ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

Кафедра аэродинамики, конструкций и прочности летательных аппаратов

В.В. Ефимов, М.Г. Ефимова

КОНСТРУКЦИЯ И ПРОЧНОСТЬ САМОЛЕТА

Учебно-методическое пособие по выполнению практических занятий

для студентов IV курса направления 25.03.01 всех форм обучения

Москва ИД Академии Жуковского 2018 УДК 629.7.02(07) ББК 052-021.1 Е91

Рецензент:

Ципенко В.Г. – д-р техн. наук, проф.

Ефимов В.В.

Е91 Конструкция и прочность самолета [Текст] : учебно-методическое пособие по выполнению практических заданий / В.В. Ефимов, М.Г. Ефимова. – М.: ИД Академии Жуковского, 2018. – 16 с.

Данное учебно-методическое пособие издается в соответствии с рабочей программой учебной дисциплины «Конструкция и прочность самолета» по учебному плану для студентов IV курса направления 25.03.01 всех форм обучения.

Рассмотрено и одобрено на заседании кафедры $10.04.2018~\mathrm{r.}$ и методического совета $18.04.2018~\mathrm{r.}$

УДК 629.7.02(07) ББК 052-021.1

В авторской редакции

Подписано в печать 19.06.2018 г. Формат 60x84/16 Печ. л. 1 Усл. печ. л. 0.93 Заказ N° 331/0604-УМП02 Тираж 80 экз.

Московский государственный технический университет ГА 125993, Москва, Кронштадтский бульвар, д. 20

Издательский дом Академии имени Н. Е. Жуковского 125167, Москва, 8-го Марта 4-я ул., д. 6A Тел.: (495) 973-45-68 F-mail: zakaz@itsbook ru

© Московский государственный технический университет гражданской авиации, 2018

Содержание

Введение	4
Рекомендуемая литература	4
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1 Расчет маневренных перегрузок	5
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2 Расчет перегрузок при полете в неспокойно воздухе	
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3 Определение нагрузок, действующих на крыло	9
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4 Расчет на прочность силовых элементов крыла	11
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 5 Определение нагрузок на подвижные части крыла	

Введение

Настоящее пособие издается в соответствии с учебным планом подготовки бакалавров по направлению 25.03.01 – «Техническая эксплуатация летательных аппаратов и двигателей». Оно содержит в себе задания для выполнения на практических занятиях по дисциплине «Конструкция и прочность самолета», которые призваны помочь закреплению теоретического материала и получению практических навыков по изучаемой дисциплине.

На занятиях каждый студент должен иметь линейку, ластик, карандаш, калькулятор с полным набором функций, листы миллиметровки формата A4.

Отчет по практическому занятию должен быть индивидуальным и аккуратно оформленным. Допускается оформлять отчеты в отдельной тетради. Все записи должны быть выполнены ручкой, а чертежи и графики – только карандашом. В конце каждого отчета по практическому занятию должны стоять дата, фамилия и подпись студента.

Отчет о выполнении практического занятия в конце занятия защищается перед преподавателем, который, в случае успешной защиты, ставит свою подпись. Студенты, пропустившие практическое занятие, в том числе по уважительной причине, должны получить у преподавателя задание для отработки.

Рекомендуемая литература

- 1. Ефимов В.В., Чернигин К.О. Конструкция и прочность самолета: учебное пособие. М.: МГТУ ГА, 2016. 56 с.
- 2. Ефимов В.В., Ефимова М.Г., Чернигин К.О. Конструкция и прочность самолета. Крыло: учебное пособие. М.: ИД Академии Жуковского, 2018. 76 с.
- 3. Житомирский Г.И. Конструкция самолетов. М.: Машиностроение, 2005. 416 с.: ил.
- 4. Конструкция и прочность летательных аппаратов гражданской авиации: Учебник для вузов гражданской авиации / М.С. Воскобойник, П.Ф. Максютинский, К.Д. Миртов и др.; Под общ. ред. К.Д. Миртова, Ж..С. Черненко. М.: Машиностроение, 1991.-448 с.: ил.
- 5. Ефимов В.В. Динамика и прочность авиационных конструкций: учебное пособие. Часть I.-M.: МГТУ $\Gamma A, 2013.-70$ с.
- 6. Ефимов В.В. Динамика и прочность авиационных конструкций: учебное пособие. Часть II. М.: МГТУ ГА, 2014. 72 с.
- 7. Феодосьев В.И. Сопротивление материалов: Учеб. для вузов. 10-е изд., перераб. и доп. М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. 592 с.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1 Расчет маневренных перегрузок

Залача 1.1

 $\ensuremath{\mathsf{\Pi}}$ а н о : самолет совершает установившийся прямолинейных полет в горизонтальной плоскости.

Найти: продольную и нормальную перегрузки.

Залача 1.2

Дано: самолет совершает перевернутый установившийся прямолинейных полет в горизонтальной плоскости.

Найти: нормальную перегрузку.

Задача 1.3

Дано: самолет совершает отвесное пикирование.

Найти: продольную перегрузку при:

- а) установившемся отвесном пикировании;
- б) равенстве тяги двигателей продольной аэродинамической силе.

Задача 1.4

Дано: самолет совершает установившийся прямолинейный набор высоты с углом наклона траектории 19^{0} .

Найти: продольную, нормальную и полную перегрузки.

Залача 1.5

Дано: самолет входит в пикирование из установившегося горизонтального полета на скорости V, при этом он движется по дуге окружности с радиусом R (таблица 1.1).

Варианты исходных данных

Таблица 1.1

Параметры	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Скорость полета V , км/ч	360	380	400	420
Радиус траектории <i>R</i> , м	500	600	700	800

H а й т и : нормальную перегрузку в точках 1, 2 (при угле наклона траектории $\theta = 60^{0}$) и 3, считая скорость полета неизменной (рис. 1.1).

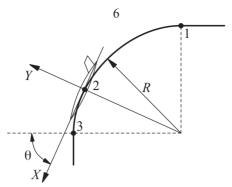


Рис. 1.1. К задаче 1.5

Задача 1.6

 \mathcal{A} а н о : самолет выходит из установившегося отвесного пикирования на скорости V, при этом он движется по дуге окружности с радиусом R (таблица 1.2).

Варианты исходных данных

Таблица 1.2

1				
Параметры	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Скорость полета V , км/ч	720	740	760	780
Радиус траектории <i>R</i> , м	1500	1700	1900	2100

Н а й т и : нормальную перегрузку в точках 1, 2 (при угле наклона траектории $\theta = 45^{\circ}$) и 3, считая скорость полета неизменной (рис. 1.2).

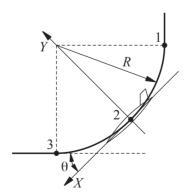


Рис. 1.2. К задаче 1.6

Задача 1.7

Дано: самолет совершает правильный вираж.

Найти: нормальную перегрузку, если угол крена составляет:

a) $\gamma = 0$;

б) $\gamma = 15^{\circ}$;

B) $\gamma = 45^{\circ}$;

 Γ) $\gamma = 60^{\circ}$.

Задача 1.8

 \mathcal{A} а но: самолет совершает правильный вираж, двигаясь по дуге окружности с радиусом $R_{\text{в}}$ на скорости V (таблица 1.3).

Найти: угол крена и нормальную перегрузку.

Варианты исходных данных

Таблица 1.3

Параметры	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Скорость полета V , км/ч	720	760	800	840
Радиус виража $R_{\scriptscriptstyle \rm B}$, м	2000	2400	2800	3200

Задача 1.9

Дано: самолет совершает маневр на высоте H при скорости полета V. Необходимые исходные данные представлены в таблице 1.4.

Варианты исходных данных

Таблица 1.4

Параметры	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Высота полета H , м	1000	1500	2000	2500
Плотность воздуха на высоте полета ρ , $\kappa \Gamma/m^3$	1,112	1,058	1,006	0,957
Скорость полета V , км/ч	360	400	440	300
Максимальный коэффициент нормальной аэродинамической силы крыла $c_{y \max}$	1,5	1,4	1,3	1,4
Масса самолета т, кг	73500	49400	38000	16000
Площадь крыла $S_{\kappa p}$, м 2	125	90	75	70

 ${\rm H\,a\,\,{\BMH}\,{\BMT}\,{\BMH$

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2 Расчет перегрузок при полете в неспокойном воздухе

Задача 2.1

 \mathcal{A} а н о : самолет совершает установившийся горизонтальный прямолинейный полет со скоростью V, на него воздействует встречный горизонтальный порыв ветра со скоростью U (таблица 2.1).

Варианты исходных данных

Виринты неходных динных					
Параметры	Вариант 1	Вариант 2	Вариант 3	Вариант 4	
корость полета V , км/ч	850	875	900	925	
PODOCTE HODEIDS II M/C	8	10	15	17	

 ${\rm H\,a\,\,\ddot{u}\,T\,u}$: нормальную перегрузку при условии, что скорость порыва нарастает мгновенно.

Задача 2.2

 \mathcal{A} а н о : самолет совершает установившийся горизонтальный прямолинейный полет со скоростью V на высоте H, на него воздействует вертикальный восходящий порыв ветра со скоростью U. Необходимые исходные данные представлены в таблице 2.2.

Таблица 2.2 Варианты исходных данных

Таблина 2.1

Параметры	Вариант 1	Вариант 2	Вариант 3	Вариант 4	
Высота полета Н, м	5000	10000	5000	10000	
Плотность воздуха на высоте полета ρ , $\kappa r/m^3$	0,736	0,414	0,736	0,414	
Скорость полета V , км/ч	600	900	600	900	
Масса самолета т, кг	49000	49000	73500	73500	
Площадь крыла S , м 2	90	90	125	125	
Pазмах крыла l , м	28	28	34	34	
Производная коэффициента нормальной аэродинамической силы крыла по углу атаки c_y^{α}	5	5	5,5	5,5	
Скорость порыва U , м/с	15	10	15	10	

 ${\rm H\,a\,\,\ddot{n}\,T\,u}$: нормальную перегрузку при условии, что скорость порыва нарастает мгновенно.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3 Определение нагрузок, действующих на крыло

Задача 3.1

Дано: параметры самолета и его частей (таблица 3.1, рис. 3.1), эксплуатационная перегрузка $n^3 = 3.8$, коэффициент безопасности f = 1.5.

Таблица 3.1 Варианты исходных данных

Параметр	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Масса самолета т, кг	73000	49400	38000	16000
Масса конструкции крыла $m_{\kappa p}$, кг	7000	5000	3800	1600
Масса топлива в крыльевых баках $m_{\text{\tiny T}}$, кг	18000	10000	7700	3000
Масса одной опоры шасси $m_{\text{ш}}$, кг	700	500	380	160
Масса одного двигателя $m_{\text{дв}}$, кг	2010	1800	950	400
Тяга одного двигателя, кгс	10950	7400	5700	2400
Центральная хорда крыла b_0 , м	6	5,2	4,8	4
Концевая хорда крыла b_{κ} , м	3	2,6	2,4	2
Размах крыла <i>l</i> , м	34	28	26	24
Центральная хорда топливного бака b_{05} , м	4	3,8	3,4	2,4
Концевая хорда топливного бака $b_{\kappa\delta}$, м	2	1,8	1,6	1,2
Размах топливного бака l_{5} , м	30	24	22	20
Диаметр фюзеляжа d_{ϕ} , м	4	3,8	3,4	2,4

Продолжение таблицы 3.1

Параметр	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Положение ц.м. двигателя:				
$a_{\rm JB}, {\rm M}$	4	3,8	3,4	2,4 8,8
<i>l</i> _{дв} , м	12	10,6	10	8,8
Плечо тяги $h_{\scriptscriptstyle \mathrm{ДB}}$, м	1	0,8	0,6	0,4
Положение ц.м. шас-				
си:				
<i>а</i> ш, м	1	0,8	0,6	0,4
<i>l</i> ш, м	8	7,4	7	6

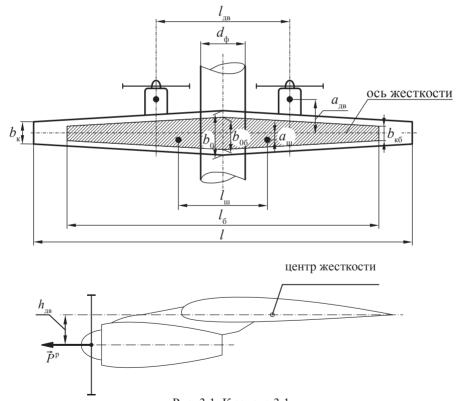


Рис. 3.1. К задаче 3.1

Построить: эпюры расчетной суммарной погонной нагрузки q_{Σ}^p , расчетной поперечной силы Q_y^p , расчетного изгибающего момента M_x^p , расчетного крутящего момента M_z^p по размаху крыла. Расчеты производить с шагом 2 м. При расчете погонной аэродинамической нагрузки $q_{\rm asp}^p$ принять, что коэффициент нормальной аэродинамической силы сечения крыла равен коэффициенту нормальной аэродинамической силы крыла в целом: $c_{y\,{\rm cev}}=c_y$. Опоры крыла на фюзеляже считать шарнирными. Координаты центров жесткости $x_{\rm ж}$, давления $x_{\rm д}$, массы конструкции крыла $x_{\rm ц.м.к}$, массы топлива $x_{\rm ц.м.r}$ от носка текущей хорды $b_{\rm cev}$ принять следующими:

$$\begin{split} &-x_{_{\rm H}}\!=\!0,\!50\,b_{_{\rm ceq}};\\ &-x_{_{\rm H}}\!=\!0,\!25\,b_{_{\rm ceq}};\\ &-x_{_{\rm H,M,K}}\!=\!0,\!45\,b_{_{\rm ceq}};\\ &-x_{_{\rm H,M,T}}\!=\!0,\!40\,b_{_{\rm ceq}}.\\ &{\rm Текушую хорду определять по формулам:}\\ &b_{_{\rm ceq}}\!=\!\frac{2(b_0\!-\!b_{_{\rm K}})}{l}z\!+\!b_{_{\rm K}}\!-\!$$
 для левого полукрыла;
$$b_{_{\rm ceq}}\!=\!-\frac{2(b_0\!-\!b_{_{\rm K}})}{l}z\!-\!b_{_{\rm K}}\!+\!2\,b_0\!-\!$$
 для правого полукрыла.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4 Расчет на прочность силовых элементов крыла

Задача 4.1

Дано: расчетная схема сечения силовой части крыла (поперечное сечение условно принято прямоугольным) (рис. 4.1) с параметрами и действующими силовыми факторами, представленными в таблице 4.1. На рис. 4.2 показано поперечное сечение стрингера с присоединенной полоской обшивки. Все элементы панели изготовлены из алюминиевого сплава Д16Т, характеристики которого приведены в таблице 4.2.

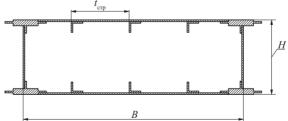


Рис. 4.1. Расчетная схема сечения силовой части крыла (к задаче 4.1)

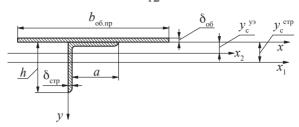


Рис. 4.2. Стрингер с присоединенной полоской обшивки (условный элемент)

Варианты исходных данных

Вариант 1 Вариант 2 Вариант 3 Вариант 4 Параметры и силовые факторы $1,5 \cdot 10^{7}$ $1,5 \cdot 10^{7}$ Изгибающий момент M_x^p , кгс · мм $1.0 \cdot 10^{7}$ $1,2 \cdot 10^{7}$ $8.0 \cdot 10^{5}$ $8.5 \cdot 10^{5}$ $9.0 \cdot 10^{5}$ $9.0 \cdot 10^{5}$ Крутящий момент M_z^p , кгс · мм Ширина кессона В, мм 540 600 700 800 Высота кессона Н, мм 180 200 220 230 Шаг нервюр $t_{\rm H}$, мм 500 500 500 500 Шаг стрингеров $t_{\rm crp}$, мм 135 150 175 200 Толщина обшивки δ_{o6} , мм 2 2 2 2 Толщина полок стрингера δ_{crp} , мм 2 2 2,5 3 Ширина полки стрингера h, мм 20 28 28 30 Ширина полки стрингера а, мм 25,5 27 18 26

Таблица 4.2 Характеристики сплава Д16Т

Таблица 4.1

Характеристика	Величина
Предел прочности при растяжении-сжатии $\sigma_{\text{в}}$, кгс/мм ²	40
Предел пропорциональности при растяжении-сжатии σ_{mu} , кгс/мм ²	25
Предел прочности при сдвиге $\tau_{\scriptscriptstyle B}$, кгс/мм²	28
Предел пропорциональности при сдвиге τ_{nu} , кгс/мм ²	16
Модуль упругости Е, кгс/мм ²	7200
Коэффициент Пуассона μ	0,3

Найти: допустимые и действующие напряжения в панели, работающей на сжатие и сдвиг, при условии, что 75% изгибающего момента воспринимают лонжероны крыла. Сделать заключение о прочности панели.

Опирание стрингера на нервюры считать шарнирным.

Геометрические характеристики сечений элементов панели определять по формулам:

 $S_x^{\rm crp} = \frac{\delta_{\rm crp}(h^2 + a\,\delta_{\rm crp})}{2} -$ статический момент поперечного сечения стрингера относительно оси x (рис. 4.2);

 $S_x^{\text{об.пр}} = -\frac{b_{\text{об.пр}}\,\delta_{\text{об}}^2}{2} - \text{статический момент поперечного сечения приведенной}$ полоски обшивки относительно оси x (где $b_{\text{об.пр}}$ — приведенная ширина полоски

полоски обшивки относительно оси x (где $b_{\scriptscriptstyle 06.np}$ — приведенная ширина полоски обшивки);

 $S_x^{y_9} = S_x^{\text{стр}} + S_x^{\text{об.пр}}$ — статический момент поперечного сечения условного элемента относительно оси x;

 $y_c^{
m crp} = rac{S_x^{
m crp}}{F^{
m crp}}$ — координата центра тяжести сечения стрингера относительно оси x (где $F^{
m crp}$ — площадь поперечного сечения стрингера);

 $y_c^{y_9} = \frac{S_x^{y_9}}{F^{y_9}}$ – координата центра тяжести сечения условного элемента отно-

сительно оси x (где F^{y_3} – площадь поперечного сечения условного элемента);

 $I_x^{\rm crp} = \frac{\delta_{\rm crp}(h^3 + a\,\delta_{\rm crp}^2)}{3}$ — момент инерции поперечного сечения стрингера относительно оси Ox;

 $I_x^{\text{об.пр}} = \frac{b_{\text{об.пр}} \delta_{\text{об}}^3}{3}$ — момент инерции поперечного сечения приведенной по-

 $I_{x1}^{\text{стр}} = I_x^{\text{стр}} - 2\,y_c^{\text{стр}}S_x^{\text{стр}} + (y_c^{\text{стр}})^2\,F^{\text{стр}}$ — момент инерции поперечного сечения стрингера относительно центральной оси x_1 , параллельной оси x_2 ;

 $I_x^{y_9} = I_x^{\text{стр}} + I_x^{\text{об.np}}$ — момент инерции поперечного сечения условного элемента относительно оси x:

 $I_{x2}^{y_9} = I_x^{y_9} - 2\,y_c^{y_9}\,S_x^{y_9} + (\,y_c^{y_9})^2\,F^{y_9}$ – момент инерции поперечного сечения условного элемента относительно центральной оси x_2 , параллельной оси x.

Задача 4.2

Дано: расчетная схема сечения силовой части крыла (рис. 4.3) с параметрами и действующими силовыми факторами, представленными в таблице 4.3.

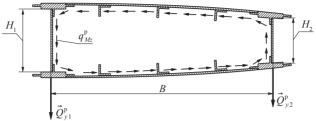


Рис. 4.3. Расчетная схема сечения силовой части крыла (к задаче 4.2)

Варианты исходных данных

Таблица 4.3

Параметры и силовые факторы	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Поперечная сила Q_y^p , кгс	10000	12000	14000	16000
Крутящий момент M_z^p , кгс · мм	$6,0 \cdot 10^6$	$6,5 \cdot 10^6$	$7,0 \cdot 10^6$	$7,5 \cdot 10^6$
Ширина кессона В, мм	600	650	700	750
Высота стенки переднего лонжерона H_1 , мм	180	200	210	220
Высота стенки заднего лонжерона H_2 , мм	160	180	195	200
Шаг нервюр $t_{\scriptscriptstyle \rm H}$, мм	500	500	500	500
Толщина стенок лонжеронов $\delta_{cr},$ мм	3	3	3	3

Найти: действующие и допустимые напряжения в стенке переднего (первого) лонжерона крыла без стоек и при наличии стоек на стенке лонжерона с шагом $t_{\rm стоек}=100$ мм. Сделать заключение о прочности стенки в этих двух случаях.

Опирание стенки лонжерона по всем сторонам считать шарнирным.

Поперечную силу Q_y^p распределить между лонжеронами крыла пропорционально их жесткости на изгиб (с целью сокращения расчетов допускается распределить ее пропорционально квадратам высот стенок лонжеронов):

$$Q_{yj}^{p} = Q_{y}^{p} \frac{H_{j}^{2}}{\sum_{i} H_{j}^{2}}$$
, где j – порядковый номер лонжерона.

Площадь контура поперечного сечения крыла приближенно определить по формуле:

$$\omega = \frac{H_1 + H_2}{2} B.$$

Залача 4.3

Дано: расчетная схема сечения силовой части крыла (поперечное сечение условно принято прямоугольным) с кронштейном навески элерона (рис. 4.4) с параметрами и действующими силовыми факторами, представленными в таблице 4.4.

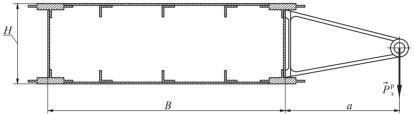


Рис. 4.4. Расчетная схема сечения силовой части крыла (к задаче 4.3)

Варианты исходных данных

Таблица 4.4

Параметры и силовые факторы	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Сила от элерона $P_{\scriptscriptstyle 3}^{\mathrm{p}}$, кгс	350	400	450	500
Ширина кессона В, мм	600	650	700	750
Высота кессона Н, мм	180	200	210	220
Длина кронштейна a , мм	500	500	500	500

 Π о с т р о и т ь : эпюры поперечных сил и изгибающих моментов усиленной нервюры, которая должна быть установлена в данном сечении для восприятия сосредоточенной нагрузки от элерона.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 5 Определение нагрузок на подвижные части крыла

Залача 5.1

Дано: на элерон, отклоненный на угол δ , действует распределенная аэродинамическая нагрузка (рис. 5.1). По хорде элерона распределение нагрузки имеет вид трапеции с основаниями $Y_1^{\rm p}$ и $Y_2^{\rm p}$, по размаху элерона нагрузка

распределена равномерно. Необходимые для расчета исходные данные представлены в таблице 5.1.

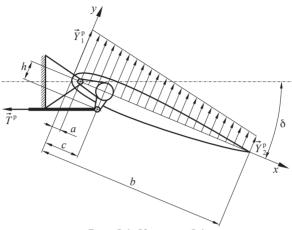


Рис. 5.1. К задаче 5.1

Таблица 5.1 Варианты исходных данных

Параметры и силовые факторы	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Нагрузка Y_1^p , кгс/мм ²	9,0 · 10-4	8,0 · 10-4	8,5 · 10-4	8,7 · 10-4
Нагрузка Y_2^p , кгс/мм ²	3,0 · 10-4	2,5 · 10-4	2,8 · 10-4	2,9 · 10-4
Координата узла навески а, мм	90	100	130	110
Xорда элерона b , мм	350	400	600	550
Размах элерона <i>l</i> , мм	1800	2000	3000	2800
Координаты точки крепления тяги: c , мм h , мм	120 90	150 100	200 120	300 150
Угол отклонения элерона δ, град	30	22	25	20

Найти: расчетную величину силы $T^{\,\mathrm{p}}$ в тяге проводки управления элероном, необходимую для уравновешивания шарнирного момента, а также суммарную реакцию опор в узлах навески элерона.

Координату точки приложения равнодействующей аэродинамической нагрузки по оси x определить как координату центра тяжести трапеции:

$$x_{\text{ILT}} = b - \frac{b(2Y_1^p + Y_2^p)}{3(Y_1^p + Y_2^p)}.$$