МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра ДЛА

ЖУРНАЛ ЛАБОРАТОРНЫХ РАБОТ

по дисциплине

"КОНСТРУКЦИЯ И ПРОЧНОСТЬ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ"

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра	ДЛА

ЖУРНАЛ ЛАБОРАТОРНЫХ РАБОТ

по дисциплине

"КОНСТРУКЦИЯ И ПРОЧНОСТЬ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ"

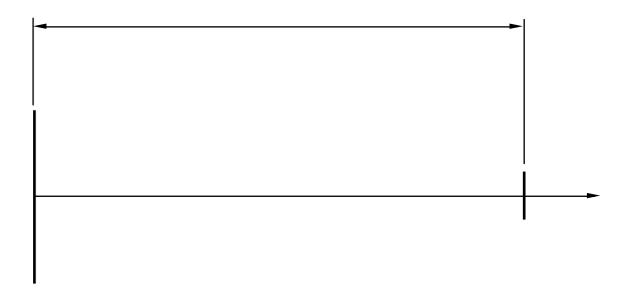
-	Студент (Ф.И.О.)
Подгруппа	Факультет - Курс - Учебная группа - По
етной книжки	Номер зачетн
ал должен быть представлен мене по дисциплине "КиП АД"	
ка преподавателя о зачете раторных работ	
_"200 г.	

СОДЕРЖАНИЕ

Общие замечания. Правила подготовки и выполнения
лабораторных работ
Отчет по работе № 1.
Исследование спектра собственных частот и
форм колебаний рабочей лопатки (компрессора)4
Отчет по работе № 2.
Исследование спектра собственных частот и
форм колебаний диска, защемленного в центре11
Отчет по работе № 3.
Исследование критических частот вращения
однодискового ротора
Отчет по работе № 4.
Исследование критических частот вращения
ротора в системе "ротор-корпус"
Отчет по работе № 5.
Исследование спектра собственных частот и форм
колебаний цилиндрической оболочки26
Методическая разработка к выполнению лабораторных работ по курсу Конструкция и прочность АД" издается в соответствии с учебной программой для студентов специальности 160901 всех форм обучения. Рассмотрена и одобрена на заседании кафедры ДЛА апреля 006 г. и совета механического факультета 2006 г.
Разработал: д.т.н., доц. Б.А. Чичков
Научный редактор, рецензент: д.т.н., проф. В.А.Пивоваров
Ladrenak, Ladrenak, That, That

ОБЩИЕ ЗАМЕЧАНИЯ.

ПРАВИЛА ПОДГОТОВКИ и ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ


- 1. Журнал включает отчеты по лабораторным работам разделов курса дисциплины "Конструкция и прочность АД" ("КиП АД"):
 - -"Колебания и динамическая прочность элементов АД",
 - -"Критические частоты вращения роторов АД".
 - 2. Лабораторные работы проводятся с целью:
 - -закрепления теоретических знаний по разделам курса "КиП АД",
 - -изучения экспериментальных методов исследования вопросов соответствующих разделов курса,
 - -изучения и практического освоения установок, приспособлений, средств измерения, используемых в исследованиях.
 - 3. Лабораторная работа является самостоятельной индивидуальной работой студента. Для проведения экспериментальной части студенты разбиваются на бригады по 3-5 человек с дальнейшим обязательным прохождением полного цикла экспериментальной части работы при участии каждого члена бригады.
 - 4. В процессе подготовки к лабораторным работам студент обязан изучить соответствующие методические указания, руководства и инструкции (на рабочем месте), разделы конспекта лекций и учебника.
 - 5. Степень готовности студента к выполнению лабораторной работы устанавливается по результатам проведения контрольного опроса. Студенты, показавшие неудовлетворительные результаты контрольного опроса, к выполнению лабораторной работы не допускаются.
 - 6. По результатам выполнения лабораторный работы студентом оформляется отчет, представляемый преподавателю в конце каждого занятия. Журнал должен быть представлен на зачете и экзамене по дисциплине "КиП АД".
 - 7. Журнал должен заполняться чернилами.
 - 8. Перед выполнением лабораторных работ студент должен пройти инструктаж по охране труда и неукоснительно соблюдать установленные требования. Особое внимание следует обращать на индивидуальные особенности лабораторных установок и требования к работе на конкретных рабочих мест.

Отчет по работе № 1.

ИССЛЕДОВАНИЕ СПЕКТРА СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ РАБОЧЕЙ ЛОПАТКИ (КОМПРЕССОРА)

1.1. Цель лабораторной работы

1.2. Расчетная схема лопатки

Рис.1.1. Расчетная схема лопатки

Таблица 1.1 Исходные данные расчета f_1 (собственной частоты колебаний рабочей лопатки по первой изгибной форме)

i (k) характеристика	1	2	3	4	5		
F_i*10^{-4} , m ²							
J_k*10^{-8} , m ⁴							
ℓ, M		0.154					
ρ, кг/м ³	7800						
Е, Па	$2*10^{11}$						

Результаты расчета f_1

Таблица 1.2

J_k*10^{-8} ,							
4							
k	1	2	3	4	$\sum \frac{(i-k)^2}{J_k},$	$F_i * 10^{-4}$	$F_i * \sum \frac{(i-k)^2}{J_k},$ M^{-4}
i					M ⁻⁴	, M ²	M ⁻⁴
5							
4							
3							
2							
	X ₅ , м ⁻²						
			f_1, c^{-1}				

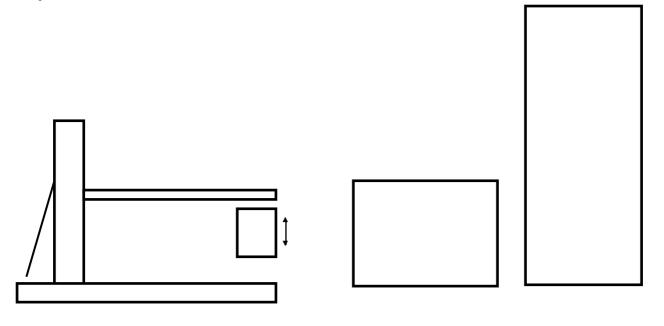


Рис.1.2. Схема лабораторной установки

1-2-

Таблица 1.3 Результаты эксперимента (рисунки узловых линий и экспериментальные значения собственных частот колебаний)

m n	1	2	3	4
1	f эксп= Гц, f теор=	f ^{эксп} =	f ^{эксп} =	f ^{эксп} =
2	f ^{эксп} =	f ^{эксп} =	f ^{эксп} =	f ^{эксп} =
3	f эксп_	f ^{эксп} =	f ^{эксп} =	f эксп=

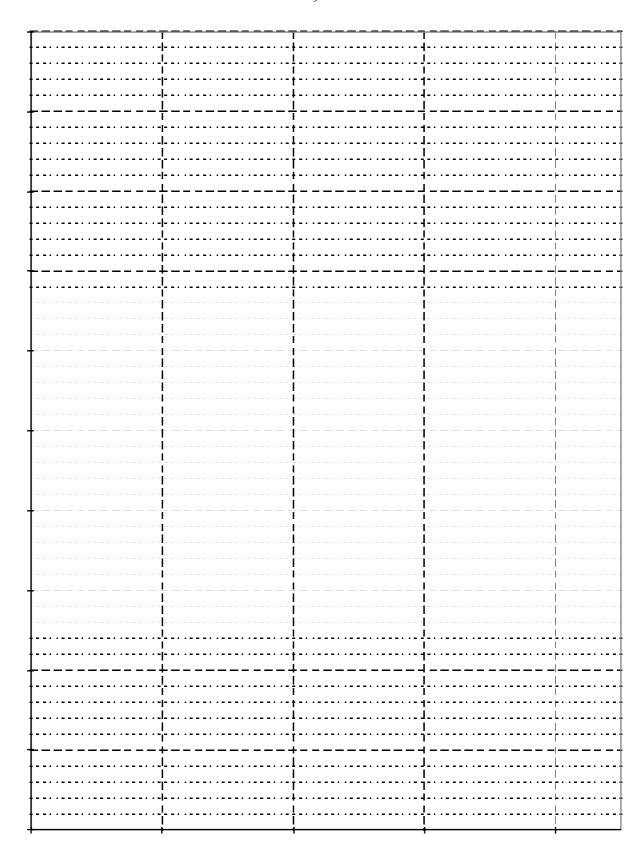


Рис.1.3. Частотные диаграммы

1.3. Для записей, вычислений

Работа	зачтена	" "	200	
				(подпись)
Этчет п	о работе	No 2		

ИССЛЕДОВАНИЕ СПЕКТРА СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ДИСКА, ЗАЩЕМЛЕННОГО В ЦЕНТРЕ

2.1. Цель лабораторной работы

2.2.

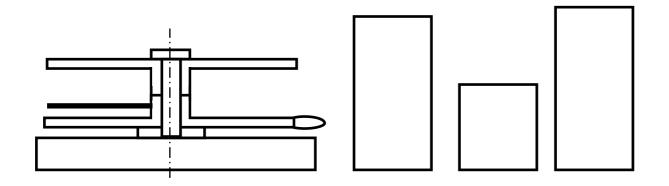


Рис. 2.1. Схема лабораторной установки

1-22.3. Исходные данные расчета значений собственных частот колебаний (параметры объекта исследования - диска)

 Радиус
 R=
 м.

 Толщина
 h=
 м.

 Модуль упругости материала
 E=
 Па.

 Коэффициент Пуассона
 μ =
 .

 Плотность материала
 ρ =
 кг/м 3 .

2.4. Для вычислений, записей

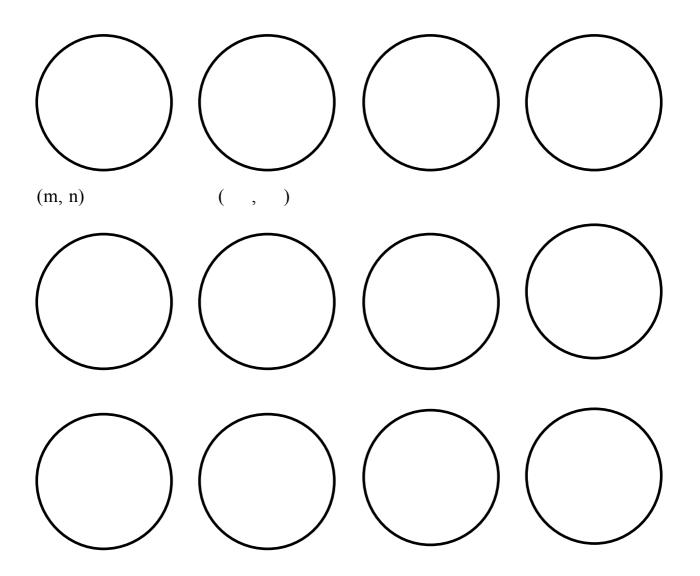


Рис.2.2. Узловые линии при различных формах колебаний Комментарии:

Таблица 2.1 Результаты расчета и эксперимента

Форма колебаний (m, n)	α^2_{teop}	f ^{расч} , Гц	f ^{эксп} , Гц	$lpha^2$	Δf, %

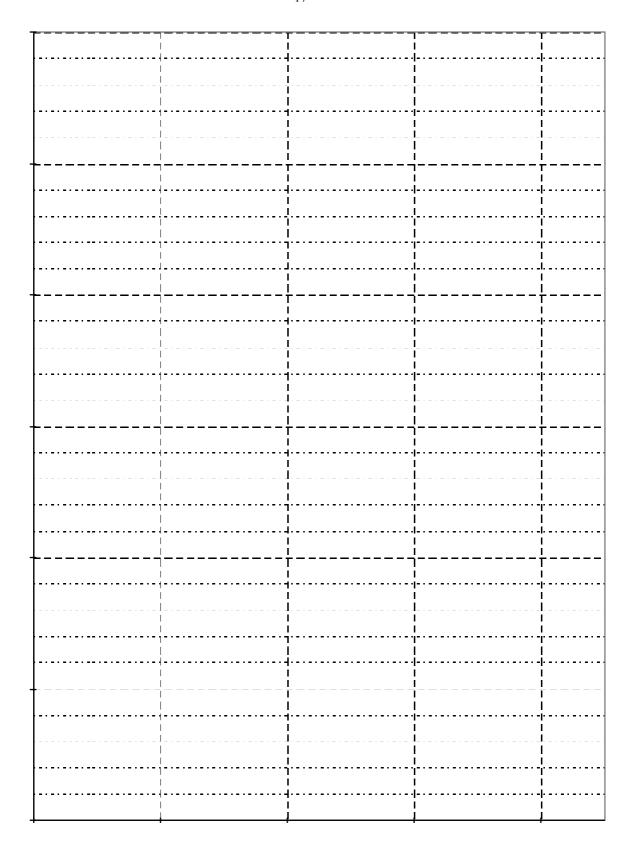


Рис.2.3. Частотные диаграммы

2 5	D
/ >	Выводы
4 .0.	рироды

Отчет по работе № 3.

ИССЛЕДОВАНИЕ КРИТИЧЕСКИХ ЧАСТОТ ВРАЩЕНИЯ ОДНОДИСКОВОГО РОТОРА

3.1. Цель лабораторной работы

3.2. Исходные данные расчета значений критических частот (параметры объекта исследования)

Модуль упругости материала вала E= Па.

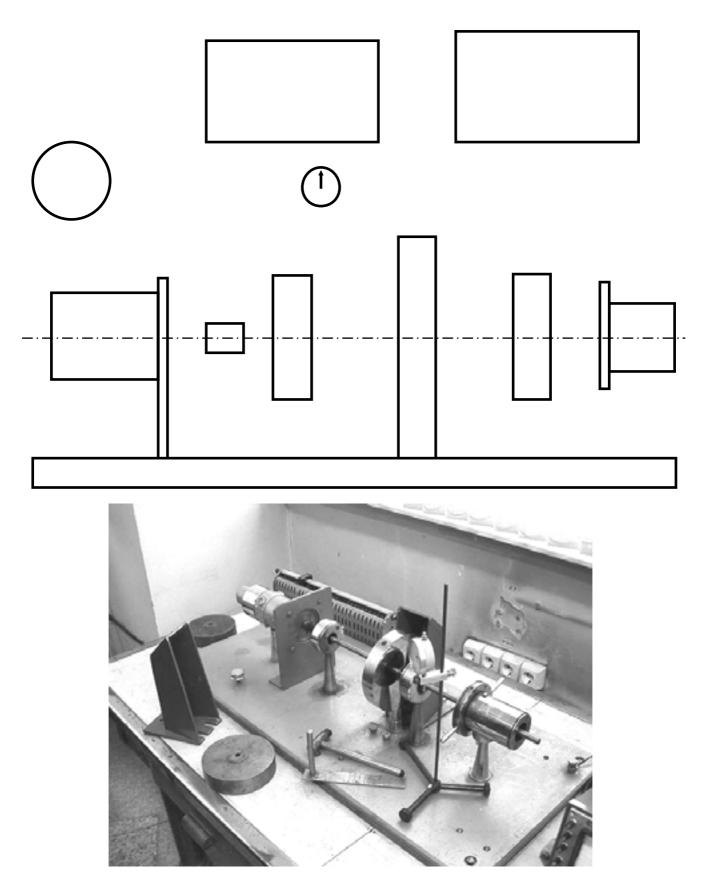


Рис.3.1. Схема лабораторной установки

- 3.3. Определение критической частоты вращения ротора $n_{\kappa p}$
- 3.3.1. Теоретическое определение $n_{\kappa p}$

3.3.2. Определение $n_{\kappa p}$ по частоте собственных колебаний

3.3.3. Экспериментальное определение $n_{\kappa p}$ по статическому прогибу

Таблица 3.1 K экспериментальному определению $n_{\mbox{\tiny kp}}$ по статическому прогибу

Macca	Показания	индикатора	Коэффициент жесткости	Средний коэффициент жесткости	
груза, кг	при нагружении Ү _н	при разгрузке $Y_{\mathfrak{p}}$	среднее Ү _{ср}	С*10 ⁻⁴ , Н/м	С _{ср} *10 ⁻⁴ , Н/м
		ŕ	7,		

 $n_{\kappa p} =$

3.4. Экспериментальное определение критической частоты вращения ротора

 $n_{\kappa p} =$

3.5. Выводы

Работа выполнена ""	200
	(подпись)
Работа зачтена " "	200
	(подпись)
Отчет по работе № 4.	

ИССЛЕДОВАНИЕ КРИТИЧЕСКИХ ЧАСТОТ ВРАЩЕНИЯ РОТОРА В СИСТЕМЕ "РОТОР-КОРПУС"

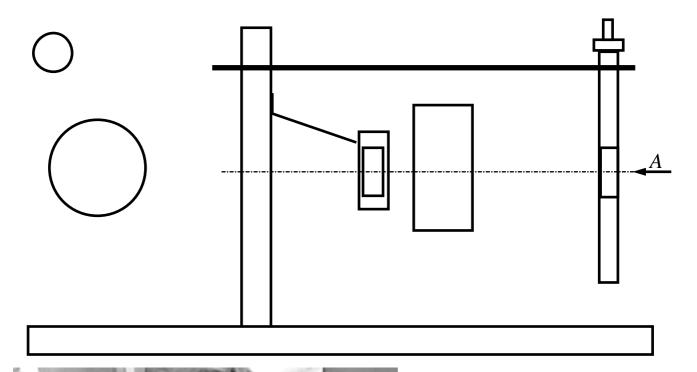
4.1. Цель лабораторной работы

4.2. Параметры лабораторной установки

Модуль упругости материала вала и шпилек

 $E^{\text{B}} = E^{\text{IIII}} =$

Па.


Диаметр вала

 $d_1 = M$.

Диаметр шпилек $d_{\text{шп}} = M$.

Число шпилек і = ...

Расстояние между опорами $\ell = \infty$ м.

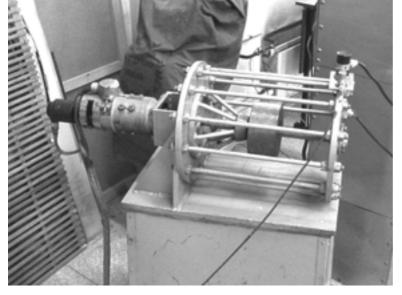


Рис.4.1. Схема лабораторной установки

1-

2-

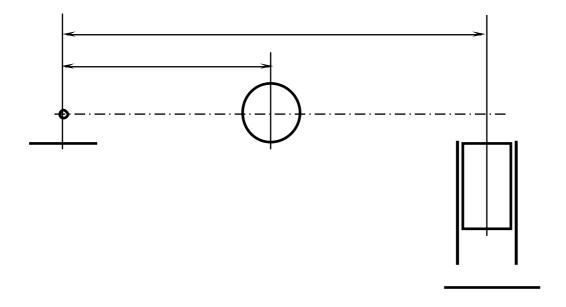


Рис.4.2. Схема эквивалентной системы

4.3. Параметры эквивалентной системы

Приведенная масса ротора $m_1 = \kappa \Gamma.$ Приведенная масса податливой опоры $m_2 = \kappa \Gamma.$ (см. также параметры установки)

4.4. Понятие динамической жесткости

4.5. Теоретическое определение критических частот вращения

$$n^{\text{Teop}}_1 =$$

$$n^{\text{Teop}}_2 =$$

4.6. Экс периментальное определение критических частот вращения $n^{\mathfrak{skcn}}_{1} =$

$$n^{\mathfrak{I}_{1}} =$$

$$n^{3\kappa c\pi}_{2} =$$

4.7. Выводы

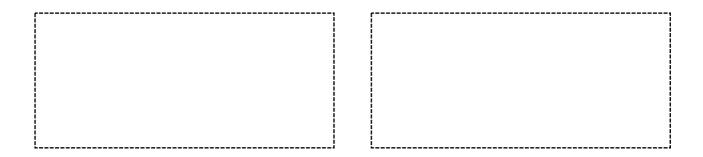

Работа выполнена ""	_200 _200	(подпись)
ИССЛЕДОВАНИЕ СПЕКТРА СОБСТВЕННЫХ ЧАСТОТ КОЛЕБАНИЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧ		PM
5.1. Цель лабораторной работы		
5.2.		

Рис.5.1. Схема лабораторной установки

1-

2-

5.3. Формы осесимметричных колебаний цилиндрической оболочки

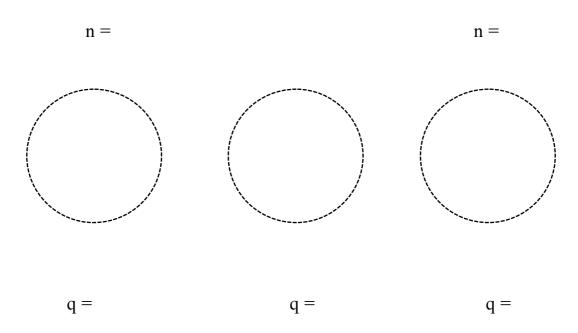


Рис. 5.2. Положение срединной поверхности при некоторых формах радиальных колебаний

Комментарии:

5.4. Исходные данные расчета значений собственных частот (параметры объекта исследования)

Толщина оболочки $\delta = M$. Радиус оболочки r = M. Длина оболочки $\ell = M$. Плотность материала оболочки $\rho = \kappa r/M^3$. Модуль упругости материала оболочки E = IIIа. Коэффициент Пуассона $\mu = III$

5.5. Формула для расчета значений собственных частот колебаний цилиндрической оболочки (в обозначениях пп. 5.4)

Результаты определения значений собственных частот колебаний оболочки

Таблица 5.1

n= q f^{Teop} , Γ ц $f^{\text{ЭКСП}}$, Γ ц Δf , %

2		
3		
4		
5		
6		
7		
8		

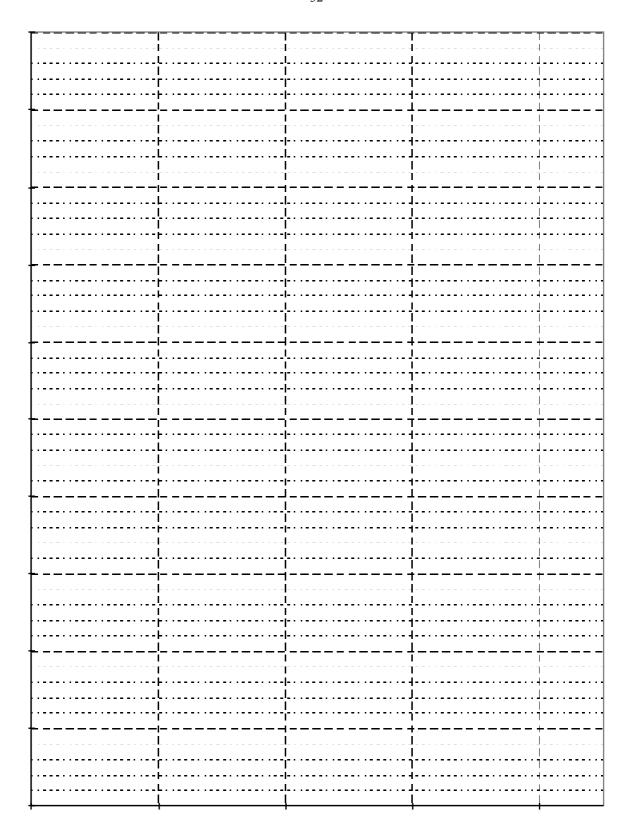


Рис.5.3. Частотные диаграммы

5.6. Выводы

ЛИТЕРАТУРА

1. Основная

Умушкин Б.П., Иванов В.П., Чичков Б.А. Методические указания к выполнению лабораторных работ по дисциплине "Конструкция и прочность авиационных двигателей" для студентов специальности 13.03, обучающихся по направлению 552000, всех форм обучения.-М.: МГТУ ГА, 1996.- 76 с.

2. Дополнительная

- 2.1. Конструкция и прочность авиационных двигателей. Под редакцией Л.П. Лозицкого. М.: "Воздушный транспорт", 1992 г. 536 с.
- 2.2. Скубачевский Г.С. Авиационные газотурбинные двигатели. Конструкция и расчет деталей.-М.: Машиностроение, 1981.-560 с.
- 2.3. Умушкин Б.П. Прочность и динамика узлов авиационных ГТД. Конспект лекций. М.: МГТУ ГА, 1994.-84 с.
- 2.4. Хронин Д.В. Колебания в двигателях летательных аппаратов.-М.: Машиностроение, 1980.-296 с.

Для дополнений