ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)»

Кафедра технической эксплуатации радиоэлектронного оборудования воздушного транспорта

Д.А. Яковлева

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

ПОСОБИЕ

по выполнению контрольного задания

для студентов II курса специальности 162107 (25.05.03) заочной формы обучения

ББК 531.7 Я 47

Рецензент д-р техн. наук, проф. Э.А. Лутин

Яковлева Д.А.

Я 47 Метрология, стандартизация и сертификация: пособие по выполнению контрольного задания. - М.: МГТУ ГА, 2014. - 12 с.

Данное пособие издается в соответствии с рабочей программой учебной дисциплины «Метрология, стандартизация и сертификация» по Рабочему учебному плану специальности 162107 (25.05.03) для студентов II курса заочной формы обучения.

Рассмотрено и одобрено на заседаниях кафедры 28.08.14 г. и методического совета 20.09.14 г.

Подписано в печать 19.12.14г. Печать офсетная Формат 60х84/16 0,70 усл.печ.л. Заказ № 1918/

0,44 уч.-изд. л. Тираж 75 экз.

Московский государственный технический университет ГА 125993 Москва, Кронштадтский бульвар, д. 20 Редакционно-издательский отдел 125493 Москва, ул. Пулковская, д.6а

1. Введение

Контрольная работа предназначена для приобретения навыков по обработке данных результатов многократных измерений физической величины, необходимых для определения действительного значения, которая позволит определить значение основной метрологической характеристики средств измерений — погрешности измерения.

К выполнению контрольной работы следует приступить после самостоятельного изучения дисциплины. Вариант контрольной работы определяется по последней цифре зачетной книжки. На выполнение контрольной работы предусматривается 10 часов.

Контрольная работа может быть выполнена на компьютере на листах формата 210х297мм или в рукописном виде в тетради 12л.

2. Задание на контрольную работу

Проведено n=100 независимых измерений электрического напряжения. Результаты измерений представлены в виде вариационного ряда, то есть в виде последовательности измеренных значений напряжения, расположенных с порядке возрастания от наименьшей величины к наибольшей.

Варианты контрольной работы приведены в табл.1. и определяются по последней цифре шифра студента.

Таблица 1

Данные				Ba	рианти	ы залан	ия			,
измерений	0	1	2	3	4	5	6	7	8	9
8,30	1	0	1	0	1	0	1	0	1	0
8,35	2	1	2	2	2	3	4	4	3	2
8,40	4	3	5	4	3	3	4	4	3	2
8,45	5	6	4	5	5	5	5	4	5	6
8,50	8	7	8	8	7	8	7	6	9	7
8,55	10	11	10	10	11	11	12	10	10	12
8,60	18	20	18	19	17	18	17	20	18	18
8,65	17	16	16	16	17	16	15	16	16	15
8,70	12	14	13	11	11	13	12	14	12	12
8,75	9	10	10	10	10	10	10	10	8	10
8,80	7	6	7	6	7	6	6	6	6	9
8,85	6	4	5	5	6	4	4	5	5	5
8,90	0	2	1	3	2	1	2	2	3	2
8,95	1	0	0	1	1	2	2	1	1	0

Требуется:

- 1. Составить интервальный систематический ряд распределения напряжений.
- 2. Вычислить среднее арифметическое значение напряжения и среднеквадратическое отклонение от него.

- 3. Построить гистограмму и сделать вывод о предполагаемом законе распределения измеряемых напряжений.
- 4. Проверить согласие эмпирической функции распределения нормальным законом распределения с помощью критерия χ^2 Пирсона.

3. Пример решения контрольной работы

Вариационный ряд для решения контрольной работы приведен в табл. 2 Вариационный ряд – это есть последовательность измеренных значений величины напряжения, расположенных возрастания В порядке наименьшего до наибольшего.

Таблица 2

№	1	2	3	4	5	6	7
Напряжение,	8,30	8,35	8,40	8,45	8,50	8,55	8,60
В							
Количество	0	1	4	5	9	11	18
повторений							
$\mathcal{N}_{\underline{0}}$	8	9	10	11	12	13	14
Напряжение,	8,65	8,70	8,75	8,80	8,85	8,90	8,95
В							
Количество	14	12	10	7	5	2	2
повторений							

Для построения интервального статистического ряда всю выборочную совокупность $\{X_1, X_2, ... X_n\}$ разбиваем на отдельные частичные интервалы: $[x_i, x_{i+1}], i = 1, k,$ где k -число частичных интервалов, рассчитываемое по формуле $k = \sqrt{n}$ (количество интервалов k является целочисленным значением, не рекомендуется брать k меньше чем 7):

$$k = \sqrt{n} = \sqrt{100} = 10.$$

3.1.2. Шаг интервала h определяется по формуле:
$$h = \frac{\left(x_{\text{max}} - x_{\text{min}}\right)}{k} = \frac{\left(8,95 - 8,30\right)}{10} = 0,065.$$

3.1.3. Используя третью строку табл.2, вычисляем частоты попадания в каждый интервал m_i .

Если частота попадания в интервал меньше 5, то необходимо объединить данный интервал с соседним.

- 3.1.4. Подсчитаем плотность частоты m_i/h .
- 3.1.5. Находим среднее значения напряжения на каждом интервале.
- 3.1.6. Результаты расчетов заносим в интервальный статистический ряд (табл.3)

Из табл.3 видно, что интервалы 1,2 и 10 имеют частоты попадания значений напряжения в интервал меньше 5, следовательно, необходимо объединить эти интервалы с соседними (табл.4.)

Таблица 3

Номер	Интервал	Середина	m_i	m_i/h	$p^* - m_i$
интервала		интервала	·	ι,	$P_i - \frac{\overline{n}}{n}$
1	[8,30; 8,365[8,3325	1	15,3846	0,01
2	[8,365; 8,43[8,3975	4	61,5385	0,04
3	[8,43; 8,495[8,4625	5	76,9230	0,05
4	[8,495; 8,56[8,5275	20	307,6923	0,20
5	[8,56; 8,625[8,5925	18	276,9231	0,18
6	[8,625; 8,69[8,6575	14	215,3846	0,14
7	[8,69; 8,755[8,7225	22	338,4615	0,22
8	[8,755; 8,82[8,7875	7	107,9623	0,07
9	[8,82; 8,885[8,8525	5	76,9230	0,05
10	[8,885; 8,95[8,9175	4	61,5385	0,04

Таблица 4

					· ·
Номер	Интервал	Середина	m_i	m_i/h	$P^* - \frac{m_i}{m_i}$
интервала		интервала			n = n
1	[8,30; 8,43[8,3650	5	76,9230	0,05
2	[8,43; 8,495[8,4625	5	76,9230	0,05
3	[8,495; 8,56[8,5275	20	307,6923	0,20
4	[8,56; 8,625[8,5925	18	276,9231	0,18
5	[8,625; 8,69[8,6575	14	215,3846	0,14
6	[8,69; 8,755[8,7225	22	338,4615	0,22
7	[8,755; 8,82[8,7875	7	107,9623	0,07
8	[8,82; 8,95[8,8850	9	138,4615	0,09

Результаты расчетов позволяют построить гистограмму распределения случайных значений напряжений и аппроксимировать законом распределения (рис.1.)

3.2.1. Вычисляем математическое ожидание

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} x_m m_i = \sum_{i=1}^{k} x_m W_i = \frac{1}{100} (8,365 \cdot 5 + 8,4626 \cdot 5 + 8,5275 \cdot 20 + 8,5925 \cdot 18 + 8,6575 \cdot 14 + 8,7225 \cdot 22 + 8,7875 \cdot 7 + 8,885 \cdot 9) = 8,6393$$

3.2.2. Вычисляем дисперсию

$$D_{\rm B} = \frac{1}{n} \sum_{i=1}^{k} \left(x_m - \overline{X} \right)^2 m_i = \frac{1}{100} \left[\left(8,365 - 8,6393 \right)^2 \cdot 5 + \left(8,4626 - 8,6393 \right)^2 \cdot 5 + \left(8,5275 - 8,6393 \right)^2 \cdot 20 + \left(8,5925 - 8,6393 \right)^2 \cdot 18 + \left(8,6575 - 8,6393 \right)^2 \cdot 14 + \left(8,7225 - 8,6393 \right)^2 \cdot 22 + \left(8,7875 - 8,6393 \right)^2 \cdot 7 + \left(8,885 - 8,6393 \right)^2 \cdot 9 \right] = 0,016752$$

Исправленная выборочная дисперсия и среднеквадратическое отклонение:

$$S^2 = \frac{n}{n-1}D_B = \frac{100}{99} \cdot 0,016752 = 0,016928, \ \sigma = \sqrt{S^2} = \sqrt{0,016928} \approx 0,1301$$

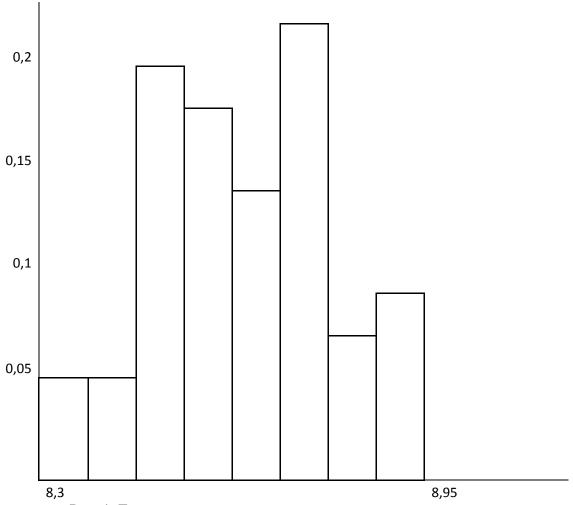


Рис. 1. Гистограмма распределения случайных значений напряжения

3.3.1. Теоретическая вероятность попадания случайной величины в каждый выбранный интервал. Предполагаем, что случайная величина X распределена по нормальному закону. Функция плотность вероятности нормального закона есть:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}},$$

где a – математическое ожидание, σ – среднеквадратическое отклонение.

Вероятность попадания случайной величины x в интервал определяется формулой:

$$P(x) = \int_{x_i}^{x_{i+1}} f(x) dx = \int_{x_i}^{x_{i+1}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx.$$

Этот интеграл не решаем. Для его решения используется функция Лапласа:

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z} e^{-\frac{t^2}{2}} dt$$

где
$$t = \frac{(x-a)}{\sigma}$$
, $\Phi(-z) = -\Phi(z)$, $\Phi(0) = 0$.

Тогда вероятность попадания случайной величины х в интервал:

$$P(x_i < x < x_{i+1}) = \Phi\left(\frac{x_{i+1} - \overline{X}}{\sigma}\right) - \Phi\left(\frac{x_i - \overline{X}}{\sigma}\right).$$

Значения функции Лапласа приведены в Приложении 1.

3.3.2. Для определения теоретических частот и проверки гипотезы о распределении результатов измерений по нормальному закону с помощью критерия χ^2 Пирсона интервалы нормируем, то есть выражаем их в единицах среднеквадратического отклонения σ :

$$U_i = \frac{x_i - \overline{X}}{\sigma}$$

При этом минимальное значение U_1 заменяем на $-\infty$, а максимальное значение U_k на $+\infty$. Эта замена производится для того, чтобы сумма теоретических частот nP_i была равна объему выборки n. Следует помнить, что функция в Лапласа в этих точках $\Phi(-\infty) = -0.5$; $\Phi(+\infty) = 0.5$.

Далее вычисляем теоретические частоты nP_i и наблюдаемое значение статистики χ_B^2 (выборочное) по формуле:

$$\chi_B^2 = \sum_{i=1}^k \frac{\left(m_i - nP_i\right)^2}{nP_i}.$$

Все вычисления сводим в табл.5

По таблице квантилей χ^2 -распределения (Приложение 2) по заданному уровню значимости $\alpha=1-P$ и числу степеней свободы v=k-r-1 (k-1 число интервалов, r-1 число параметров функции распределения, оцениваемой по данным измерений, для нормального закона распределения с параметрами a и σ , r=2) находим критическое значение $\chi^2_{\alpha,\nu}$, удовлетворяющее условию $P(\chi^2_B \ge \chi^2_{\alpha,\nu}) = \alpha$. Если $\chi^2_B \ge \chi^2_{\alpha,\nu}$, то считается, что гипотетическая функция не согласуется с опытными данными (в нашем случае гипотеза о нормальности закона распределения значений электрического напряжения отвергается). Если $\chi^2_B \le \chi^2_{\alpha,\nu}$, то считается, что гипотетическая функция согласуется с опытными данными (в нашем случае

гипотеза о нормальности закона распределения значений электрического напряжения подтверждается).

Для нашего варианта v = 8 - 2 - 1 = 5, $\alpha = 0.05$:

$$\chi^2_{\alpha,\nu} = \chi^2_{0,05;5} = 11,07$$

Так как выполняется условие $\chi_B^2 \le \chi_{\alpha,\nu}^2$, то делаем вывод, что гипотетическая функция распределения (нормальный закон) согласуется с опытными данными.

4. Литература

- **4.1. Логвин А.И.** Метрология, стандартизация и сертификация. Учебное пособие. М. МГТУ Γ A, 2005 Γ .
- **4.2. Гмурман В.Е.** Руководство к решению задач по теории вероятностей и математической статистике. М. Высшая школа, 2001г.

Таблица 5

i	X_i	\mathcal{X}_{i+1}	m_{i}	U_{i}	U_{i+1}	$\Phi(U_i)$	$\Phi(U_{i+1})$	P_{i}	nP_i	$\left(m_i - nP_i\right)^2$	χ_i^2
1	8,300	8,430	5		-1,6087	-0,5000	- 0,4463	0,0537	5,370	0,1369	0,0255
2	8,430	8,495	5	-1,6087	-1,1091	-0,4463	- 0,3665	0,0798	7,980	8,8804	1,1128
3	8,495	8,560	20	-1,1091	- 0,6095	- 0,3665	-0,2291	0,1374	13,740	39,1876	2,8521
4	8,560	8,625	18	- 0,6095	-0,1099	-0,2291	- 0,0438	0,1853	18,530	0,2809	0,0152
5	8,625	8,690	14	- 0,1099	0,3897	-0,0438	0,1517	0,1955	19,550	30,8025	1,5756
6	8,690	8,755	22	0,3897	0,8893	0,1517	0,3133	0,1616	16,160	34,1056	2,1105
7	8,755	8,820	7	0,8893	1,3888	0,3133	0,4177	0,1044	10,440	11,8336	1,1335
8	8,820	8,95	9	1,3888	+∞	0,4177	0,5000	0,0823	8,230	0,5929	0,0720
Σ			100					1,000		$\chi_B^2 =$	8,8972

Приложение 1

Функция распределения Лапласа
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_0^z e^{-\frac{t^2}{2}} dt$$

					Co	тые доли	Z			
	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2703	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3437	0.3461	0.3485	0.3508	0.3538	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4137	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4376	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4860	0.4864	0.4867	0.4871	0.4874	0.4877	0.4880	0.4883	0.4886	0.4889
2.3	0.4892	0.4895	0.4898	0.4900	0.4903	0.4906	0.4908	0.4911	0.4913	0.4915
2.4	0.4918	0.4920	0.4922	0.4924	0.4926	0.4928	0.4930	0.4932	0.4934	0.4936
2.5	0.4937	0.4939	0.4941	0.4942	0.4944	0.4946	0.4947	0.4949	0.4950	0.4952
2.6	0.4953	0.4954	0.4956	0.4957	0.4958	0.4959	0.4960	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4971	0.4972	0.4973
2.8	0.4974	0.4975	0.4975	0.4976	0.4977	0.4978	0.4979	0.4979	0.4980	0.4980
2.9	0.4981	0.4981	0.4982	0.4983	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986
3.0	0.4986	0.4986	0.4987	0.4987	0.4988	0.4988	0.4988	0.4989	0.4989	0.4989
3.1	0.4990	0.4990	0.4990	0.4991		0.4991	0.4992	0.4992	0.4992	0.4992
3.2	0.4993	0.4993	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4994
3.3	0.4995	0.4995	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996
3.4	0.4996	0.4996	0.4996	0.4996	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997
3.5	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.7	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
4.0	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
5.0	0.4999997									

α	0,2	0,1	0,05	0,02	0,01	0,001
v						
1	1,642	2,706	3,841	5,412	6,635	10,827
2	3,219	4,605	5,991	7,824	9,210	13,815
3	4,642	6,251	7,815	9,837	11,345	16,266
4	5,989	7,779	9,488	11,668	13,277	18,467
5	7,289	9,326	11,07	13,388	15,086	20,515
6	8,558	10,645	12,592	15,033	16,812	22,457
7	9,803	12,017	14,067	16,622	18,475	24,322
8	11,03	13,362	15,507	18,168	20,09	26,125
9	12,242	14,684	16,919	19,679	21,666	27,877
10	13,442	15,987	18,307	21,161	23,209	29,588
11	14,631	17,275	19,675	22,618	24,725	31,264
12	15,812	18,549	21,046	24,054	26,217	32,909
13	16,985	19,812	22,362	25,472	27,688	34,528
14	18,151	21,064	23,685	26,783	29,141	36,123
15	19,311	22,307	24996	28,259	30,578	37,697
16	20,465	23,542	26,296	29,633	32,000	39,252
17	21,615	24,769	27,587	30,995	33,409	40,790
18	22,760	25,989	28,869	32,346	34,805	42,312
19	23,900	27,204	30,144	33,687	36,191	43,820
20	25,038	28,412	31,410	35,020	37,566	45,315
21	26,171	29,615	32,671	36,343	38,932	46,797
22	27,301	30,813	33,294	37,659	40,289	48,268
23	28,429	32,007	35,172	38,968	41,638	49,728
24	29,553	33,196	36415	40,270	42,980	51,179
25	30,675	34,382	37,652	41,566	44,314	52,620
26	31,795	35,563	38,885	42,856	45,642	54,052
27	32,912	36,741	40,113	44,14	46,963	55,476
28	34,027	37,916	41,337	45,419	48,278	56,893
29	35,139	39,087	42,557	46,693	49,588	58,302
30	36,250	40,256	43,773	47,962	50,892	

Содержание

1.	Введение	3
2.	Задание на контрольную работу	3
3.	Пример решения контрольной работы	4
4.	Литература	8
5.	Приложение 1	10
6.	Приложение 2	11