КОНТРОЛЬНОЕ ЗАДАНИЕ

Тема контрольного задания – "Исследование качества процессов в радиотехнической следящей системе при детерминированных и случайных входных воздействиях".

Задана обобщенная структурно-динамическая схема радиотехнической следящей системы (рис.1). На структурной схеме приняты следующие обозначения:

- $\lambda(t)$ задающее воздействие (отслеживаемый параметр входного сигнала);
 - x(t) ошибка слежения;
- F(x) безынерционное нелинейное звено, описывающее дискриминатор;
- $\xi(x,t)$ флюктуационная составляющая напряжения на выходе дискриминатора;
- K(p) операторный коэффициент передачи, описывающий преобразование выходного напряжения дискриминатора, происходящее в фильтре и генераторе опорных сигналов системы;
 - y(t) выходная величина системы.

Характеристика дискриминатора приведена на рис. 2.

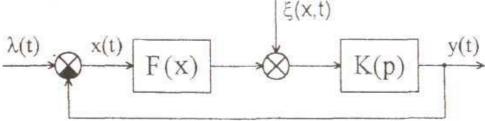


Рис 1. Обобщенная структурно-динамическая схема радиотехнической следящей системы.

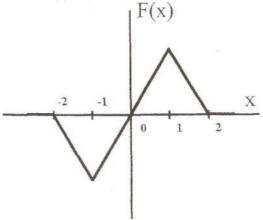


Рис 2. Статическая характеристика дискриминатора

Вид и параметры K(p) выбираются по таблице по последней цифре шифра студента (ПЦ).

	исходные данные		таолица
ПЦ	K(p)	$S_{\xi}(0)$	$\lambda(t)$
0	$\frac{25}{p(0,01p+1)}$	0,5	0,2+0,1t
1	$\frac{15}{(0,2p+1)(0,02p+1)}$	0,3	0,2
2	$\frac{10(0,5p+1)}{p(0,25p+1)}$	0,1	0,5t
3	$\frac{15(0,15p+1)}{p^2}$	0,4	0,5+0,4t
4	$\frac{10}{0,15p+1}$	0,2	0,5
5	$\frac{20}{p}$	0,5	0,5+0,1t
6	$\frac{10(0,2p+1)}{p^2}$	0,3	0,8+0,2t
7	$\frac{25}{p(0,5p+1)}$	0,4	2,0+0,1t
8	$\frac{20}{p+1}$	0,2	0,4
9	$\frac{10}{(0,01p+1)(0,1p+1)}$	0,1	0,8

Исхолные ланные

Таблица

Требуется:

- 1.1 Записать передаточные функции разомкнутой и замкнутой системы для случая линейного режим работы системы и определить устойчивость.
- 1.2 Построить переходную характеристику и определить показатели качества переходного процесса в системе.
 - 1.3 Определить ошибку воспроизведения задающего действия $\lambda(t)$.
- 1.4 Определить дисперсию ошибки системы при воздействии шума $\xi(x,t)$, имеющего равномерный спектр $S_{\varepsilon}(\omega) = S_{\varepsilon}(0)$.
- 1.5 Учитывая нелинейность характеристики дискриминатора, определить максимальную амплитуду входного воздействия λ_{\max} , при которой не происходит срыва слежения.

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОГО ЗАДАНИЯ

К выполнению контрольного задания следует приступать после самостоятельного изучения тем 1...8 учебной дисциплины по рекомендованной литературе.

При работе системы в линейном режиме передаточная функция дискриминатора равняется $K_{\mathcal{A}}(S) = S_{\mathcal{A}} = 1,0$ и передаточная разомкнутой системы записывается в виде:

$$K_p(s) = \prod_{i=1}^n K_i(s)$$

где $K_i(s)$ - передаточные функции звеньев, входящих в контур системы. передаточная функция замкнутой системы по задающему воздействию $\lambda(t)$ записывается в виде:

$$K_{\lambda y}(s) = \frac{K_p(s)}{1 + K_p(s)}$$

Передаточная функция замкнутой системы для ошибки x(t) от воздействия $\lambda(t)$ будет иметь вид:

$$K_{\lambda x}(s) = \frac{1}{1 + K_{D}(s)}$$

Передаточная функция замкнутой системы для ошибки x(t) от воздействия $\xi(t)$ будет равна:

$$K_{\xi x}(s) = \frac{K_{nu}(s)}{1 + K_{p}(s)}$$

где $K_{nu}(s)$ - передаточная функция прямой цепи.

Устойчивость системы следует определить по критерию Гурвица.

Переходная характеристика для системы 1-го порядка с передаточной функцией замкнутой системы

$$K_{\lambda y}(s) = \frac{K_3}{Ts + 1}$$

вычисляется по формуле

$$h(t) = K_3 \left(1 - e^{-\frac{t}{T}} \right)$$

где K_3 - коэффициент передачи замкнутой системы;

Т – постоянная времени замкнутой системы.

Переходная характеристика для системы 2-го порядка с передаточной функцией

$$K_{\lambda y}(s) = \frac{K_3}{T^2 s^2 + 2\xi T s + 1}$$

при условии $0 < \xi < 1$ определяется выражением

$$h(t) = K_3 \left[1 - \frac{1}{\sqrt{1 - \xi^2}} \cdot e^{-\frac{\xi}{T}t} \cdot \sin\left(\frac{\sqrt{1 - \xi^2}}{T}t + arctg\frac{\sqrt{1 - \xi^2}}{\xi}\right) \right]$$

где K_3 - коэффициент передачи замкнутой системы;

Т - постоянная времени замкнутой системы;

 ξ - коэффициент относительного затухания.

Если в выражении (7) $\xi > 1$, то она записывается в виде

$$K_{\lambda x}(s) = \frac{K_3}{(T_1 s + 1)(T_2 s + 1)}$$

где $T_{1,2} = T\xi \pm T\sqrt{\xi^2 - 1}$.

В этом случае h(t) определяется выражением

$$h(t) = K_3 \left(1 - \frac{T_1}{T_1 - T_2} e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} e^{-\frac{t}{T_2}} \right)$$

По графику h(t) необходимо определить время установления переходного процесса t_y и величину перерегулирования δ .

Значение ошибки воспроизведения $\lambda(t)$ определяется по формуле

$$x_{y}(t) = C_{0}\lambda(t) + C_{1}\frac{d\lambda(t)}{dt} + \frac{C_{2}}{2}\frac{d^{2}\lambda(t)}{dt^{2}}$$

где C_i - коэффициенты ошибки от воздействия $\lambda(t)$, которые находятся из выражения (3) по формулам:

$$C_0 = K_{\lambda r}(s)|_{s=0};$$

$$C_1 = \frac{dK_{\lambda x}(s)}{ds}\Big|_{s=0} ;$$

$$\frac{C_2}{2} = \frac{d^2 K_{\lambda x}(s)}{ds} \Big|_{s=0}$$

Коэффициент ошибки можно найти делениями числителя (3) на знаменатель, записанные по возрастающим степеням переменной s.

Дисперсия ошибки от воздействия процесса $\xi(x,t)$ определяется выражением

$$\sigma_x^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{\xi}(\omega) |K_{\xi x}(j\omega)|^2 d\omega$$

где σ_x^2 - дисперсия ошибки;

 $S_{\varepsilon}(\omega)$ - спектральная плотность входного воздействия $\xi(x,t)$;

 $K_{\varepsilon}(j\omega)$ - комплексный коэффициент передачи, получаемый из выражения (4) после подстановки $s = j\omega$.

Интеграл (12) необходимо представить в виде:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{G_n(j\omega)}{H_n(j\omega)H_n(-j\omega)} d\omega = I_n$$

 $G_n(j\omega) = b_0(j\omega)^{2n-2} + b_1(j\omega)^{2n-4} + \dots + a_n$ где

полином, содержащий четные степени ω ;

$$H_n(j\omega) = a_0(j\omega)^n + a_1(j\omega)^{n-1} + ... + a_n$$

полином, корни которого лежат в верхней полуплоскости комплексной переменной ω ; n-степень полинома $H(j\omega)$.

Результаты вычислений интеграла (13) при $n \le 2$ определяются следующими равенствами:

$$I_1 = \frac{b_0}{2a_0a_1}$$
; $I_2 = \frac{-b_0 + a_0b_1/a_2}{2a_0a_1}$

При работе системы в нелинейном режиме крутизна линейного участка дискриминатора $S_1 = 2.0$.

Значение λ_{\max} получается из выражения для ошибки системы $x = \lambda - y$, при этом

$$\lambda_{\text{max}} = x_1 + y = x_1 + x_1 K$$

где x_1 - значение ошибки системы, которому соответствует максимум дискриминационной характеристики

K - коэффициент передачи <math>K(p).