению топлив, третий и четвертый — изучению смазочных материалов. В пятом вопросе проверяется освоение раздела о свойствах специальных жидкостей, применяемых в ГА.

Ответ на каждый вопрос контрольной работы должен отвечать следующим требованиям:

обосновать то или иное рассматриваемое свойство со ссылкой на соответствующие закономерности, состав, условия;

включать химические формулы и уравнения реакций, графические зависимости свойств или таблицы;

содержать схемы (например, при рассмотрении технологических схем), рисунки приборов (например, образования граничного слоя адсорбированных молекул ПАВ на поверхности);

содержать подтверждение тех или иных показателей качества, утвержденными нормативными документами на указанное в вопросе ГСМ.

Контрольная работа выполняется в отдельной тетради или на сброшюрованном файле формата A4, распечатаннос на принтере, на титульном листе которой должен быть указан шифр студента, фамилия, имя, отчество, адрес, курс, специальность и вариант задания.

Перед ответом на вопрос варианта контрольного задания необходимо сформулировать и выделить сам вопрос контрольной работы.

После ответа на последний вопрос в конце работы должен быть указан список использованной литературы и поставлена подпись.

После получения отрецензированной работы, студент должен исправить ошибки или дополнить ответ в соответствии с замечаниями рецензента. При положительной рецензии преподаватель ставит «к защите» и исправленная или дополненная работа защищается студентом лично при сдаче курса преподавателю.

Варианты контрольных работ указаны ниже. После отработки защиты контрольной работы студент сдает зачет по курсу органическая химия.

3. Варианты контрольных работ.

Каждый студент выполняет вариант контрольной работы, в соответствии со своим порядковым номером в экзаменационной ведомости, который выдает куратор группы или преподаватель в соответствии с номером фамилии студента в списке группы.

Вариант 1

- 1. Что изучает наука «Органическая химия»? Основные положения теории Бутлерова..
- 2. Какие углеводороды называются насыщенными? Опишите их основные свойства.

Как они используются в составе ГСМ? Приведите их общую формулу и основные отличия в химической структуре?

- 3. Как влияет изменение структуры (разветвление) углеводородов на их эксплуатационные свойства в составе ГСМ? Приведите конкретные примеры.
- 4. Какие органические вещества входят в состав синтетических каучуков?
- 5. Что такое sp3 гибридизация? Для каких органических веществ она характерна?

Вариант 2

- 1. Какие типы изомеризации существуют у органических веществ? Что это такое? Приведите примеры различных типов изомеров.
- 2. Какие углеводороды называются ненасыщенными? Опишите их основные свойства. Как они используются в составе ГСМ? Приведите их общую формулу и основные отличия в химической структуре?
- 3. Одинарные, двойные и тройные связи в углеводородах. В чем их особенности? Какая из этих связей самая прочная и почему.? Дайте развернутый ответ.
- 4. Опишите основные физические свойства спиртов. Чем отличаются одно, двух и трехатомные спирты? От чего зависит атомность спиртов? Приведите примеры их использования при эксплуатации авиационной техники.
- 5. Что такое sp2 гибридизация? Для каких органических веществ она характерна

Вариант 3

- 1. Объясните явления поляризуемости в структуре химических веществ. Чем отличаются по своим физическим и химическим свойствам полярные и неполярные вещества? К какому типу относится большинство органических соединений?
- 2. Какие углеводороды называются ацетиленовыми? Опишите их основные свойства. Как они используются в составе ГСМ? Приведите их общую формулу и основные отличия в химической структуре?
- 3. Опишите суть явления гибридизации в органических соединениях. Как это явление влияет на свойства органических соединений и на их реакционную способность?
- 4. Какие органические соединения относятся к альдегидам и кетонам? Приведите их общие формулы. Опишите основные физические и химические свойства. В каких случаях они присутствуют в составе ГСМ? Опишите влияние этих веществ на эксплуатационные свойства авиационных топлив.
- 5. Что такое sp гибридизация? Для каких органических веществ она характерна

Вариант 4

- 1. У каких углеводородов имеются сопряженные двойные связи? Что это за тип связей? Как соединения с сопряженными двойными связями используются при производстве синтетических каучуков?
- 2. Чем отличаются гомологи от изомеров? Дайте развернутый ответ.
- 3. Типы химических связей. Чем отличается ионная от ковалентной? Какой тип связей характерен для органических веществ. Дайте развернутый обоснованный ответ.
- 4. Какие органические соединения относятся к кислотам? Назовите и напишите их общую формулу. Какие органические кислоты относятся к одноосновным и многоосновным? Опишите основные химические свойства органических кислот.. как их присутствие влияет на эксплуатационные свойства ГСМ?
- 5. Приведите примеры пространственных изомеров. Чем отличаются цис и транс изомеры?

Вариант 5

1. Какие углеводороды относятся к диеновым? Какие варианты распределения двойных связей характерны для этих соединений? Напишите первый член гомологического ряда диеновых углеводородов, приведите их общую формулу, опишите основные химические свойства.

- 2. Сформулируйте основные положения теории Бутлерова. Что понимают под термином «Органическая химия»? Дайте развернутый ответ.
- 3. Какая из перечисленных химических связей с углеводородах прочнее: одинарная, двойная или тройная? Ответ обоснуйте с точки зрения теории химических связей.
- 4. Какие органические соединения относятся к сложным эфирам? Напишите их общую формулу, способы получения и химические свойства. В каких ГСМ они находят широкое применение? Дайте развернутый ответ.
- 5. Что такое силоксаны? Опишите их основные физические и химические свойства и области применения в авиационных ГСМ.

Вариант 6

- 1. Какие органические вещества называются полимерами? Приведите примеры реакций полимеризации. Приведите примеры использования реакций полимеризации для создания компонентов авиационной техники. Приведите отрицательные примеры реакций полимеризации при эксплуатации авиационных ГСМ.
- 2. Как явление изомеризации влияет на эксплуатационные свойства ГСМ? Приведите примеры.
- 3. Какие углеводороды называются нафтенами? Приведите синонимы этого названия. Опишите их основные химические и эксплуатационные свойства в составе авиационных ГСМ. Из какого сырья получают нафтеновые углеводороды?
- 4. Основные химические свойства органических аминов. Напишите общую химическую формулу и области применения в эксплуатации авиационных ГСМ.
- 5. Что такое полиальфаолефины? Из какого сырья они производятся и для чего применяются в авиационных ГСМ?

Вариант 7

- 1. Опишите природу тройной связи в углеводородах и ее особенности при протекании химических реакций.
- 2. Что такое галогенпроизводные углеводороды? Приведите их химические свойства, способы получения, технические названия и области применения.
- 3. Какие углеводороды называются ароматическими? Приведите общую формулу и особенности химических свойств, связанных с химической структурой. Как присутствие ароматических углеводородов влияют на эксплуатационные свойства топлив?
- 4. Органические нитросоединения. Способы получения, химические свойства.

5. Перечислите основы синтетических масел, с точки зрения их химического состава.

В чем преимущества и недостатки синтетических масел.

Вариант 8

- 1. Что понимается под полярностью и поляризуемостью в органических соединениях. Дайте определение явлению сверхполяризуемости. Как эти явления сказываются на свойства органических соединений?
- 2. Поясните с точки зрения реакций углеводородов с галогенами смысл определения йодного и бромного числа авиатоплив. Напишите химические реакции, протекающие при определении этих показателей и их эксплуатационное значение при применении в авиационной технике.
- 3. В чем различие между моно и полициклическими ароматическими углеводородами? Как полициклические углеводороды влияют на эксплуатационные и экологические свойства авиатоплив?
- 4. Какие полимерные органические соединения используют в качестве загущающих присадок к моторным минеральным маслам? Напишите формулы этих соединений и механизм их действия в составе масел.
- 5. Сложные эфиры фосфорной кислоты, использующиеся при производстве негорючих гидравлических жидкостей. Приведите формулу и свойства.

Вариант 9

- 1. Приведите номенклатуру насыщенных углеводородов с примерами названий.
- 2. Какие углеводороды называются нафтенами? Приведите синонимы этого названия. Опишите их основные химические и эксплуатационные свойства в составе авиационных ГСМ. Из какого сырья получают нафтеновые углеводороды?
- 3. Какие органические соединения относятся к альдегидам и кетонам? Приведите их общие формулы. Опишите основные физические и химические свойства. В каких случаях они присутствуют в составе ГСМ? Опишите влияние этих веществ на эксплуатационные свойства авиационных топлив.
- 4. Что такое sp2 гибридизация? Для каких органических веществ она характерна
- 5. Перечислите основы синтетических масел, с точки зрения их химического состава.

В чем преимущества и недостатки синтетических масел

Вариант 10

- 1. Что изучает наука «Органическая химия»? Основные положения теории Бутлерова
- 2. Что такое галогенпроизводные углеводороды? Приведите их химические свойства, способы получения, технические названия и области применения.
- 3. В чем различие между моно и полициклическими ароматическими углеводородами? Как полициклические углеводороды влияют на эксплуатационные и экологические свойства авиатоплив?
- 4. Какие органические соединения относятся к сложным эфирам? Напишите их общую формулу, способы получения и химические свойства. В каких ГСМ они находят широкое применение? Дайте развернутый ответ
- 5. Что такое силоксаны? Опишите их основные физические и химические свойства и области применения в авиационных ГСМ.

Вариант 11

- 1. Что изучает наука «Органическая химия»? Основные положения теории Бутлерова.
- 2. Какие углеводороды относятся к диеновым? Какие варианты распределения двойных связей характерны для этих соединений? Напишите первый член гомологического ряда диеновых углеводородов, приведите их общую формулу, опишите основные химические свойства.
- 3. Что такое sp гибридизация? Для каких органических веществ она характерна
- 4. Какие полимерные органические соединения используют в качестве загущающих присадок к моторным минеральным маслам? Напишите формулы этих соединений и механизм их действия в составе масел.
- 5. Опишите основные физические свойства спиртов. Чем отличаются одно, двух и трехатомные спирты? От чего зависит атомность спиртов? Приведите примеры их использования при эксплуатации авиационной техники.

Вариант 12

1. Объясните явления поляризуемости в структуре химических веществ. Чем отличаются по своим физическим и химическим свойствам полярные и неполярные вещества? К какому типу относится большинство органических соединений?

- 2. Какие соединения относятся к меркаптанам? Напишите их общую химическую формулу. Какую роль их присутствие оказывает на эксплуатационные свойства авиатоплив?
- 3. Как явление изомеризации влияет на эксплуатационные свойства ГСМ? Приведите примеры.
- 4. Сформулируйте основные положения теории Бутлерова. Что понимают под термином «Органическая химия»? Дайте развернутый ответ. 5.
- 6. Что такое полиальфаолефины? Из какого сырья они производятся и для чего применяются в авиационных ГСМ?

5. Литература

- 1. Глинка Н.Л. Общая химия: Учебное пособие для ВУЗов.,-М. Химия 2004 ,-704 с.
- 2. Немчиков М.Л., Гимальдинова Г.Г. Органическая химия Тексты лекций Часть 1 и 2. Издательство РИО МГТУ ГА 2017
- 3. Коняев Е.А., Немчиков М.Л. Авиационные горюче-смазочные материалы Издательство РИО МГТУ ГА 2012

6.Электронные средства информации по дисциплине. Электронные версии учебно-методических пособий, приведенных в списке литературы и изданной РИО МГТУ ГА на сайте mstuca.ru на странице электронного фонда учебных пособий.

Электронный адрес кафедры. m.nemchikov@mstuca.aero

7. Терминология и понятийный аппарат дисциплины.

Органическая химия — раздел химии, изучающий соединения углерода, их структуру, свойства и методы синтеза. Органическими называют соединения углерода с другими элементами. Наибольшее количество соединений углерод образует с так называемыми элементами-органогенами: H, N, O, S, P. Способность углерода соединяться с большинством элементов и образовывать молекулы различного состава и строения обусловливает многообразие органических соединений. Органические соединения играют ключевую роль в существовании живых организмов.

Нефть — природная маслянистая горючая жидкость со специфическим запахом, состоящая в основном из сложной смеси углеводородов различной молекулярной массы и некоторых других химических соединений.

Авиационные горюче-смазочные материалы.на воздушных гражданской авиации используются двигатели, работающие на углеводородных топливах, а для их нормального функционирования применяются минеральные и гидравлические синтетические масла, жидкости И консистентные смазки, изготавливающиеся на основе компонентов, получаемых процессах нефтепереработки и нефтехимического и химического синтеза.

Углеводоро́ды — органические соединения, состоящие из атомов углерода и водорода[1]. Углеводороды считаются базовыми соединениями органической химии — все остальные органические соединения рассматривают их производными.

Кислородсодержащие органические соединения — соединения, содержащие помимо углерода и водорода, еще один элемент — кислород.

Атом кислорода содержится в различных функциональных группах, определяющих принадлежность соединения к конкретному классу.

К кислородсодержащим органических соединениям относится большой класс органических соединений: спирты, фенолы, альдегиды, кетоны], карбоновые кислоты, простые и сложные эфиры, и т.д

Ароматические соединения (арены) — циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.

Основные сокращения, принятые в данных методических указаниях:

- ΓA – гражданская авиация; ΠA – летательный аппарат; $A \Pi$ – авиационный двигатель; $\Pi B K \mathcal{K}$ – противоводокристаллизационная жидкость.

Содержание

1. Учебный план дисциплины	3
2.Основные сведения по дисциплине	3
3. Целевая установка	3
3.1.Общие методические указания	4
Раздел 1. Предмет органической химии	4
Раздел 2.Строение органических веществ	5
Раздел 3.Классы органических соединений	5
Раздел 4. Силоксаны	6
Методические указания	8
4.Варианты контрольных работ	17
5.Литература	22
6.Электронные средства информации по дисциплине	22
7. Терминология и понятийный аппарат дисциплины	22