Содержание

Введение
Требования к оформлению курсовой работы4
Литература4
1 Содержание курсовой работы
1.1 Определение геометрических и аэродинамических характеристик
профиля крыла и самолета в целом
1.2. Методические указания к первому разделу курсовой работы
2. Расчет основных летно-технических характеристик самолета в нормальных
условиях полета
2.1 Методические указания ко второму разделу курсовой работы
2.2 Результаты выполнения второго раздела курсовой работы
2.3 Порядок выполнения второго раздела курсовой работы
2.3.1 Определение полетной массы самолета
2.3.2 Расчет и построение полетных поляр
2.3.3 Построение кривых потребных и располагаемых тяг и
мощностей10
2.3.4 Определение диапазона горизонтальных скоростей полета 12
2.3.5 Определение вертикальной скорости набора высоты
теоретического и практического потолков самолета
2.3.6 Определение характеристик взлета самолета в стандартных
условиях
2.3.7 Определение посадочных характеристик самолета н
стандартных условиях18
Припожения 20

ВВЕДЕНИЕ

процессе изучения курса «Основы аэродинамики и летнотехнические характеристики воздушных судов» студент должен не только глубоко усвоить теоретический материал, но и приобрести определенные практические навыки по расчетам аэродинамических и летно-технических ЛА. Это необходимо характеристик для формирования высококвалифицированного специалиста гражданской авиации. Работая над материалом курса, студент должен также самостоятельно контролировать свои знания и закреплять их в течение семестра. Выполнение курсовой работы позволяет студенту наиболее успешно решить перечисленные задачи.

Требования к оформлению курсовой работы

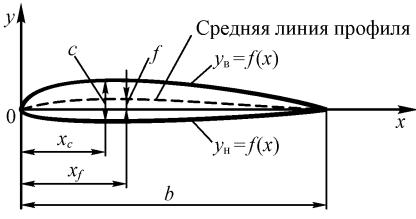
- 1. Курсовая работа выполняется на листах формата A4 и должна быть написана «от руки».
- 2. При проведении расчетов должны быть представлены не только результаты расчетов, но и формулы в буквенном виде и с подстановкой в них исходных данных.
- 3. При выборе каких-либо значений по графикам, таблицам или иным источникам на них должна быть дана ссылка.
- 4. Графики и расчетные схемы выполняются на листах миллиметровой бумаги формата А4.
- 5. Пояснительная записка, содержащая результаты курсовой работы вместе с графическим материалом, брошюруется. Титульный лист оформляется по принятому образцу (см. сайт www.mstuca.ru). В конце пояснительной записки приводится перечень условных обозначений, используемых в тексте, формулах и таблицах, и список использованных источников, которыми студент пользовался при выполнении данной курсовой работы.
- 6. Работы, оформленные небрежно, с нарушением указанных требований, приниматься не будут.
- 7. По результатам защиты курсовой работы в зачетную книжку студента выставляется оценка.

Литература

- 1. Ципенко В.Г., Ефимова М.Г. Основы аэродинамики и летнотехнические характеристики ВС: учеб. пособие. М.: МГТУ ГА, 2009. Ч. 1.
- 2. Ципенко В.Г., Ефимова М.Г. Основы аэродинамики и летнотехнические характеристики ВС: учеб. пособие. М.: МГТУ ГА, 2010. Ч. 2.

1. Содержание курсовой работы

Курсовая работа по дисциплине «Основы аэродинамики и летнотехнические характеристики воздушных судов» заключается в определении расчетным путем основных аэродинамических и летно-технических характеристик самолета гражданской авиации на базе данных, указанных в исходном варианте.


Курсовая работа включает в себя два раздела:

- 1. Определение геометрических и аэродинамических характеристик профиля крыла и самолета в целом.
- 2. Расчет основных летно-технических характеристик самолета в нормальных условиях полета при всех работающих двигателях.

1.1. Определение геометрических и аэродинамических характеристик профиля крыла и самолета в целом

В первом разделе курсовой работы студент, пользуясь таблицами координат профиля и аэродинамических коэффициентов профиля и самолета в целом при малых числах Маха, должен:

- 1) определить геометрические характеристики профиля, для чего
- вычертить контур профиля крыла (рис. 1) по заданным его координатам (табл. 1, прил. 1), определив хорду профиля по последней цифре номера зачетной книжки (табл. 2, прил. 1);
 - провести среднюю линию профиля;
- определить его основные геометрические характеристики, как показано на рис. 1: относительную кривизну \overline{f} и относительную толщину \overline{c} профиля, а также положения максимальной кривизны $\overline{x}_{f_{\max}}$ и максимальной толщины $\overline{x}_{c_{\max}}$ профиля;

Рис. 1. Геометрические характеристики профиля крыла

- 2) по данным таблицы аэродинамических коэффициентов профиля (табл. 1, прил. 2) построить на листе миллиметровой бумаги графики $c_y(\alpha)$, $c_m(\alpha)$, $K(\alpha)$ и поляру $c_v(c_x)$ (рис. 2);
- 3) из поляры и графиков $c_y(\alpha)$, $K(\alpha)$ определить значения $c_{x0}(c_{x\min})$, K_{\max} , $c_{y\max}$, угол атаки нулевой подъемной силы α_0 , наивыгоднейший угол атаки $\alpha_{\text{нв}}$

и частную производную $c_y^{\alpha} = \frac{\partial c_y}{\partial \alpha}$. Частную производную c_y^{α} определяют как отношение приращений Δc_y к $\Delta \alpha$ на линейном участке кривой $c_y(\alpha)$, при этом для большей точности необходимо выбирать величину $\Delta \alpha$ как можно большей. Далее необходимо составить уравнение $c_y(\alpha)$ на линейном участке, пользуясь формулой

$$c_{y} = c_{y}^{\alpha} \left(\alpha - \alpha_{0} \right); \tag{1}$$

4) по кривой моментов профиля крыла $c_m(\alpha)$ определить коэффициент момента при нулевой подъемной силе c_{m0} , производную $\frac{\partial c_m}{\partial c_y}$ и составить уравнение зависимости $c_m(c_y)$ на линейном участке согласно формуле

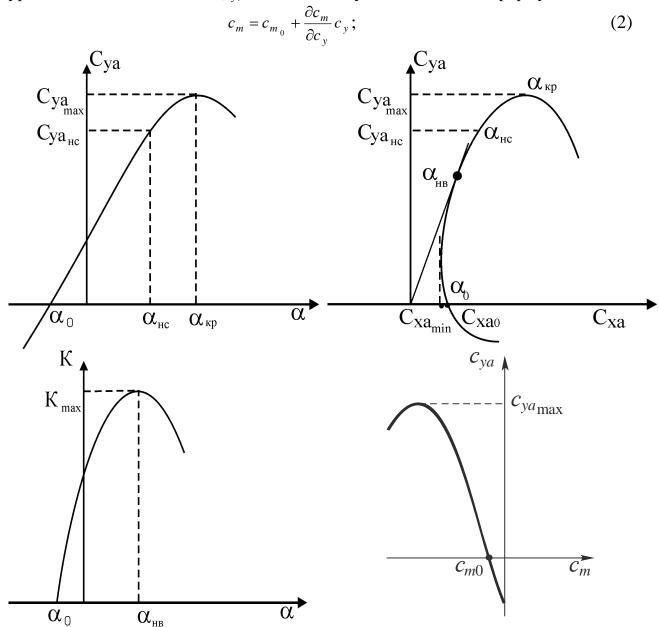


Рис. 2. Графики аэродинамических характеристик

5) на листе миллиметровой бумаги по данным таблицы аэродинамических коэффициентов самолета (табл. 2, прил. 2) построить кривые $c_y(\alpha)$ и поляру самолета в целом для малых чисел Маха $M \le 0,4$ (т.е. без учета сжимаемости потока для взлетно-посадочных скоростей).

1.2. Методические указания к первому разделу курсовой работы

- 1. Вариант задания определяется последней цифрой номера зачетной книжки.
- 2. Исходные данные представлены в соответствующих таблицах для вариантов 1-10 (прил. 1).
- 3. Расчетные графики и чертеж профиля крыла вычерчиваются карандашом на миллиметровой бумаге формата A4. Все графики рекомендуется выполнять в следующих масштабах: 100 мм миллиметровой бумаги соответствуют α =20°; c_v =1,0; c_x =0,2; m_z =0,5; K=20.

2. Расчет основных летно-технических характеристик самолета в нормальных условиях полета

Во втором разделе курсовой работы необходимо провести расчет основных летно-технических характеристик самолета в нормальных условиях полета при всех работающих двигателях, который включает в себя:

- расчет и построение кривых потребных и располагаемых тяг Н.Е. Жуковского;
- определение характерных скоростей полета и построение диаграммы диапазона скоростей;
- расчет набора высоты, определение вертикальной скорости набора, теоретического и практического потолков самолета;
 - определение характеристик взлета самолета в стандартных условиях;
- определение посадочных характеристик самолета в стандартных условиях.

2.1. Методические указания ко второму разделу курсовой работы

- 1. Исходные данные для выполнения второго раздела курсовой работы определяются из прил. 2:
- табл. 2 прил. 2 содержит значения c_y на различных углах атаки при малых числах M;
- табл. 3 прил. 2 включает в себя данные для построения поляр самолета при различных числах M (звездочкой * обозначены $\alpha_{\rm kp}$ и $c_{\rm ymax}$);
- табл. 4 прил. 2 содержит основные геометрические данные самолета, характеристики его силовой установки и основные летные ограничения;
- табл. 5 прил. 2 включает 10 номеров заданий (см. п. 2), для каждого из которых указана расчетная масса самолета;

- табл. 6 прил. 2 содержит также 10 номеров заданий (см. п. 2) с указанием расчетных высот полета, для которых необходимо построить кривые потребных и располагаемых тяг Н.Е. Жуковского.
- 2. Номер варианта (тип самолета) и задания определяется номером зачетной книжки студента: последняя цифра номера определяет номер варианта, предпоследняя номер задания по взлетной массе (табл. 5, прил. 2), а третья цифра от конца номер задания по расчетным высотам (табл. 6, прил. 2).

<u>Например</u>: студент Иванов имеет зачетную книжку с номером УВД-091017. Следовательно, он выполняет вариант 7, значение взлетной массы находит в задании 1 (табл. 5) и проводит расчеты для высот, указанных в задании 0 (табл. 6).

Дополнительные исходные данные для выполнения этого раздела курсовой работы также содержатся в прил. 2. Для каждого варианта приведены кривые располагаемых тяг (мощностей) двигателя и основные аэродинамические характеристики самолета во взлетной и посадочной конфигурациях, необходимые для расчета взлетных и посадочных характеристик.

2.2. Результаты выполнения второго раздела курсовой работы

Второй раздел курсовой работы, представленной к защите, должен содержать следующее:

- 1) перечень исходных данных в соответствии с выбранным вариантом и номером задания;
- 2) пояснительную записку с расчетными формулами, таблицами результатов и пояснительным текстом;
- 3) расчетные графики, выполненные на миллиметровой бумаге формата A4. Размерность скорости на графиках в км/ч или м/с;
 - 4) все расчеты производятся в системе СИ:

1 кH = 1000 H = 98 кгс

1 кB = 1000 Bt = 1.36 л.с.:

5) таблицу данных МСА (прил. 3).

2.3. Порядок выполнения второго раздела курсовой работы

2.3.1. Определение полетной массы самолета

Расчет характеристик самолета производится для средней полетной массы:

$$m_{\rm cp} = m_0 - 0.5 \ m_{\rm T},$$
 (3)

где m_0 – взлетная масса [кг], указанная в табл. 5 прил. 2;

 $m_{\rm T}$ - полный запас топлива [кг].

Ориентировочно величину полного запаса топлива можно принять:

- для самолетов с поршневыми двигателями (ПД)

$$m_{\rm T} = (0,2...0,3) m_0;$$

- для самолетов с турбовинтовыми двигателями (ТВД)

$$m_{\rm T} = (0,25...0,35) m_0;$$

- для самолетов с турбореактивными двигателями (ТРД)

$$m_{\rm T} = (0,3...0,5) m_0$$
.

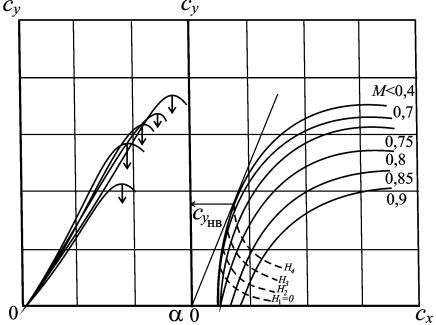
Тогда при полных запасах топлива можно принять:

 $m_{\rm cp} \approx 0.875 \ m_0 -$ для самолетов с ПД;

 $m_{\rm cp} \approx 0.85 \; m_0 -$ для самолетов с ТВД;

 $m_{\rm cp} \approx 0.80 \; m_0 -$ для самолетов с ТРД.

Вес самолета определяется по формуле


$$G_{\rm cp} = m_{\rm cp} g [H], \tag{4}$$

где $g = 9.81 \text{ м/c}^2$ – ускорение свободного падения.

2.3.2. Расчет и построение полетных поляр

Для расчета летных характеристик скоростного самолета задаются поляры самолета. Используя табл. 4 (прил. 2), табл. 3 (прил. 2) и рис. 4, необходимо построить полетные поляры.

Совершая горизонтальный полет с различными скоростями на одной и той же высоте, самолет как бы переходит с одной поляры на другую. Это и будут полетные поляры для разных высот полета самолета.

Рис. 3. Полётные поляры

Из условия равенства в горизонтальном полете подъемной силы и силы тяжести:

$$c_y = \frac{2G_{\rm cp}}{\rho SV^2} = \frac{2G_{\rm cp}}{\rho Sa^2M^2} = \frac{A}{M^2},$$
 (5)

где $A = \frac{2G_{\rm cp}}{\rho Sa^2}$ - величина постоянная на данной высоте и при неизменном весе самолета.

Из приведенной формулы следует, что в установившемся горизонтальном полете каждому числу M соответствует определенное значение коэффициента подъемной силы c_v .

Зная высоту H для числа M каждой имеющейся поляры, следует найти соответствующее значение коэффициента c_v .

По точкам на всех полярах, соответствующим этим c_y и M, получим полетную поляру для данной высоты H. Таким же образом строятся расчетные поляры для других высот и заполняется табл. 2.1.

 Таблица 2.1

 Расчетные значения для построения полетных поляр

	Н, м	H_1	H_2	H_3	H_4
	о, кг/м3 a, м/c				
	<i>a</i> , м/c				
	A				
	M =				
c_y	M =				
	M =				

Полетные поляры дозвуковых самолетов следует строить для расчетных высот в соответствии с заданием по табл. 6 (прил. 2).

2.3.3. Построение кривых потребных и располагаемых тяг и мощностей

Построение данных кривых является основой аэродинамического расчета, так как с помощью этих кривых определяются основные ЛТХ самолета.

Для самолета с ТРД целесообразно использовать кривые тяг, а для самолетов с ТВД – кривые мощностей, поэтому ниже приведены указания по использованию обоих способов.

Расчет и построение кривых потребных тяг P_{π} и мощностей N_{π} производится по формулам:

$$P_{\Pi} = \frac{G}{K}; \tag{6}$$

$$N_{\Pi} = P_{\Pi}V, \qquad (7)$$

где $K = \frac{c_y}{c_x}$ - коэффициент аэродинамического качества самолета.

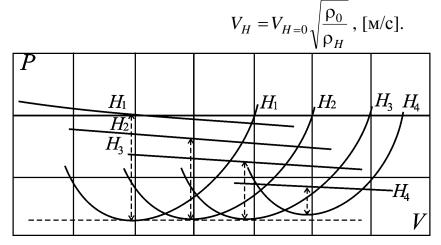
Сначала строятся кривые потребных и располагаемых тяг (мощностей) для высоты H=0.

Находятся и наносятся наиболее характерные скорости полета самолета. При этом величина c_y изменяется от c_{ymax} до c_y , соответствующего $1,05...1,2\ M_{max}$.

Каждому значению соответствует определенная скорость горизонтального полета на выбранной высоте

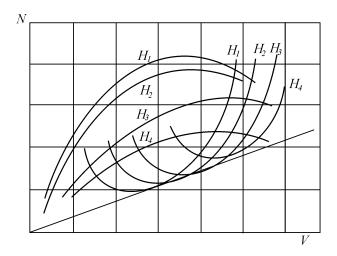
$$V = \sqrt{\frac{2G_{\rm cp}}{c_y \rho S}} \tag{8}$$

и определенное значение c_x , снимаемое с полетной поляры (рис. 4).


В качестве одного из расчетных значений c_y следует взять c_{yhb} , определив его по поляре (рис. 4). Между значениями c_{ymax} и c_{yhb} необходимо взять 2-3 промежуточных значения c_y для самолетов с ТРД (с интервалом 0,2) и для самолетов с ТВД (с интервалом 0,1) с точностью до 0,1.

Располагаемые тяги для самолетов с ТРД и мощности для самолетов с ТВД определяются с помощью типовых характеристик двигателей P=f(V, H) и N=f(V, H), приведенных в прил. 2 для каждого типа самолета. При их отсутствии для какой-либо высоты можно их найти с помощью интерполяции.

Результаты расчета потребных тяг при H=0 сводим в табл. 2.2.

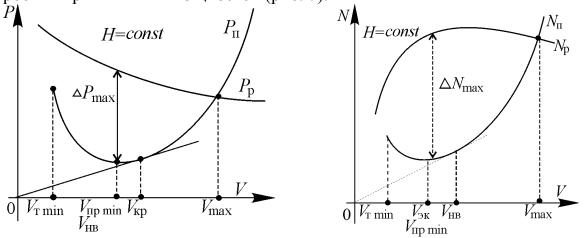

- 1. Задаемся рядом скоростей от $V_{\rm cB}$, зависящей от $c_{\rm ymax}$, до 900 км/ч.
- 2. По исходной формуле (5) вычисляем значения c_y , потребные для горизонтального полета на заданной скорости (не забывая перевести скорость из км/ч в м/с!).
- 3. На поляре горизонтального полета (H=0) находим значение коэффициента c_x для каждого значения потребного c_v .
 - 4. По значениям c_v и c_x находим аэродинамическое качество K.
- 5. Вычисляем тягу или мощность, потребные для горизонтального полета на заданной скорости по формулам (6) и (7). Строим потребные и располагаемые тяги (мощности) для заданных высот полета самолета (рис. 5, 6).

При выполнении горизонтального полета на любой высоте необходимо обеспечить равенство подъемной силы силе тяжести самолета Y = G. Для выполнения этого условия при постоянных массе и угле атаки на большей высоте, где плотность меньше, истинная скорость горизонтального полета должна быть больше, но приборная скорость не изменяется (рис. 5, 6). Поэтому

Рис. 4. Потребные и располагаемые тяги горизонтального полета

(9)

Рис. 5. Потребные и располагаемые мощности горизонтального полета


2.3.4. Определение диапазона горизонтальных скоростей полета

По кривым потребных и располагаемых тяг (мощностей) Н.Е. Жуковского можно определить на заданных высотах характерные скорости горизонтального полета.

У самолета с ТВД в качестве характерных скоростей в горизонтальном полете принимают скорости: $V_{\rm r}$ $_{\rm min}$ — теоретическую минимальную; $V_{\rm sk}$ — экономическую, $V_{\rm HB}$ — наивыгоднейшую, $V_{\rm max}$ — максимальную, $V_{\rm np}$ $_{\rm min}$ — практически минимальную (минимального газа).

У самолета с ТРД в качестве характерных скоростей в горизонтальном полете принимают скорости: $V_{\rm T\,min}$ теоретическую минимальную, $V_{\rm HB}$ - наивыгоднейшую, $V_{\rm KP}$ — крейсерскую, $V_{\rm max}$ - максимальную, $V_{\rm np\,min}$ — практически минимальную (малого газа).

Все характерные скорости в горизонтальном полете у самолетов с ТРД и ТВД, кроме $V_{\rm np\ min}$, определяются для каждой заданной высоты после построения кривых тяг и мощностей (рис. 7).

Рис. 6. Характерные скорости горизонтального полета самолета с ТВД и ТРД

 Таблица 2.2

 Расчетная таблица для построения потребных тяг (мощностей)

Параметры	$c_{y1}=$	c_{y2}	c_{y3}	$c_{y4}=$	c_{y5}	c_{y6}	c_{y7}	c_{y8}	c_{y9}	c_{y10}	c_{y11}	c_{y12}	c_{y13}
	$=c_{y \max}$			$=c_{y_{\text{HB}}}$									
<i>V</i> , м/c	72	83	97	111	125	139	153	167	180	194	208	222	236
V, км/ч	260	300	350	400	450	500	550	600	650	700	750	800	850
M	0,21	0,25	0,29	0,33	0,37	0,41	0,45	0,49	0,53	0,57	0,61	0,65	0,69
c_y													
C_{χ}													
$K = c_y/c_x$													
$P_{\scriptscriptstyle \Pi}$													
$N_{\scriptscriptstyle \Pi}$													

Практически минимальная скорость $V_{\rm np\ min}$ — это скорость горизонтального полета, при которой допустима минимальная подача топлива. Приближенно скорость $V_{\rm np\ min}$ у самолетов с ТВД можно принять равной скорости экономической ($V_{\rm np\ min} \approx V_{\rm эk}$), а у самолетов с ТРД — наивыгоднейшей ($V_{\rm np\ min} \approx V_{\rm hb}$).

Полученные значения всех характерных скоростей горизонтального полета самолетов с ТВД и ТРД свести в итоговые табл. 2.3 и 2.4.

 Таблица 2.3

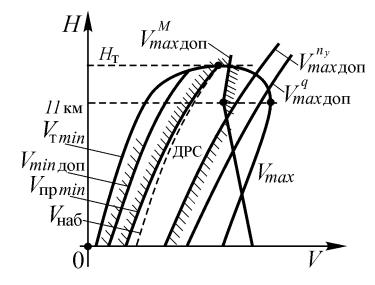
 Характерные скорости горизонтального полета самолета с ТВД

Высота		Харак	терная сі	корость V	′, км/ч		$N_{\text{изб max}}$,	$V_{y}*_{\max}$,
H, км	$V_{\scriptscriptstyle m T~min}$	$V_{\scriptscriptstyle \mathfrak{I}K}$	$V_{np\;min}$	$V_{\scriptscriptstyle ext{ iny HB}}$	$V_{ m max}$	$V_{наб}$	кВт	м/с
0								
3								
6								
и т.д.								

 Таблица 2.4

 Характерные скорости горизонтального полета самолета с ТРД

Высота		Харак	терная с	корость V	′, км/ч		$N_{\text{изб max}}$,	V_y*_{\max} ,
<i>H</i> , км	$V_{\scriptscriptstyle m T~min}$	$V_{ m np\ min}$	$V_{\scriptscriptstyle ext{ iny HB}}$	$V_{ m max}$	$V_{ m \kappa p}$	$V_{\scriptscriptstyle{ ext{Ha}f f o}}$	кВт	м/с
0								
3								
6								
и т.д.								


По данным итоговых табл. 2.3 и 2.4 необходимо построить диаграмму диапазона характерных скоростей горизонтального полета самолета с ТВД и ТРД (изменение характерных скоростей по высотам полета).

Примечание.

- 1. Диаграмма диапазона характерных скоростей на больших высотах (близких к потолку) достраивается окончательно после определения теоретического потолка $H_{\rm T}$ (см. следующий раздел).
- 2. При построении диаграммы необходимо иметь в виду, что на теоретическом потолке

 $V_{\text{т min}} = V_{\text{пр min}} = V_{\text{нв наб}} = V_{\text{max}}$ (сходятся в одной точке).

На полученные диаграммы диапазона характерных скоростей горизонтального полета необходимо нанести ограничения максимальной скорости по максимальному (предельному) скоростному напору и по предельному числу M полета ($q_{\rm пред}$ и $M_{\rm max\ доп}$ — заданы в исходных данных).

Рис. 7. Эксплуатационные ограничения скоростей в горизонтальном полете

2.3.4.1. Расчет максимально допустимой скорости $V_{ m max\ доп}^{\,q}$

Расчет максимально допустимой скорости проводится по формуле

$$V_{\text{max доп}}^{q} = \sqrt{\frac{2q_{\text{доп}}}{\rho}} = V_{\text{max доп }H=0}^{q} \sqrt{\frac{1}{\Delta}}, [\text{m/c}]$$
 (10)

где $V_{\max \text{ доп } H=0}^q = \sqrt{\frac{2q_{\text{доп}}}{\rho_0}}$, [м/с] — значение максимально допустимой скорости

по допустимому скоростному напору на высоте H = 0.

Здесь сначала рассчитывается скорость $V^q_{\max \text{доп}\, H=0}$, а затем производится пересчет на другие заданные высоты.

2.3.4.2. Расчет максимально допустимой скорости $V_{\max \text{ доп}}^{M}$

Расчет максимально допустимой скорости проводится по формуле:

$$V_{\text{max }_{\text{ДОП}}}^{M} = aM_{\text{ДОП}}, [\text{M/c}]. \tag{11}$$

2.3.5. Определение вертикальной скорости набора высоты, теоретического и практического потолков самолета

Вертикальная скорость самолета равна

$$V_y = \frac{\Delta PV}{G_{\rm cp}}$$
 или $V_y = \frac{\Delta N}{G_{\rm cp}}$, (12)

где $\Delta P = P_{\rm p}$ - $P_{\rm n}$ при данной скорости полета самолета V.

Для нахождения наибольшей (на данной высоте) вертикальной скорости V_{ymax} необходимо определить наибольший запас мощности ΔN или $(\Delta PV)_{\text{max}}$. При использовании кривых мощностей ΔN _{max} можно найти непосредственно из рис. 5, 6.

При использовании кривых тяг следует для каждой высоты найти ΔP , для нескольких скоростей V (не менее 4) и подсчитать ΔPV . Затем построить

вспомогательную кривую $\Delta PV = f(V)$, определить по ней $(\Delta PV)_{\max}$ и соответствующую скорость $V_{\text{нв набора}}$ (рис. 9).

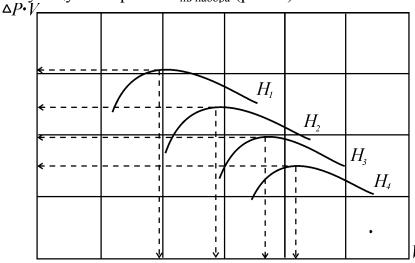
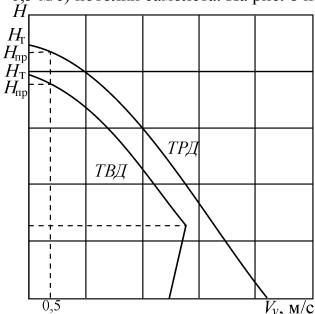



Рис. 8. График для определения скоро-подъемности самолета и наивыгоднейшей скорости набора

Определив V_{ymax} для выбранных ранее высот полета, построить кривую $\Delta V_{ymax} = f(H)$ (рис. 10) и определить теоретический и практический ($V_y = 0.5 \text{ м/c}$) потолки самолета. На рис. 8 нанести кривую $V_{\text{нв набора}} = f(H)$.

Рис. 9. Изменение скороподъемности по высоте полета самолета

2.3.6. Определение характеристик взлета самолета в стандартных условиях

Расчет ведется для заданной взлетной массы самолета. Требуется определить: скорость отрыва, длину разбега и длину взлетной дистанции, которая складывается из длины разбега и длины разгона с набором высоты 10,7 над уровнем ВПП (рис. 11).

Для расчетов необходимо вычертить зависимости $c_{ya}(\alpha)$ и $c_{ya}(c_{xa})$ для взлетной и посадочной конфигурации самолета, взяв их из прил. 2:

- а) скорость отрыва определяется по формуле
- $-V_{\text{отр}} = 1,15 \ V_{\text{min T}} -$ для самолета с тремя и более двигателями;

- $V_{\text{отр}} = 1,2 \ V_{\text{min T}} -$ для самолета с двумя двигателями, а также с турбовинтовыми двигателями,

где $V_{\min T} = \sqrt{\frac{2G_{\rm cp}}{c_{y\max} \rho S}}$ - минимальная теоретическая скорость при механиза-

ции, установленной во взлетное положение;

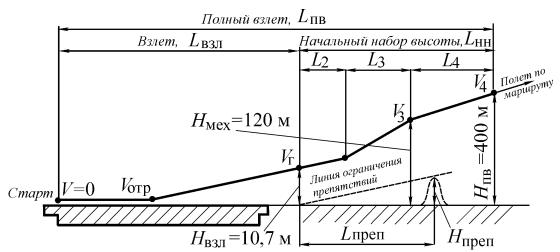


Рис. 10. Схема полного взлета самолета

б) длина разбега вычисляется по приближенной формуле

$$L_{\rm p} = \frac{V_{\rm orp}^2}{2g\left(\frac{P_{\rm cp}}{G_{\rm cp}} - f_{\rm np}\right)}.$$
 (13)

Среднее значение тяги силовых установок при работе их на взлетном режиме равно

$$P_{\rm cp} = \frac{P_{0 \,{\rm \tiny B3JI}} + P_{\rm orp}}{2},\tag{14}$$

где $(P_{0\text{взл}} + P_{\text{отр}})$ — суммарная тяга силовых установок на исполнительном старте и при скорости отрыва;

 $f_{\rm np}$ — приведенный коэффициент трения на разбеге, который при разбеге по бетонной ВПП равен 0,03;

в) длина разгона с набором $L_{\rm p\; n}$ может быть вычислена по приближенной формуле

$$L_{\rm ph} = \frac{G_{\rm cp}}{\Delta P_{\rm cp}} \left(\frac{V_{10}^2 - V_{\rm orp}^2}{2g} + 10.7 \right), \tag{15}$$

где V_{10} – скорость самолета в конце взлетной дистанции (на высоте 10,7 м).

 $V_{10} = 1,2 \ V_{\min T} = V_2 -$ для самолетов как с ТВД, так и с ТРД,

$$\Delta P_{\rm cp} = \frac{\Delta P_1 + \Delta P_2}{2},$$

где $\Delta P_1 = (P-X)_{\text{отр}}$ – избыток тяги в момент отрыва;

 $\Delta P_2 = (P-X)_{10}$ – избыток тяги в конце взлетной дистанции.

Величина лобового сопротивления самолета X на указанных скоростях определяется по полярам, построенным для взлетной конфигурации самолета.

Порядок расчета
$$X_{\text{отр}}$$
 и X_{10}

Для заданной скорости ($V_{\text{отр}}$, V_2) определяется значение c_y ($c_{y\text{отр}}$, c_{y2}). По поляре определяется величина c_x ($c_{x\text{отр}}$, c_{x2}) и рассчитывается величина лобового сопротивления

$$X = c_x \frac{\rho V^2}{2} S. \tag{16}$$

Длина взлетной дистанции определяется по формуле

$$L_{\text{\tiny B3JI}} = L_{\text{\tiny D}} + L_{\text{\tiny DH}}. \tag{17}$$

2.3.7. Определение посадочных характеристик самолета в стандартных условиях

Расчет ведется для посадочной массы самолета

$$m_{\text{пос}} = m_{\text{взл}} - 0.8 m_{\text{т}},$$
 (18)

где $m_{\text{\tiny T}}$ – масса топлива, (30...40)% от $m_{\text{\tiny B3Л}}$.

Требуется определить: посадочную скорость, длину пробега, длину воздушного участка (которая складывается из длины предпосадочного снижения, длины выравнивания и выдерживания) и посадочную дистанцию (рис. 12).

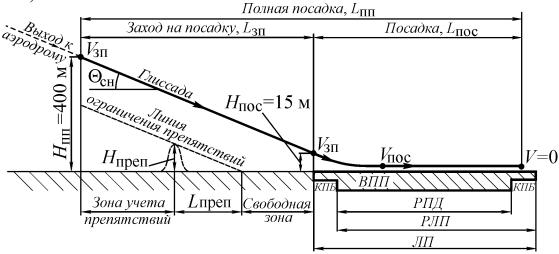


Рис. 11. Полная посадка

а) Величина посадочной скорости для всех типов самолетов принимается как

$$V_{\min T} = \sqrt{\frac{2G_{\rm cp}}{c_{y \max} \rho S}}, \qquad (19)$$

где G_{cp} – посадочный вес самолета ($m_{noc}=G_{cp}/g$);

 $c_{y\max}$ — максимальное значение c_y при посадочной конфигурации самолета.

б) Длина пробега может быть определена по приближенной формуле

$$L_{\rm np} = \frac{1}{2g} \frac{V_{\rm noc}^2}{\frac{1}{3} \frac{1}{K_{\rm cr}} + \frac{2}{3} f_{\rm np}},$$
 (20)

где $K_{\rm cr}$ – аэродинамическое качество самолета на стояночном угле атаки $\alpha_{\rm cr}$, в расчете следует принимать $\alpha_{\rm cr}$ = 1...3°;

 $f_{\rm np}$ — приведенный коэффициент трения на пробеге, для сухой бетонной ВПП $f_{\rm np}$ = 0,25.

Величину $K_{\rm cr} = \frac{c_{y\,{\rm cr}}}{c_{x\,{\rm cr}}}$ определять для самолетов с ТРД из соответству-

ющей поляры.

Для учета сопротивления винтов на пробеге величину $K_{\rm cr}$ для самолета с ТВД определяют по формуле

$$K_{\rm cr} = \frac{c_{y\,\rm cr}}{c_{x\,\rm cr} + \Delta c_x}.\tag{21}$$

Величину Δc_x принять равной 0,1.

в) Длина участка выравнивания и выдерживания может быть определена приближенно по формуле

$$L_{\rm BB} = K_{\rm cp} \left(\frac{V_{\rm H\,BMp}^2 - V_{\rm noc}^2}{2g} + h \right) \tag{22}$$

где h – высота начала выравнивания (в расчетах принимают h = 10...6 м);

 $V_{\rm H \; Bыp}$ – скорость в начале выравнивания $V_{\rm H \; Bыp} = 1,3 \; V_{\rm min \; T};$

 $K_{\rm cp}$ — среднее качество на выравнивании и выдерживании $K_{\rm cp}$ = 6...8.

г) Длину предпосадочного снижения $L_{\rm ch}$ можно приближенно определить по формуле

$$L_{\text{cH}} = (15 - h) \text{ ctg } \theta$$
,

где $\theta = 2^{\circ}40^{\circ}$ – угол залегания глиссады.

Приложение 1

Геометрические характеристики профиля NASA23011

Таблица 1 Координаты точек профиля

Геометри	ческие характеристики в %	от хорды
$\frac{\overline{x}}{x}$	$\overline{\mathcal{Y}}_{e}$	$\overline{\mathcal{Y}}_{\scriptscriptstyle{H}}$
5	4,91	-2,26
10	6,48	-2,92
20	7,50	-3,97
30	7,55	-4,46
40	7,14	-4,48
50	6,41	-4,17
60	5,47	-3,67
70	4,36	-3,00
90	1,68	-1,23
100	0	0

Таблица 2 Величина хорды профиля

		Последняя цифра номера зачетной книжки											
	1	1 2 3 4 5 6 7 8 9 0											
Хорда													
b, MM	120	140	160	180	200	220	240	260	280	300			

Приложение 2

Исходные значения аэродинамических коэффициентов профиля крыла и самолёта

Вариант 1

(последняя цифра номера зачетной книжки – 1)

Таблица 1

Значения аэродинамических коэффициентов профиля В-8

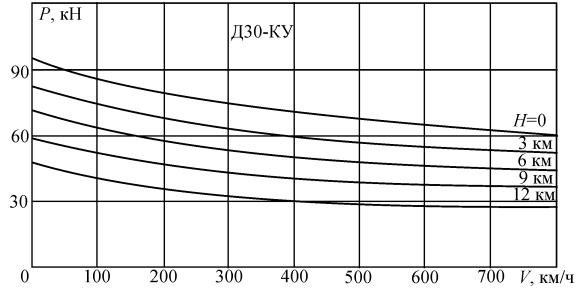
α°	-2	0	4	8	10	12	14	16
c_{ya}	-0,104	0,026	0,290	0,552	0,676	0,760	0,790	0,792
c_{xa}	0,0083	0,0062	0,0113	0,0306	0,0470	0,0795	0,1235	0,1828
c_m	+0,025	-0,002	-0,065	-0,125	-0,155	-0,182	-0,207	-0,225

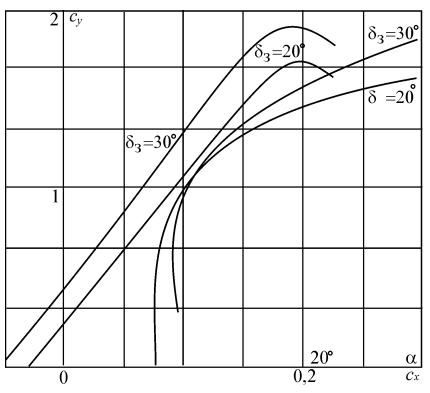
Таблица 2

Аэродинамические характеристики самолета типа Ил-62

α°	0	2,4	3,5	5,8	8	10,4	12,7	17,6	20	22	24
c_{ya}	-0,105	0,1	0,2	0,4	0,6	0,8	1,0	1,2	1,24	1,26	1,27

Таблица 3


M	c_{ya}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,2	1,27*
M≤0,6	c_{xa}	0,017	0,017	0,019	0,025	0,038	0,054	0,076	0,114	0,155
M=0,7	c_{xa}	0,019	0,019	0,020	0,028	0,044	0,073			
M=0,8	c_{xa}	0,023	0,024	0,026	0,037	0,059				
M=0,9	c_{xa}	0,042	0,042	0,046	0,064					
M=0,93	c_{xa}	0,070	0,071	0,075	0,096					


Таблица 4

S , M^2	<i>L</i> , м	P_{0 взл, к ${ m H}$	P_{0 ном, к ${ m H}$	$q_{\rm пред}$, Н/м2	$M_{ m max~доп}$	γ _{доп} , град	\overline{G} доп
279,55	43,3	113	96	17000	0,82	30	0,3

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
<i>т</i> _{взл} , т	165	158	151	144	137	130	123	116	109	102
$n_{ m max\ доп}^{9}$	1,70	1,75	1,80	1,85	1,90	1,95	2,00	2,05	2,10	2,15

Номер ва-	0	1	2	3	4	5	6	7	8	9
рианта										
$H_{\rm pac ext{ $	0, 2,	0, 3, 7, 11	0, 2, 6, 11	0, 3, 6, 11	0, 2, 5, 10	0, 4, 8, 12	0, 3, 8, 11	0, 2, 7, 12	0, 3, 7, 12	0, 4, 7, 12
•	6,10									
$H_{\text{расч крена}}$, м	0	1000	2000	1000	2000	2000	1000	3000	1000	2000

23

Вариант 2

(последняя цифра номера зачетной книжки – 2)

Таблица 1

Значения аэродинамических коэффициентов профиля В-12

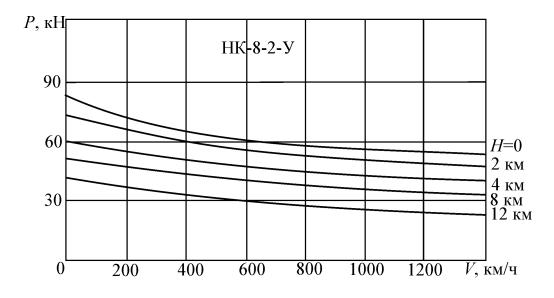
α°	-2	0	4	8	10	12	14	16	18	20
c_{ya}	-0,066	0,063	0,320	0,571	0,691	0,805	0,912	0,952	0,940	0,860
c_{xa}	0,0085	0,0075	0,0132	0,0313	0,0449	0,0611	0,0785	0,1015	0,136	0,200
\mathcal{C}_m	+0,010	-0,017	-0,072	-0,128	-0,155	-0,181	-0,207	-0,220	-0,230	-0,240

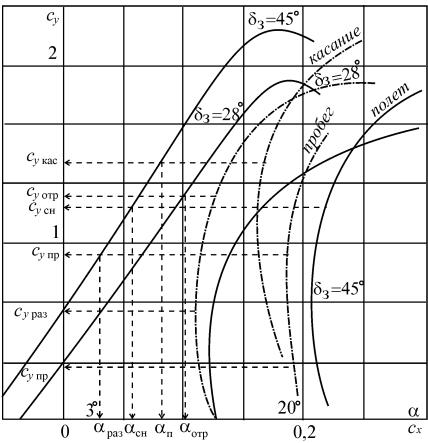
Таблица 2

Аэродинамические характеристики самолета типа Ту-154

			1 ' '		<u> </u>			J			
α°	0	2	4	4,3	6,3	8,3	10,8	15,2	16	18	20
c_{ya}	-0,23	-0,03	0,17	0,2	0,4	0,6	0,8	1,0	1,02	1,07	1,09

Таблица 3


M	c_{ya}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,09
M≤0,55	c_{xa}	0,019	0,019	0,020	0,027	0,038	0,055	0,089	0,123
M=0,7	c_{xa}	0,021	0,021	0,022	0,029	0,043	0,066		
M=0,8	c_{xa}	0,022	0,022	0,023	0,031	0,047			
M=0,9	c_{xa}	0,026	0,026	0,028	0,042				
M=0,94	c_{xa}	0,036	0,036	0,039	0,059				


Таблица 4

S, m ²	<i>L</i> , м	P_{0 взл, к ${ m H}$	P_{0 ном, к H	$q_{ m пред}$, H/м2	$M_{ m max\ доп}$	үдоп, град	$\overline{G}_{\scriptscriptstyle { m Jon}}$
201,5	37,5	93	78,5	15700	0,9	30	0,2

										200011112000
Номер	0	1	2	3	4	5	6	7	8	9
варианта										
$m_{\scriptscriptstyle m B3J}$, Т	93	90	87	84	81	78	75	72	62	65
n э доп	1,80	1,85	1,90	1,95	2,0	2,05	2,10	2,15	2,20	2,25

Номер ва-	0	1	2	3	4	5	6	7	8	9
рианта										
$H_{\rm pac}$ ч, км	0, 2,	0, 3, 7, 11	0, 2, 6, 11	0, 3, 7, 10	0, 3, 5, 10	0, 4, 8, 12	0, 3, 8, 12	0, 2, 7, 12	0, 3, 7, 12	0, 4, 8, 12
•	6,10									
$H_{\rm pacч\ крена}$, м	0	3000	2000	1000	2000	0	3000	2000	1000	0

(последняя цифра номера зачетной книжки – 3)

Таблица 1

Значения аэродинамических коэффициентов профиля NASA-2211

α°	-2	0	4	8	10	12	14	16
c_{va}	-0,0005	0,126	0,390	0,652	0,775	0,900	1,017	1,130
c_{xa}	0,0083	0,008	0,0175	0,0381	0,0520	0,0595	0,0875	0,1085
c_m	-0,026	-0,057	-0,117	-0,130	-0,208	-0,237	-0,265	-0,292

Таблица 2

Аэродинамические характеристики самолета типа Ан-12

_			rappod		re mere en	11011111111 00011	0110100 1111100	· · · · · ·		
	$lpha^{\circ}$	0	2	4	6	10	14	16	18	20*
	c_{ya}	0	0,174	0,355	0,538	0,910	1,295	1,465	1,628	1,720*

Таблица 3

M	c_{va}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,72
M≤0,5	c_{xa}	0,025	0,025	0,025	0,030	0,038	0,051	0,070	0,095	0,131	0,184	0,246
M=0,7	c_{xa}	0,025	0,025	0,025	0,030	0,038	0,052	0,075	0,110	0,173		
M=0,7	c_{xa}	0,026	0,026	0,029	0,040	0,058	0,086	0,127				
M=0,75	c_{xa}	0,037	0,048	0,057	0,114							
M=0,85	c_{xa}	0,078	0,103	0,165								

Таблица 4

S, m ²	<i>L</i> , м	$D_{\scriptscriptstyle m B}$, м	N_{0 взл, к ${ m H}$	N_{0 ном, к ${ m H}$	$q_{\text{пред}}$, Н/м2	$M_{ m max\ доп}$	γ _{доп} , град	$\overline{G}_{\scriptscriptstyle ext{ iny MOII}}$
121,7	38	4,5	2950	2500	12200	0,68	30	0,2

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
<i>т</i> _{взл} , т	61	59	57	55	53	51	49	47	45	43
$n_{ m max\ доп}^{9}$	2,30	2,32	2,34	2,37	2,39	2,41	2,44	2,47	2,53	2,60

Таблица 6

	_ 1	. 1						ı		_	1
Номер вариан-	0	1	2	3		4	5	6	7	8	9
та											
$H_{ m pac}$ ч, км	0, 3,	0, 3, 7, 10	0, 3, 8, 10	0, 2, 6, 10	0, 3,	8, 11	0, 2, 7, 11	0, 3, 8, 11	0, 4, 8, 11	0, 3, 7, 11	0, 4, 8, 11
pue 1)	6, 9	, , ,	, , ,	, , ,	, ,	,	, , ,		, , ,	, , ,	
Hnacu knaua. M	0	2000	1000	2000	30	00	3000	1000	1000	2000	2000
$H_{\text{расч крена}}$, м N , к BT	Ü	2000	1000	2000			$\frac{y}{ y }$	1000	1000		2000
							<i>y</i>				
	АИ-2	20									
2000					•			<u>& / </u>			
2000				4 к	M		$c_{y \text{ noc}}$		Š //	1	
				H=			2		'		
					İ		_	/; /			
	/ _			8 к	iM		$c_{y \text{ orp}}$	/	′		
				\			<u> </u>	-7: X/			
				12	км			/			
						$c_{y \text{ npo}}$	06 k/ /	c_x c_y			
							1 / [/]				
0	200	400	<u> </u>	600 V, км/ч		$c_{y \text{ pa}}$	3 2 - 2	/ { /			
· ·	200	400	,	0007, KWI/ 1		/ F		c_{x} pas			
							/ i /				
							X : I	- 1			
						/ /	/				_
					ľ			<u> </u>	0,2		c_x
							0 3°	8-9°	20°		α

26

(последняя цифра номера зачетной книжки – 4)

Таблица 1

Значения аэродинамических коэффициентов профиля В-12

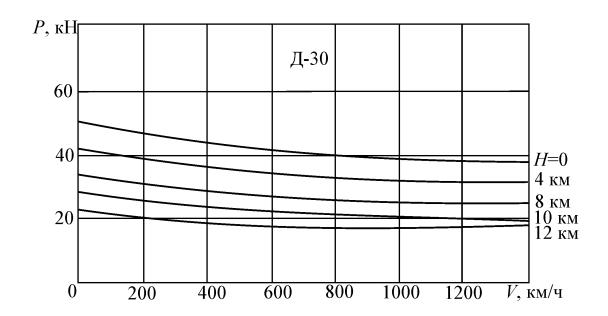
α°	-2	0	4	8	10	12	14	16
c_{ya}	-0,05	0,075	0,320	0,556	0,666	0,762	0,820	0,805
c_{xa}	0,0094	0,0071	0,0138	0,0352	0,0510	0,0690	0,100	0,149
c_m	+0,005	-0,022	-0,075	-0,126	-0,152	-0,177	-0,200	-0,190

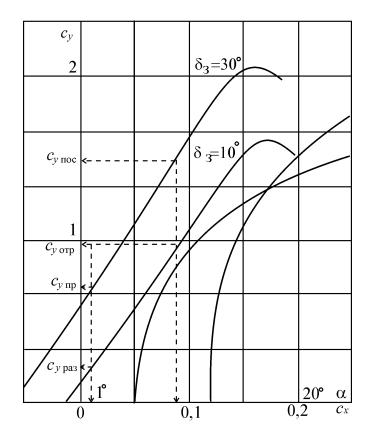
Таблица 2

Аэродинамические характеристики самолета типа Ту-134

		тород	manin reen	ie napaniep	ite i i i i i i i i i i i i i i i i i i	onera mina	19 10 1		
$lpha^{\circ}$	0	2	4	6	8	12	16	18	19*
c_{ya}	-0,070	0,110	0,284	0,460	0,635	0,995	1,278	1,345	1,350*

Таблица 3


M	c_{va}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,09
M≤0,50	c_{xa}	0,019	0,019	0,020	0,027	0,038	0,055	0,089	0,123
M=0,6	c_{xa}	0,021	0,021	0,022	0,029	0,043	0,066		
M=0,75	c_{xa}	0,022	0,022	0,023	0,031	0,047			
M=0,8	c_{xa}	0,026	0,026	0,028	0,042				
M=0,88	c_{xa}	0,036	0,036	0,039	0,059				


Таблица 4

<i>S</i> , м ²	<i>L</i> , м	P_{0 взл, к ${ m H}$	P_{0 ном, к ${ m H}$	$q_{ m пред}$, Н/м2	$M_{ m max~доп}$	$\gamma_{ m доп}$, град	$\overline{G}_{\scriptscriptstyle ДOII}$
201,5	37,5	93	78,5	15700	0,9	30	0,2

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
<i>т</i> _{взл} , т	93	90	87	84	81	78	75	72	62	65
$n_{ m max\ доп}^{9}$	1,80	1,85	1,90	1,95	2,0	2,05	2,10	2,15	2,20	2,25

Номер ва-	0	1	2	3	4	5	6	7	8	9
рианта										
$H_{\rm pacy}$, км	0, 2,	0, 3, 7, 11	0, 2, 6, 11	0, 3, 7, 10	0, 3, 5, 10	0, 4, 8, 12	0, 3, 8, 12	0, 2, 7, 12	0, 3, 7, 12	0, 4, 8, 12
_	6,10									
$H_{\rm расч\ крена}$, м	0	3000	2000	1000	2000	0	3000	2000	1000	0

(последняя цифра номера зачетной книжки – 5)

Таблица 1

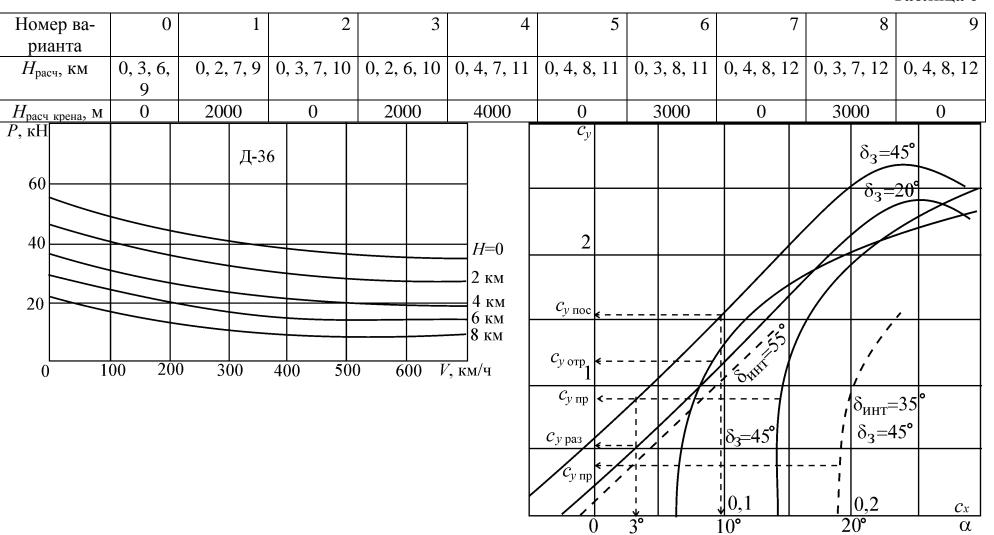
Значения аэродинамических коэффициентов профиля Д-5-10

α°	-2	0	4	8	10	12	14	16	18
c_{va}	-0,035	0,109	0,380	0,645	0,776	0,910	1,012	1,155	1,145
c_{xa}	0,0074	0,0073	0,0150	0,0350	0,0490	0,0560	0,0737	0,1011	0,137
c_m	+0,007	-0,022	-0,082	-0,146	-0,178	-0,212	-0,244	-0,276	-0,320

Таблица 2

Аэродинамические характеристики самолета типа Як-42

	α°	0	2	4	6	8	10	12	14	16	18
Ī	c_{ya}	-0,08	0,10	0,28	0,46	0,62	0,81	0,99	1,16	1,34	1,47


Таблица 3

M	c_{ya}	0	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,47
M≤0,50	c_{xa}	0,022	0,026	0,032	0,041	0,055	0,077	0,103	0,144	0,18
M=0,6	c_{xa}	0,022	0,026	0,032	0,043	0,061	0,093	0,136		
M=0,7	c_{xa}	0,022	0,026	0,032	0,045	0,070	0,115			
M=0,8	c_{xa}	0,027	0,028	0,038	0,055	0,095				
M=0,9	c_{xa}	0,047	0,060	0,089	0,148					

Таблица 4

S, m ²	<i>L</i> , M	P_{0 взл, к \mathbf{H}	P_{0 ном, к ${ m H}$	$q_{ m пред}$, Н/м2	$M_{ m max\ доп}$	γ _{доп} , град	$\overline{G}_{\scriptscriptstyle ДОП}$
142	35	63	54	23000	0,85	30	0,25

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
$m_{\scriptscriptstyle m B3Л}$, Т	53	52	51	50	49	48	47	46	45	44
$n_{ m max\ доп}^{9}$	2,32	2,32	2,32	2,32	2,37	2,41	2,45	2,51	2,57	2,65

(последняя цифра номера зачетной книжки – 6)

Таблица 1

Значения аэродинамических коэффициентов профиля Д-2-11

$lpha^{\circ}$	-2	0	4	8	10	12	14	16	18
c_{ya}	-0,030	0,104	0,370	0,635	0,766	0,900	1,032	1,141	1,130
c_{xa}	0,0084	0,0083	0,0164	0,0365	0,0510	0,0677	0,0874	0,1162	0,147
m_{za}	+0,007	-0,022	-0,082	-0,146	-0,178	-0,212	-0,244	-0,276	-0,320

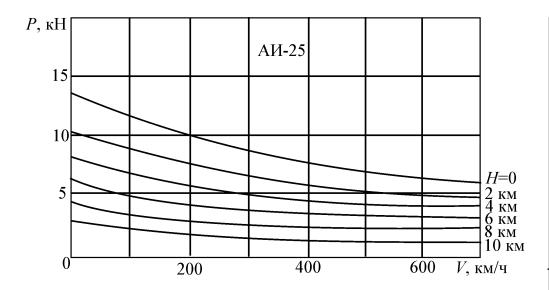
Таблица 2

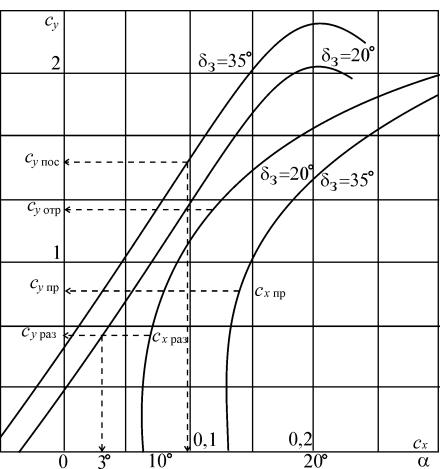
Аэродинамические характеристики самолета типа Як-40

_				1 ' '		1 1					
	$lpha_\circ$	0	2	4	6	8	10	12	14	16	17,5
	c_{va}	-0,06	0,124	0,300	0,475	0,650	0,830	1,005	1,188	1,345	1,440

Таблица 3

M	c_{ya}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,44*
M≤0,5	c_{xa}	0,025	0,024	0,024	0,030	0,039	0,053	0,071	0,094	0,139	0,160
M=0,6	c_{xa}	0,028	0,026	0,027	0,033	0,045	0,065	0,098			
M=0,7	c_{xa}	0,031	0,030	0,030	0,038	0,060	0,107				
M=0,75	c_{xa}	0,034	0,034	0,037	0,057						


Таблица 4


S, M ²	<i>L</i> , м	P_{0 взл, к ${ m H}$	P_{0 ном, к H	$q_{ m пред}$, Н/м2	$M_{ m max\ доп}$	үдоп, град	$\overline{G}_{ m _{ m JOH}}$
70	25	14,7	11,1	11800	0,65	30	0,2

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
$m_{{ m \tiny B3Л}},{ m T}$	14	13,7	13,3	12,9	12,6	12,2	11,8	11,6	11,1	10,6
n э доп	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7

$\mathbf{T}_{\mathbf{a}}$	ر		
Ia	оли	Цα	U

Номер ва-	0	1	2	3	4	5	6	7	8	9
рианта										
$H_{\rm pacy}$, км	0, 2, 6,	0, 3, 7, 11	0, 3, 8, 10	0, 3, 7, 11	0, 2, 7, 10	0, 3, 6, 11	0, 4, 6, 10	0, 3, 9, 11	0, 2, 6, 11	0, 3, 8, 12
•	10									
$H_{\text{расч крена}}$, м	0	1000	2000	2000	3000	1000	2000	1000	3000	2000

(последняя цифра номера зачетной книжки – 7)

Таблица 1

Значения аэродинамических коэффициентов профиля

$lpha^{\circ}$	-2	0	4	8	10	12	14	16
c_{va}	-0,009	0,25	0,7	1	1,18	1,3	1,5	1,62
c_{xa}	0,02	0,025	0,04	0,065	0,083	0,118	0,175	0,221
\mathcal{C}_m	0	-0,1	-0,18	-0,3	-0,32	-0,35	-0,358	-0,41

Таблица 2

Аэродинамические характеристики самолета типа Ту-204

		29 P 0 A 1111 W 1111	reconstruction of	op 11 o 1 1111	11 00011100110100		•	
$lpha^{\circ}$	0	2	4	6	8	12	16	20
c_{ya}	-0,1	0,05	0,25	0,5	0,7	1,05	1,3	1,37

Таблица 3

M	c_{va}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,1	1,2
M≤0,5	c_{xa}	0,018	0,017	0,018	0,021	0,030	0,050	0,090	0,12	-
M=0,7	c_{xa}	0,018	0,017	0,018	0,025	0,042	0,080	0,16	0,2	
M=0,85	c_{xa}	0,020	0,020	0,022	0,034	0,060	0,15	0,2		
M=0,9	c_{xa}	0,03	0,032	0,035	0,054	0,090	0,15			

Таблица 4

<i>S</i> , м ²	<i>L</i> , м	P_{0 взл, к ${ m H}$	P_{0 ном, к ${ m H}$	$q_{ m пред}$, Н/м2	$M_{ m max~доп}$	γ _{доп} , град	\overline{G} доп
184	40	161	135	17000	0,83	30	0,4

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
$m_{\scriptscriptstyle m B3Л}$, Т	94	90	85	80	75	70	92	90	88	86
n э доп	2,0	2,1	2,2	2,3	2,4	2,5	2,0	2,1	2,15	2,2

_	Таблица 6	,									
	9	8	7	6	5	4	3	2	1	0	Номер ва-
	0, 4, 6, 11	0, 3, 7, 12	0, 2, 7, 11	0, 4, 8, 12	0, 2, 5, 10	0, 3, 6, 12	0, 2, 6, 11	0, 2, 6, 10	0, 3, 7, 11	0, 2, 6,	рианта $H_{\text{расч}}$, км
	2000	0	1000	0	1000	2000	1000	2000	1000		Н _{расч крена} , м Р, кН
			$\begin{bmatrix} \delta_3 = 37^{\circ} \\ \delta_{\Pi p} = 27^{\circ} \end{bmatrix}$		c_y			IC-92A	Ι		Р, кН
) -	$\delta_3=3$	$\delta_3 = 18^{\circ}$ $\delta_{np} = 19^{\circ}$	8			H=0 4 KM					100
1	$\delta_3=1$				2	8 KM —					50
							1000 V,	800		<u> </u> 200 4	0
					1						
(0,2	0,1								
(. ()°	20		0						

(последняя цифра номера зачетной книжки – 8)

Таблица 1

Значения аэродинамических коэффициентов профиля В-8

_				1 ' '		11 '				
	$lpha^{\circ}$	-2	0	4	8	10	12	14	16	18
	c_{va}	-0,030	0,104	0,370	0,635	0,766	0,900	1,032	1,141	1,130
	c_{xa}	0,0084	0,0083	0,0164	0,0365	0,0510	0,0677	0,0874	0,1162	0,147
	\mathcal{C}_m	+0,007	-0,022	-0,082	-0,146	-0,178	-0,212	-0,244	-0,276	-0,320

Таблица 2

Аэродинамические характеристики самолета типа Ил-76

		11000	1111001,111 10016	ere mere en			1101 / 0		
α°	0	2	4	6	8	12	16	18	20
c_{ya}	-0,1	0,05	0,25	0,5	0,7	0,9	1,2	1,3	1,37

Таблица 3

M	c_{ya}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,2	1,42
M≤0,5	c_{xa}	0,023	0,023	0,025	0,035	0,055	0,08	0,12	0,2	0,3
M=0,7	c_{xa}	0,023	0,023	0,027	0,040	0,060	0,090	0,15	0,25	
M=0,77	c_{xa}	0,023	0,023	0,035	0,05	0,075	0,13	0,25		
M=0,8	c_{xa}	0,03	0,035	0,04	0,06	0,1	0,2			
M=0,9	c_{xa}	0,04	0,045	0,05	0,08	0,12	0,3			

Таблица 4

Ī	S, m ²	<i>L</i> , м	P_{0 взл, к ${ m H}$	P_{0 ном, к ${ m H}$	$q_{ m пред}$, Н/м 2	$M_{ m max\ доп}$	үдоп, град	$\overline{G}_{_{ m JOH}}$
-	300	50	120	95	174000	0,77	30	0,4

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
<i>т</i> т	190	180	170	160	150	140	130	120	110	100
$n_{\max \mathrm{доп}}^{ \mathrm{9}}$	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9

36

(последняя цифра номера зачетной книжки – 9)

Таблица 1

Значения аэродинамических коэффициентов профиля

$lpha^{\circ}$	-2	0	4	8	10	12	14	16
c_{ya}	-0,009	0,25	0,7	1	1,18	1,3	1,5	1,62
C_{xa}	0,02	0,025	0,04	0,065	0,083	0,118	0,175	0,221
C_m	0	-0,1	-0,18	-0,3	-0,32	-0,35	-0,358	-0,41

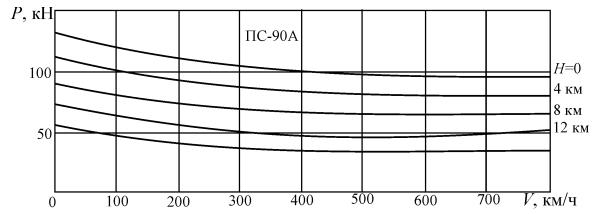
Таблица 2

Аэродинамические характеристики самолета типа Ил-96-300

ſ	0	Λ	1	4		0	10	1.0	20	224
	α \circ	U	2	4	6	8	12	16	20	22*
	c_{va}	-0,2	0	0,2	0,4	0,6	0,95	1,25	1,4	1,4

Таблица 3

M	c_{ya}	0	0,1	0,2	0,4	0,6	0,8	1,0	1,2	1,4
M≤0,5	c_{xa}	0,02	0,02	0,025	0,03	0,07	0,012	0,15	0,25	0,45
M=0,7	c_{xa}	0,023	0,02	0,027	0,040	0,090	0,15	0,2	0,3	
M=0,84	c_{xa}	0,05	0,052	0,07	0,08	0,1	0,17	0,22		
M=0,9	c_{xa}	0,07	0,072	0,8	0,09	0,13	0,22	0,23		


Таблица 4

S, M ²	<i>L</i> , м	P_{0 взл, к \mathbf{H}	P_{0 ном, к H	$q_{\rm пред}$, H/м2	$M_{ m max\ доп}$	γ _{доп} , град	$\overline{G}_{\scriptscriptstyle ДO\Pi}$
390	57	161	135	17000	0,84	30	0,4

Номер	0	1	2	3	4	5	6	7	8	9
варианта										
$m_{{ m \tiny B3Л}},{ m T}$	230	220	210	200	190	180	170	160	150	140
$n_{ m max\ доп}^{9}$	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9

Таблица 6

Номер ва-	0	1	2	3	4	5	6	7	8	9
рианта										
$H_{\rm pacu}$, км	0, 2, 6,	0, 3, 7, 11	0, 2, 6, 10	0, 2, 6, 11	0, 3, 6, 11	0, 2, 5, 10	0, 4, 8, 12	0, 2, 7, 11	0, 3, 7, 12	0, 4, 6, 11
•	10									
$H_{\rm pacч\ крена}$, м	0	1000	2000	1000	2000	2000	1000	3000	1000	2000

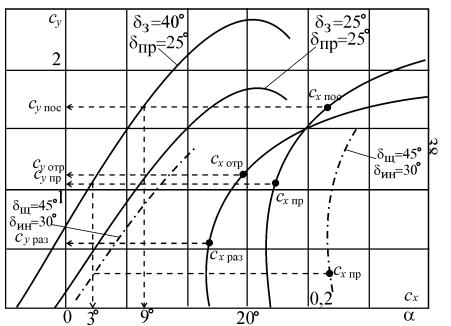


Таблица 1

Таблица 2

(последняя цифра номера зачетной книжки <math>-0)

Значения аэродинамических коэффициентов профиля NASA-23011

α°	0	2	4	6	8	10	12	14	16	18	19
c_{va}	0,080	0,257	0,432	0,612	0,785	0,965	1,140	1,295	1,425	1,525	1,560
C_{ra}	0.0250	0.0260	0.0286	0.0355	0.0490	0.0605	0.0795	0.1050	0.1330	0.1770	0.2100

Аэродинамические характеристики самолета типа Ан-24

α°	0	2	4	6	8	10	12	14	16	18	19*
c_{va}	0,080	0,257	0,432	0,612	0,785	0,965	1,140	1,295	1,425	1,525	1,560

Таблица 3 M0 0,1 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,56 c_{va} 0,063 M≤0,5 0,025 0,025 0,025 0,27 0,035 0,046 0,087 0,126 1,210 c_{xa} 0,025 0,025 0,025 0,027 0,050 0,077 M = 0.60,035 0,165 c_{xa} M = 0.70,035 0,035 0,036 0,042 0,058 0,094 c_{xa}

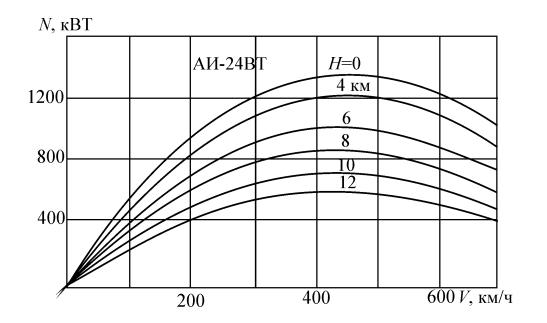
0,168

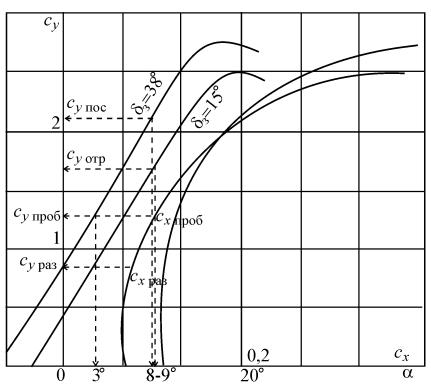
Таблица 4 S, M^2 $\overline{M}_{ m max\ доп}$ N_{0 взл, к ${ m H}$ $N_{0\text{ном}}$, кН $q_{\text{пред}}$, Н/м2 L, M $D_{\rm R}$, M $\overline{G}_{\text{доп}}$ 0,2 үдоп, град 75 2080 29,2 3,9 1700 10000 0,7 30

0,108

0,080

 c_{xa}


M = 0.8


0,082

0,86

Таблица 5 0 3 4 5 7 8 Номер 2 6 9 варианта 19,0 23,0 21,5 20,0 18,0 17,5 17,0 16,7 16,2 15,5 $m_{\rm взл}$, Т 2,80 2,85 2,90 2,90 2,95 3,0 3,05 3,10 3,15 3,20 $n_{ m max\ доп}^{\,\scriptscriptstyle 9}$

Номер ва-	0	1	2	3	4	5	6	7	8	9
рианта										
$H_{\rm pac ext{\tiny 4}}$, км	0, 3, 6,	0, 3, 5, 8	0, 4, 7, 9	0, 2, 6, 9	0, 3, 7, 9	0, 2, 6, 11	0, 3, 7, 10	0, 2, 6, 10	0, 3, 7, 11	0, 3, 8, 11
*	8									
$H_{\text{расч крена}}$, м	0	2000	3000	1000	2000	2000	3000	1000	2000	2000

Приложение 3 Международная стандартная атмосфера

ческая высота Н, м	Температу ра Т, К	Давление р, Па	Плотность (р), кг/м ³	plpe	(p)/(p) _e	Скорость звука а, м/с	Кинематич еская вязкость (v), м ² /с	
0	288,150	1,01325 + 5	1,22500	1,00000	1,00000	340,294	1,4607—5	
250	286,525	9,83576 + 4	1,19587	9,70714-1	9,76220—1	339,333	1,4897	
500	284,900	9,54613	1,16727	9,42130	9,52876	338,370	1,5195	
750	283,276	9,26346	1,13921	9,14232	9,29964	337,403	1,5500	
1000	281,651	8,98763	1,11166	8,87010	9,07477	336,435	1,5813	
1500	278,402	8,45597	1,05810	8,34539	8,63759	334,489	1,6463	
2000	275,154	7,95014	1,00655	7,84618	8,21676	332,532	1,7147	
2500	271,906	7,46917	9,56954-1	7,37150	7,81187	330,563	1,7868	
3000	268,659	7,01212	9,09254	6,92042	7,42248	328,584	1,8628	
3500	265,413	6,57804	8,63402	6,49202	7,04818	326,592	1,9429	
4000	262,166	6,16604	8,19347	6,08541	6,68854	324,589	2,0275	
4500	258,921	5,77526	7,77038	5,69973	6,34317	322,573	2,1167	
5000	255,676	5,40483	7,36429	5,33415	6,01166	320,545	2,2110	
5500	252,431	5,05398	6,97469	4,98784	5,69362	318,505	2,3107	
6000	249,187	4,72176	6,60111	4,66002	5,38866	316,452	2,4162	
6500	245,943	4,40755	6,24310	4,34991	5,09641	314,385	2,5278	
7000	242,700	4,11053	5,90018	4,05677	4,81648	312,306	2,6461	
7500	239,457	3,82997	5,57192	3,77988	4,54850	310,212	2,7714	
8000	236,215	3,56516	5,25786	3,51854	4,29213	308,105	2,9044	
8500	232,974	3,31542	4,95757	3,27206	4,04700	305,984	3,0457	
9000	229,733	3,08007	4,67063	3,03979	3,81276	303,848	3,1957	
9500	226,492	2,85847	4,39661	2,82109	3,58907	301,697	3,3553	
10000	223,252	2,64999	4,13510	2,61533	3,37559	299,532	3,5251	
10500	220,013	2,45402	3,88570	2,42193	3,17200	297,351	3,7060	
11000	216,774	2,26999	3,64801	2,24031	2,97797	295,154	3,8988	
11500	216,650	2,09847	3,37429	2,07103	2,75453	295,069	4,2131	
12000	216,650	1,93994	3,11937	1,91457	2,54643	295,069	4,5574	
12500	216,650	1,79340	2,88375	1,76995	2,35408	295,069	4,9297	
13000	216,650	1,65796	2,66595	1,63628	2,17629	295,069	5,3325	
13500	216,650	1,53276	2,46464	1,51272	2,01195	295,069	5,7680	