ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ (МГТУ ГА)»

Кафедра основ радиотехники и защиты информации С.Г. Камзолова, А.В. Козлов

ОСНОВЫ ЭЛЕКТРОНИКИ

Учебно-методическое пособие по проведению практических занятий

для студентов II курса специальности 25.05.03 очной формы обучения

Рецензент:

Сбитнев А.В. – канд. техн. наук, доцент

Камзолова С.Г.

К-18 Основы электроники: учебно-методическое пособие по проведению практических занятий./ С.Г. Камзолова, А.В. Козлов. – Воронеж: ООО «МИР», 2019. – 36 с.

Данное учебно-методическое пособие издается в соответствии с рабочей программой учебной дисциплины «Основы электроники» по учебному плану для студентов II курса специальности 25.05.03 очной формы обучения.

Рассмотрено и одобрено на заседании кафедры 29.01.2019 г. и методического совета 19.02.2019 г.

В авторской редакции

Подписано в печать 12.03.2018 г. Формат 60х84/16 Печ.л. 3 Усл. печ. л. 3,49 Заказ 428/040947 Тираж 30 экз.

Московский государственный технический университет ГА 125993 Москва, Кронштадтский бульвар, д.20

Отпечатано ООО «МИР» 394033, г. Воронеж, Ленинский пр-т 119А, лит. Я, оф. 215

І. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Основные определения:

Полупроводник – вещество, основным свойством которого является сильная зависимость удельной проводимости от внешних факторов;

Носители заряда – электроны зоны проводимости и дырки валентной зоны;

Генерация носителей заряда – образование пар электрон-дырка;

Рекомбинация носителей заряда – исчезновение пар носителей заряда;

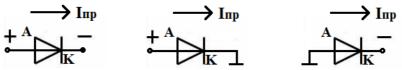
Диффузия – направленное движение носителей заряда вследствие градиента концентрации;

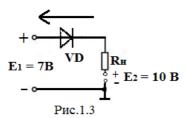
Дрейф — направленное движение носителей заряда при наличии электрического поля;

Электрически переход – переходный слой между областями твёрдого тела с различными типами или значениями проводимости;

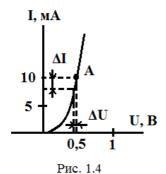
Диод — полупроводниковый прибор, имеющий один выпрямляющий электрический переход и два вывода.

Чтобы через диод протекал ток, нужно к аноду «А» приложить положительное относительно катода «К» напряжение (рис.1.1).




Рис. 1.1

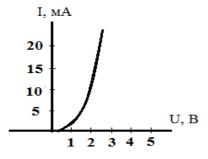
Во всех этих случаях через диод течёт прямой ток.


В противном случае — обратный ток $I_{\text{обр}}$, он мал и говорят, что к диоду прикладывается обратное напряжение — $U_{\text{обр}}$.

Примеры:

Направление тока соответствует $I_{\text{обр,}}$ то есть к диоду приложено $U_{\text{обр}} = E_2 - E_1 = 10 - 7 = 3B \text{ (рис. 1.3)}$

3. Определить дифференциальное сопротивление диода в т.А (рис.1.4)


Решение:

$$r_{\partial u}\phi_A = \frac{\Delta U}{\Delta I}\Big|_{\text{T.A}}$$

Величина « Δ » такая, чтобы она соответствовала обязательно линейному участку ВАХ. В пределах линейного участка « Δ » может быть выбрана произвольно, но обязательно захватывать т.А.

$$r_{\partial u}\phi_A = \frac{0.5 - 0.4}{10 - 8}\Big|_{T.A} = \frac{0.1}{2} = 50O_M$$

4. Построить нагрузочную прямую и определить координаты точки покоя (рис.1.5).

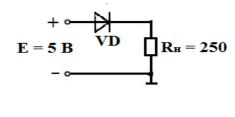
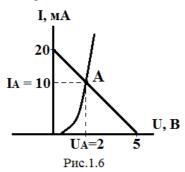



Рис.1.5

Решение:

Схема состоит из 2-х частой – нелинейной (VD) и линейной (E, $R_{\scriptscriptstyle H}$).

ВАХ нелинейной части – это ВАХ диода. ВАХ линейной может быть построена методом холостого хода и короткого замыкания.

$$U_{XX} = 5B$$
, $I = 0$; $I_{K3} = \frac{E}{R_u} = \frac{5}{250} = 20 \text{ MA}$, $U = 0$.

Это и есть нагрузочная прямая (рис.1.6). Точка пересечения «А» нагрузочной прямой и ВАХ диода определяет точку покоя. Её координаты: $U_{\rm A}=2B$; $I_{\rm A}=10$ мА.

5. Обеспечить положение точки покоя A, указанное на BAX (рис.1.7) выбором $R_{\scriptscriptstyle H}$.

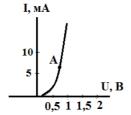


Рис.1.7

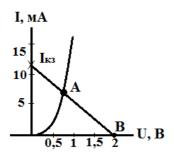
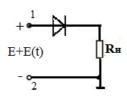


Рис.1.8


Решение: $I=0,\ \ U=E$ - одна координата нагрузочной прямой (т.В);

T. A - вторая.

Проводим линию $R_{\scriptscriptstyle H}$ через A и B (рис.1.8).

$$R_{\rm H} = \frac{E}{I_{\rm K3}} = \frac{2}{13} \cong 150 \ Om \ .$$

6. К диоду приложено, кроме постоянного напряжения Е, ещё и переменное

E(t). Точки приложения E и E(t) — одни и те же («1» и «2», рис.1.9). Поэтому E(t) перемещает нагрузочную прямую E- $R_{\rm H}$ параллельно самой себе. Рабочая точка движется по BAX: A (рис.1.10).

Рис.1.9

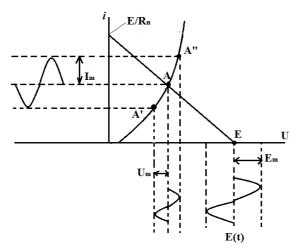
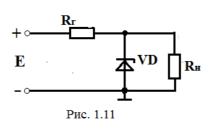



Рис. 1.10

7. Дана схема стабилизатора на стабилитроне (рис.1.11). Е нестабильно, то есть может меняться в диапазоне $E\pm\Delta E$.

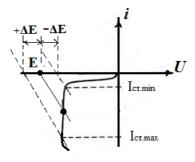
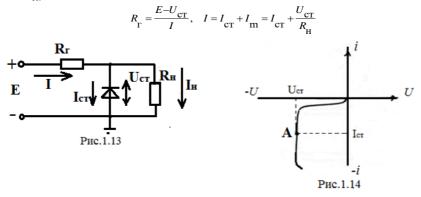
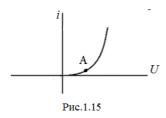



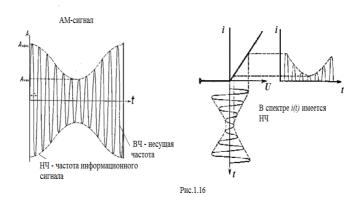
Рис.1.12


По ВАХ стабилитрона (рис.1.12) можно определить допустимые значения E: соединяем E с серединой рабочего участка ВАХ (т. A). Перемещаем прямую EA параллельно самой себе, не восходя за значения I_{cr}_{\min} и I_{cr}_{\max}

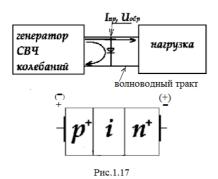
По оси абсцисс определяем $\pm \Delta E$.

8. Выбор точки покоя стабилитрона в схеме стабилизатора производится сопротивлением R_r (рис.1.13). Пусть E может меняться симметрично в стороны увеличения и уменьшения, то есть $+\Delta E = -\Delta E$. Тогда выбираем точку покоя A в середине рабочей зоны (рис. 1.14). Ей соответствуют I_{cr} , U_{cr} .

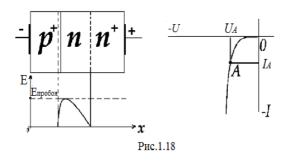
Диоды различного назначения


а) Смесительный диод – для преобразования высокочастотных. сигналов в сигналы промежуточной частоты.

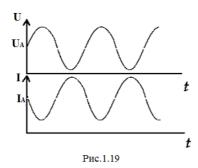
Материал — арсенит галлия, электрический переход — переход Шотки. Точка покоя — на квадратичном участке ВАХ (рис. 1.15), что даёт возможность получить $\omega_{\rm пp} = \omega_{\rm c} - \omega_{\rm r}$,


где ω_{np} – промежуточная частота, ω_c –

частота сигнала, $\omega_{\scriptscriptstyle \Gamma}$ – частота гетеродина.


б) Детекторный диод выделяет из АМ-сигналов сигнал более низкой частоты (рис.1.16).

в) Переключательный диод – для применения в устройствах управления уровнем СВЧ-мощности (рис. 1.17)



г) Лавинно-пролётный диод — для генерации СВЧ-колебаний (рис. 1.18) В области p-пперехода при $U_A + U_{\sim}$ развивается лавинный пробой. Электроны и дырки разделяются полем p-n-перехода: дырки — в p^+ -область, электроны — в n^+ -область.

Принцип работы основан на задержке тока относительно напряжения, вызванной конечной скоростью развития лавины и движения носителей заряда.

Фазовый сдвиг 180° (рис. 1.19) (частный случай) \rightarrow отрицательное дифференциальное сопротивление \rightarrow генерация колебаний.

д) Туннельный диод – на основе вырожденного полупроводника (с большим содержанием примесей), результатом чего является то, что энергетические уровни примесей р- и n-областей одинаковы и электроны примеси туннелируют (для них нет потенциального барьера) в p-область (рис.1.20).

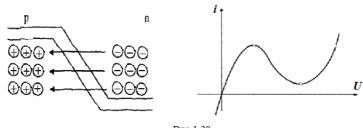


Рис.1.20

е) Обращённый диод – с критическим содержанием примесей (рис.1.21)

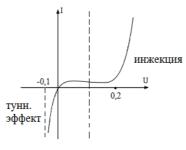


Рис.1.21

ж) Варикап - $C_{\text{вар}} = f(U_{\text{обр}})$, рис.1.22

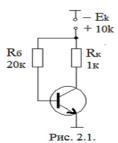
Рис.1.22

з) Диод Ганна – генератор СВЧ-колебаний; используется свойство полупроводника, находящегося в сильном магнитном поле, генерировать СВЧ-колебания.

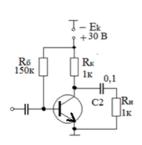
ІІ. БИПОЛЯРНЫЙ ТРАНЗИСТОР

Основные определения:

Биполярный транзистор — полупроводниковый прибор с двумя взаимодействующими p-n-переходами и тремя выводами, процессы в котором определяются инжекцией и экстракцией носителей заряда;


Инжекция — переход основных носителей заряда через пониженный потенциальный барьер в область, где они буду неосновными;

Экстракция – освобождение базы от неосновных носителей заряда;


Режим работы отсечки – когда оба перехода смещены в обратном направлении; насыщения, когда оба перехода смещены в прямом направлении; активный – эмиттерный переход смещен в прямом направлении, коллекторный – в обратном.

ЗАДАЧИ

1. В каком режиме находится БТ в схеме (рис.2.1).

2. Построить линию переменного тока для схемы на рис.2.2 $f_{\rm Bx} = 1~{ m M}\Gamma{ m q}$

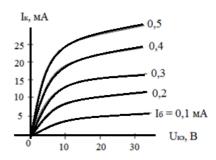
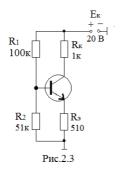
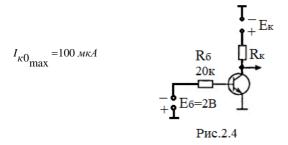




Рис.2.2

ь
$$I_9$$
, $\beta = 80$ (рис.2.3)

4. Проверить наличие режима отсечки (рис.2.4)

5. Определить степень насыщения транзистора в схеме на рис.2.5.

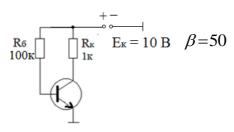
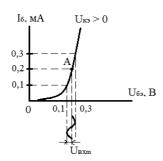



Рис. 2.5

6. Определить амплитудное значение $U_{\text{выхm}}$ при подаче sin-го сигнала с $U_{\text{вхm}}$ (рис. 2.6).

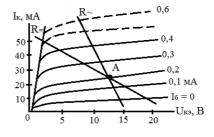


Рис. 2.6

7. Определить U_9 при $I_6 = 0,2$ мА

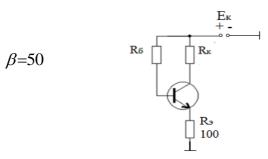


Рис. 2.7

8. Определить режим работы БТ для схемы на рис. 2.8.

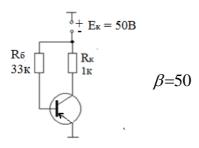
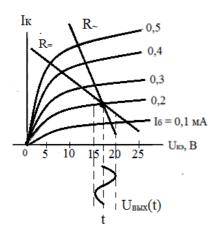



Рис. 2.8

9. Определить амплитуду входного сигнала по $U_{\text{вых}}(t)$ – рис. 2.9.

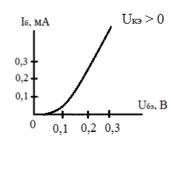
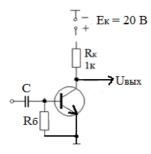



Рис.2.9

10. Определить полярность и амплитуду $U_{\text{вх}}$ (сигнал импульсный), при которых $U_{\text{вых}} \approx 20~\text{B};~\beta = 20$ (рис. 2.10).

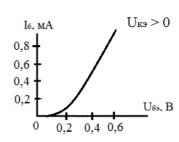
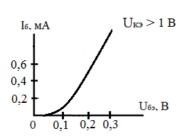



Рис. 2.10

11. Определить амплитуду и полярность входного напряжения, переключающего БТ ключа (рис. 2.11) из режима отсечки (т. А) в режим насыщения со степенью S = 1,1. Определить амплитуду и полярность выходного напряжения.

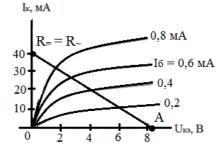
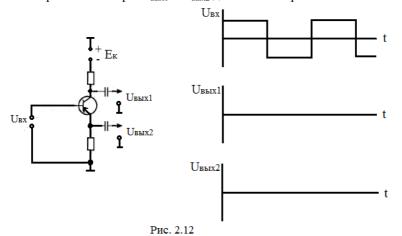
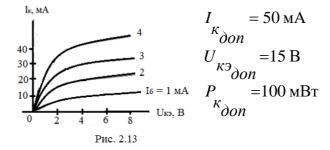
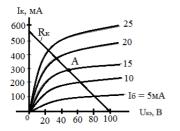
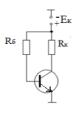




Рис. 2.11


12. Нарисовать эпюры $U_{\text{вых}1}$ и $U_{\text{вых}2}$ для схемы на рис. 2.12.



13. Найти зону безопасной работы БТ (рис. 2.13).

14. Обеспечить положение рабочей точки транзистора (рис. 2.14). Рассчитать $h_{113},\,h_{213}$ и $h_{223}.$

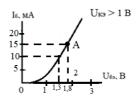


Рис. 2.14

15.Определить I_6 схемы на рис. 2.15.

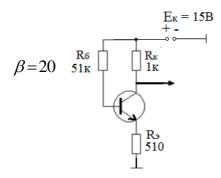
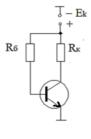



Рис. 2.15

16. Выбрать все элементы схемы, обеспечить режим насыщения с S=1 (рис. 2.16).

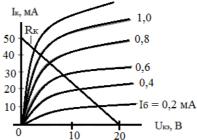


Рис. 2.16

Пояснения к задачам

1. Если БТ открыт, то для определения режима (активный, насыщения) нужно определить степень насыщения $S = \frac{I_6}{I_{6_{11}}}$.

Если S<1, то режим активный; если S \geq 1, то насыщения.

 $I_{\rm 6H}$ можно найти по формуле $I_{\widetilde{O}_H} \approx \frac{E_K}{\beta R_K}$ или по выходной ВАХ как параметр

кривой, исходящей из точки насыщения.

 I_{6} определяется в зависимости от способа задания точки покоя.

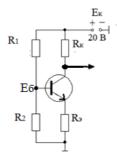
- 2. Для построения линии переменного тока необходимо:
 - Построить нагрузочную прямую постоянного тока по точкам:

$$U_{K9} = E_K, I_K = 0;$$

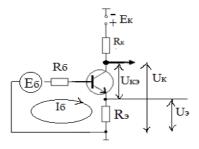
$$U_{\kappa 9} = 0, I_k = \frac{E_{\kappa}}{R_{-}};$$

- Определить І₆;
- Указать точку покоя;
- Определить R_~;

Обычно
$$X_c = \frac{1}{\omega C} \approx$$
 мало, тогда сопротивление ёмкости можно не


учитывать.

• Построить вспомогательную прямую по точкам:


$$U_{_{\cancel{K}\cancel{9}}}=E_{_{\cancel{K}}},\,I_{_{\cancel{K}}}=0;$$

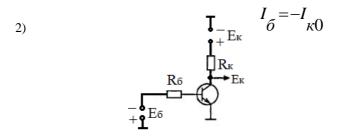
$$U_{\kappa \ni} = 0, I_k = \frac{E_{\kappa}}{R_{\square}};$$

- Провести линию R_{\sim} через точку покоя с наклоном вспомогательной прямой.
- 3. К расчёту схемы по постоянному току:

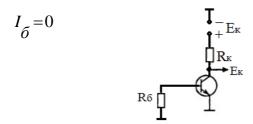
Преобразуем входную цепь:

ток делителя

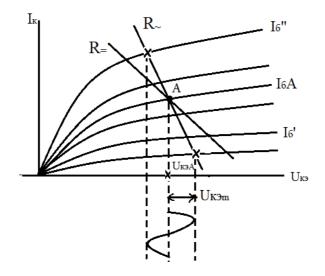
$$E_{\delta} = \underbrace{R_{1} + R_{2}}_{R_{1} + R_{2}} \cdot R_{2};$$

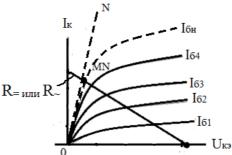

$$R_{\delta} = \underbrace{R_{1}R_{2}}_{R_{1} + R_{2}}$$

Так как по R $_{\scriptscriptstyle 6}$ протекает I $_{\scriptscriptstyle 6}$, а по R $_{\scriptscriptstyle 9}$ – ток $I_{\stackrel{}{\mathcal{9}}}{=}(1+\beta)I_{\stackrel{}{\mathcal{O}}}$, то


$$\begin{split} I_{\mathcal{O}} &= \frac{E_{\mathcal{O}}}{R_{\mathcal{O}} + (1 + \beta)R_{\mathcal{O}}}.\\ U_{\mathcal{O}} &= I_{\mathcal{O}} \cdot R_{\mathcal{O}}; \quad U_{\mathcal{K}} = E_{\mathcal{K}} - I_{\mathcal{K}}R_{\mathcal{K}}; \quad U_{\mathcal{K}\mathcal{O}} = U_{\mathcal{K}} - U_{\mathcal{O}};\\ I_{\mathcal{K}} &= \beta I_{\mathcal{O}} \end{split}$$

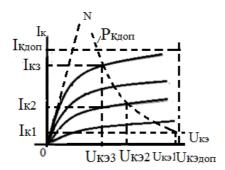
Другие варианты задания точки покоя: 1)


$$I_{\tilde{O}} = \frac{E_{\kappa}}{R_{\tilde{O}}}$$


3)

- 4. При проверке наличия режима определяется его обеспеченность элементами схемы. Например, для режима отсечки это $\left|E_{\delta}\right| > I_{\kappa 0\,{
 m max}}R_{\delta}$.
- (к №6). Обратить внимание, что входной сигнал перемещает рабочую точку по R.:

- 6. (к №10). Максимальный импульсный сигнал (~Е_к) получается при переключении БТ из отсечки в насыщение, и наоборот. Необходимо определить режим схемы по постоянному току, а затем подать импульсный сигнал соответствующей полярности, который переключит БТ в противоположный режим.
- 7. (к №11). Определение Ібн по ВАХ:


- 1) Проведем линию насыщения ОК
- 2) Из точки MN проведем кривую и по ней $I_{\text{бн}}$. (её вид приблизительно тот же, что и к ней ближайшей).

$$P_{K \to On} = U_{K9} I_{K}$$

Задавая произвольное значение

$$I_{\kappa_1} = \frac{P_{\kappa_{\partial O n}}}{U_{\kappa_{2}_1}}$$

$$U_{\kappa_{2}_1}$$

$$U_{\kappa_{2}_2}$$
 рассчитываем
$$I_{\kappa_2} = \frac{P_{\kappa_{\partial O n}}}{U_{\kappa_{2}_2}}$$

$$I_{\kappa_3} = \frac{P_{\kappa_{\partial O n}}}{U_{\kappa_{2}_3}}$$

Зона безопасной работы ограничена линией насыщения ON, $I_{\mbox{\tiny кдоп}},\, U_{\mbox{\tiny кздоп}},\, P_{\mbox{\tiny клоп}}.$

III. Контрольное домашнее задание

Тема задания – расчет схем на биполярных транзисторах.

Номер варианта соответствует предпоследней цифре номера зачетной книжки. Характеристика и параметры транзистора представлены в приложении.

Плановая трудоемкость – 5 академических часов.

1. В соответствие с таблицей 3.1 произвести расчет соответствующих параметров усилителя (рис.3.1).

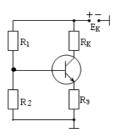


Рис. 3.1

Таблица 3.1

Вариант	β	R_1 ,	R_2 ,	R_{k} ,	$R_{_{9}}$,	E_k ,	Рассчитать
		кОм	кОм	кОм	Ом	В	
1	50	51	51	1.0	100	10	$U_{\scriptscriptstyle k}$
2	49	39	39	0.91	91	15	$U_{_{\mathfrak{I}}}$
3	60	100	51	1.2	100	10	I,
4	70	110	62	0.62	150	12	I_k
5	75	91	30	0.75	200	15	$I_{\scriptscriptstyle 6}$
6	80	100	100	1.1	210	10	I_{k}, I_{9}
7	40	82	43	1.0	300	15	$U_{\mathfrak{s}}$
8	45	47	47	1.3	330	12	I_k, I_δ
9	65	100	47	1.5	91	10	U_{κ}
10	70	82	51	0.72	150	15	$I_{\mathfrak{G}}$
11	50	39	51	0.62	200	10	$U_{_{\mathfrak{I}}}$
12	49	100	62	0.75	210	15	I_{k}, I_{δ}
13	60	110	30	1.1	300	12	U_{κ}
14	70	91	100	1.0	330	10	$I_{\tilde{o}}$
15	75	100	43	1.3	91	15	$U_{_{\scriptscriptstyle 9}}$
16	80	82	47	1.5	150	15	$I_{\mathfrak{g}}$
17	40	47	47	0.72	91	10	I_k
18	45	100	51	0.91	100	12	$I_k, I_{\mathfrak{p}}$
19	65	82	51	1.2	150	15	$U_{_{9}}$
20	70	51	39	0.62	200	10	I_{k}, I_{δ}

2. В соответствии с табл.3.2 для схемы, изображенной на рис.3.2, выполнить следующее:

- а) Построить нагрузочную прямую постоянного тока и указать на ней точку покоя ${\bf A}.$
 - б) Определить ток коллектора I_k и напряжение коллектор-эмиттер U_{k_2} .
- в) Определить значение R_{δ}^{*} , обеспечивающее заданную в табл. 3.2 степень насыщения S.
- г) Указать положение новой точки покоя A^* на входных и выходных характеристика

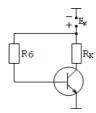


Рис. 3.2

Таблица 3.2

Вариант	R_{6} ,	R_{κ} ,	E_{k} ,	S
	кОм	Ом	В	
1	100	1000	10	1
2	20	200	10	1.1
3	300	910	12	1.2
4	3	30	30	1.05
5	8	120	25	1
6	51	720	20	1.1
7	51	510	40	1.05
8	0.82	1.3	16	1.1
9	1.25	18	100	1
10	0.25	10	100	1.2
11	100	200	12	1.05
12	20	910	30	1
13	300	30	25	1.1
14	3	120	20	1.05
15	8	720	40	1.1
16	51	510	16	1
17	51	1.3	100	1.2
18	0.82	18	100	1
19	1.25	10	10	1.1
20	0.25	1000	10	1.2

Примечание:

- 1) входные и выходные характеристики транзистора и предельно-допустимые параметры указаны в приложении 1;
- 2) при изображении схемы (рис.3.2) необходимо обратить внимание на тип БТ (n-p-n или p-n-p)
 - 3. Построить нагрузочную прямую переменного тока (рис.3.3, табл.3.3).

Таблица 3.3

Вариант	$I_{\scriptscriptstyle B}$, MA	R_3 , Om	R_4 , Om	R_5 ,OM	E_k ,
(приложение)					В
1	0.1	1000	100	1000	10
2	0.5	200	30	200	10
3	0.04	910	51	910	12
4	10	30	5	30	30
5	3	120	10	120	25
6	400	720	51	720	20
7	0.8	510	20	510	40
8	20	1.3	0.5	1.3	16
9	100	18	0.5	18	100
10	400	10	1.0	10	100
11	0.1	200	51	30	25
12	0.5	910	5	120	20
13	0.04	30	10	720	40
14	10	120	51	510	16
15	3	720	20	1.3	100
16	400	510	0.5	18	100
17	0.8	1.3	0.5	10	10
18	20	18	1.0	1000	10
19	100	10	100	200	12
20	400	1000	30	910	30

<u>Примечание</u>: сопротивление емкостей Xc = 0; в варианте № 6 ток базы в мкА.

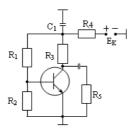


Рис. 3.3

4. Построить зону безопасной работы заданного транзистора. Она ограничена линиями насыщения, допустимых тока и напряжения на электродах транзистора и мощностью рассеяния на коллекторе.

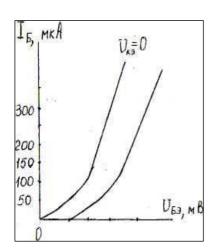
Вариант	I_k	$U_{\kappa_{2}}, B$
1	6мА	10
2	10мА	17
3	12мА	5
4	100мА	60
5	50мА	24
6	2A	25
7	10мА	60
8	3,5A	20
9	1A	120
10	330мА	120
11	6мА	17
12	10мА	5
13	12мА	60
14	100мА	24
15	50мА	25
16	2A	60
17	10мА	20
18	3,5A	120
19	1A	120
20	330мА	10

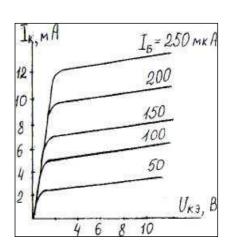
5. Рассчитать h- параметры по характеристикам транзистора в точке покоя.

Расчеты производить по формулам:

$$h_{119} = \frac{\Delta U_{69}}{\Delta I_{6}} \mid_{U_{k9} = const};$$

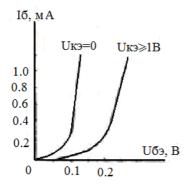
$$h_{129} = \frac{\Delta U_{69}}{\Delta U_{\kappa 9}} \mid_{I_6 = const};$$

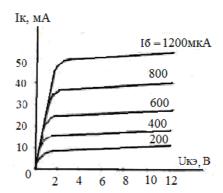

$$\mathbf{h}_{219} = \frac{\Delta \mathbf{I}_{\kappa}}{\Delta \mathbf{I}_{6}} \mid_{\mathbf{U}_{\kappa 9} = \mathrm{const}};$$


Приложение

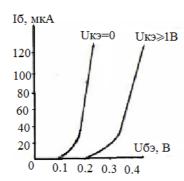
№ 1

Транзистор малой мощности



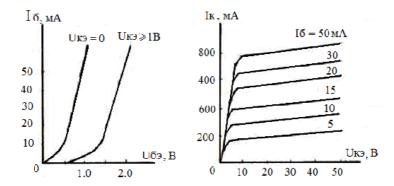


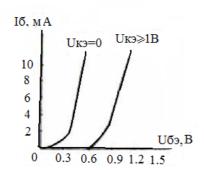
Ток коллектора, мА	10
Напряжение коллектор-эмиттер, В	10
Мощность на коллекторе, мВт	60

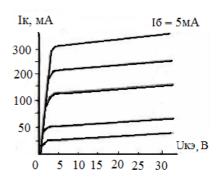

№ 2 Транзистор малой мощности



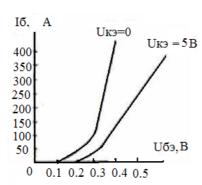
Ток коллектора, мА	55
Напряжение коллектор-эмиттер, В	12
Мощность на коллекторе, мВт	170

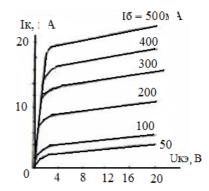

№ 3 Транзистор малой мощности


Ток коллектора, мА	15
Напряжение коллектор-эмиттер, В	.15
Мошность на коллекторе. мВт	.60

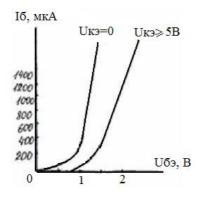

№ 4 Транзистор средней мощности

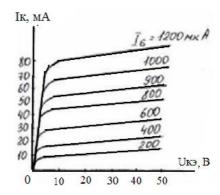
Ток коллектора, мА	1000
Напряжение коллектор-эмиттер, В	50
Мощность на коллекторе, Вт	6


№ 5 Транзистор средней мощности

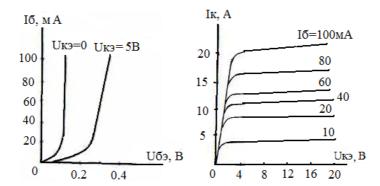


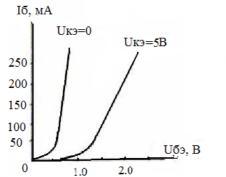
Ток коллектора, мА	250
Напряжение коллектор-эмиттер, В	30
Мошность на коллекторе. Вт	1.2

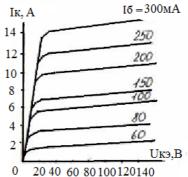

№ 6 Транзистор большой мощности



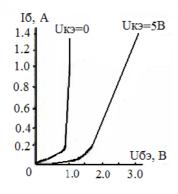
Ток коллектора, А	20
Напряжение коллектор-эмиттер, В	30
Мощность на коллекторе, Вт	50

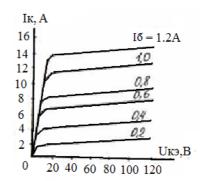

№ 7 Транзистор средней мощности


Ток коллектора, мА	70
Напряжение коллектор-эмиттер, В	50
Мощность на коллекторе, Вт	6


№ 8 Транзистор большой мощности

Ток коллектора, А	20
Напряжение коллектор-эмиттер, В	20
Мошность на коллекторе Вт	


№ 9 Транзистор большой мощности



Ток коллектора, А	15
Напряжение коллектор-эмиттер, В	
Мошность на коллекторе Вт	120

№ 10 Транзистор большой мощности

Ток коллектора, А	15
Напряжение коллектор-эмиттер, В	
Мощность на коллекторе, Вт	40

ЛИТЕРАТУРА

1. Лачин В.И., Савелов Н.С. Электроника. Ростов-на-Дону, 2005.