МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Кафедра «Двигатели летательных аппаратов» Шулекин В.Т., Тихонов Н.Д. ПОСОБИЕ по расчёту высотно-скоростных характеристик турбореактивных и турбовальных двигателей по дисциплине «Теория авиационных двигателей» (курсовая работа, часть 2, для студентов специальности 130300 всех форм обучения) **Москва** – 2002

Учебно-методическое пособие по расчёту высотно-скоростных характеристик турбореактивных и турбовальных двигателей воздушных судов гражданской авиации по дисциплине «Теория авиационных двигателей» издаётся в соответствии с рабочей программой этой дисциплины в учебном плане подготовки студентов по специальности 130300 «Техническая эксплуатация летательных аппаратов и двигателей» всех форм обучения. Пособие предназначено для выполнения курсовой работы (часть 2 «Расчёт лётных характеристик авиационных ГТД») по данной дисциплине. Пособие может быть также использовано в дипломных проектах и в научно-исследовательских работах студентов.

В пособии приведены примеры расчёта лётных характеристик турбореактивных и турбовальных двигателей различных схем (ТРД, ТРДФ, ТВД, ветолётный ГТД, ВГТД). Алгоритмы расчёта могут быть реализованы студентами и другими специалистами в программах для компьютера на различных алгоритмических языках (Pascal, Excel и др.).

Пособие рассмотрено и обсуждено на заседании кафедры «Двигатели летательных аппаратов», протокол № 2 от 2 октября 2002 года и на заседании методической комиссии Механического факультета по специальности 130300, протокол № 2 от 12 октября 2002 года.

Рецензент, заведующий кафедрой, профессор, д.т.н. Коняев Е.А.

Содержание	Стр.
Введение	3 - 6
1. Турбореактивные двигатели	
1.1. Одновальный турбореактивный двигатель	
1.2. Двухвальный турбореактивный двигатель	<u> </u>
1.3. Турбореактивный двигатель с форсажной камерой	
2. Турбовальные двигатели	
2.1. Турбовинтвой двигатель	<u> </u>
2.2. Вертолётный ГТД	
2.2.1. Особенности рабочего процесса вертолётных Г	ГД 57 - 64
2.2.2. Расчёт высотно-скоростных характеристик	
вертолётных ГТД	64 -71
2.2.3. Расчёт статического потолка для вертолёта	
2.2.4. Расчёт высоты ограничения мощности вертолёт	<u>тного ГТД 72 - 73</u>
2.2.5. Определение максимальной скорости полёта ве	ртолёта 73 - 79
2.3. Вспомогательный ГТД	80 - 88
Список использованных источников	

Введение

Характеристиками авиационных газотурбинных двигателей (ГТД) называют зависимости тяги P (или мощности N) и удельного расхода топлива $C_{\text{уд}}$ (или C_{e}) от высоты H, скорости полёта V и от режима работы двигателя. Отсюда изменение P (или N) и $C_{\text{уд}}$ (или C_{e}) от H называют высотными, от V – скоростными и от режима работы двигателя (или, что тоже самое от частоты вращения ротора Γ ТД n) – дроссельными характеристиками соответственно. Характеристики P (или N) и $C_{\text{уд}}$ (или C_{e}) от H и V называют высотно-скоростными (BCX) или лётными.

Тяга (или мощность) двигателя и его экономичность ($C_{\text{уд}}$ или $C_{\text{е}}$) при заданных условиях полёта (H и V) и при известных коэффициентах полезного действия (КПД) отдельных элементов ГТД определяются основными параметрами рабочего процесса:

- a) степенью повышения давления воздуха в компрессоре π_{κ}^* :
- б) температурой газа перед турбиной $T_{\scriptscriptstyle \Gamma}^*$:
- в) температурой газа в форсажной камере T_{ϕ}^* (для форсированных ТРД).
- В ГТД величина π_{κ}^* зависит в основном от частоты вращения ротора n . Поэтому

<u>и, T_{Γ}^* и T_{Φ}^* являются регулируемыми параметрами . Изменение названных</u>

параметров двигателя определённым образом на различных режимах работы ГТД составляет содержание закона управления и программы регулирования (дросселирования) двигателя.

Например, при расчёте BCX (переменные H и V) и задании определённого положения рычага управления двигателем (РУД) изменение n, T_{φ}^* и T_{φ}^*

свидетельствует о законе управления (регулирования) ГТД, а при расчёте дроссельных характеристик (неизменные H и V, переменные положения РУД) изменение упомянутых параметров составляет определённую программу регулирования двигателя.

Использование того или иного закона управления ГТД устанавливается условиями эксплуатации воздушного судна. Например, для получения максимальной тяги (или мощности), необходимой для взлёта ВС, рекомендуют следующий закон управления двигателя:

следующий закон управления двигателя:

$$\underline{n = n_{max}} = const; T_{\Gamma}^* = T_{\Gamma \ max}^* = const; T_{\Phi}^* = T_{\Phi \ max}^* = const,$$
(1)

где индекс «max» указывает на максимальный режим работы двигателя.

При наборе высоты полёта ВС согласно Руководству по лётной эксплуатации (РЛЭ) для двигателя рекомендуют следующий закон управления:

$$\underline{n=n_{\text{HoM}}=const;} T_{\Gamma}^* = T_{\Gamma \text{ HOM}}^* = const; T_{\Phi}^* = T_{\Phi \text{ HOM}}^* = const,$$
 (2)

где индекс «ном» соответствует номинальному (максимально продолжительному) режиму работы двигателя.

На крейсерской скорости полёта (на эшелоне $H_{\rm kp}$ и $V_{\rm kp}$) управление ГТД осуществляется по закону, который обеспечивает такое сочетание параметров n,

 $\overrightarrow{T_{r}^{*}}_{\text{d}} \underline{T_{d}^{*}}_{,}$ чтобы достигнуть наилучшей экономичности ($C_{\text{уд кр}}$ =min) (необходимой

для максимальной продолжительности полёта). Режим работы двигателя в полете ВС на эшелоне - крейсерский.

Для реализации заданного закона управления необходимо иметь соответствующие средства воздействия на двигатель, называемые регулирующими факторами. Такими факторами могут быть:

- а) в ТРД расход топлива $G_{\rm T}$; площадь критического сечения реактивного сопла $F_{\text{кр}}$; минимальное сечение межлопаточных каналов первого соплового аппарата турбины («**горло**» двигателя) F_{cal} ; угол поворота направляющих лопаток в компрессоре $\varphi_{\text{на}}$; угол поворота рабочих лопаток вентилятора $\varphi_{\text{рл в}}$ и др.;
 - б) в ТРДФ дополнительно ещё расход топлива в форсажной камере $G_{\text{то}}$;
 - в) в ТВД дополнительно ещё угол установки лопастей воздушного винта фуст.

Причём для независимого изменения всех регулируемых параметров нужно иметь такое же количество регулирующих факторов. Распределение же регулирующих факторов между регулируемыми параметрами может быть различным. В авиационных ГТД часто применяется следующая система воздействий:

$$G_{\scriptscriptstyle \rm T} \Leftrightarrow n; \quad F_{\scriptscriptstyle \rm KP} \Leftrightarrow T_{\scriptscriptstyle \rm \Gamma}^*; \quad G_{\scriptscriptstyle \rm T\varphi} \Leftrightarrow T_{\scriptscriptstyle \varphi}^*; \quad \varphi_{\scriptscriptstyle \rm ycr} \Leftrightarrow n$$
 (3)

Реализация закона управления (1) требует измерения T_r^* , что в ряде случаев представляет определённые трудности ввиду значительной неравномерности температурного поля в радиальном и окружном направлениях, отсутствии надёжной высокотемпературной измерительной аппаратуры и т.д. Кроме того, установка регулируемых выходного сопла и первого соплового аппарата турбины, позволяющих изменять $F_{\rm kp}$ и $F_{\rm cal}$, в ряде случаев оказывается нецелесообразным ввиду сложности и громоздкости органов управления. Поэтому часто в целях упрощения системы автоматического управления (САУ) и, следовательно, повышения надёжной работы двигателя и обеспечения надлежащего уровня

a)
$$n = n_{\text{max}} = const;$$
 $T_{\Gamma}^* = \text{var};$ (4a)

$$6) T_{\underline{\Gamma}}^* = T_{\underline{\Gamma} max}^* = const; n = var$$

$$(46)$$

Как показывают теоретические расчёты, при определённых параметрах рабочего процесса и при дозвуковых скоростях полета ($M_{\rm H}\!\!<\!\!1$) при $F_{\rm Kp}\!\!=\!\!const, F_{\rm cal}\!\!=\!\!const$ сохраняются также постоянными удельная работа компрессора $L_{\rm K}$ и $T_{\rm L}^*$. Например, такое изменение L_{κ} и T_{Γ}^{*} при законе управления (4a) характерно для одновального ТРД при $\pi^*_{\text{к расч}}$ =6...8 (расчётная степень повышения давления в компрессоре на

Отформатировано

Если же ТРД применяется для сверхзвуковых скоростей полета ($M_H > 1.3$), то использование закона управления (4а) нецелесообразно, так как при нерегулируемом выходном сопле ($F_{\text{кp}}$ = const) происходит существенное снижение тяги из-за уменьшения T_r^* или частоты вращения ротора n (при законе управления 4б).

При применении двухвальных ТРД улучшается работа турбокомпрессора на нерасчётных режимах за счёт расширения диапазона устойчивых режимов работы компрессора. Однако такая схема ГТД приводит к появлению ещё одного регулируемого параметра $n_{\rm HI}$ (или $n_{\rm BI}$) — частоты вращения ротора низкого (или высокого) давления, то есть в двухвальных ТРД регулируемыми параметрами являются $n_{\rm H_{Z}}$, $n_{\rm B_{Z}}$ и $T_{\rm E}^{*}$. При неизменной проточной части турбокомпрессора ($F_{\rm cal}$ = const, $F_{ca2} = const$) наличие одного регулирующего фактора приводит к следующим возможным законам управления:

a) $T_{\Gamma}^* = const$; $n_{BJ} = var$; $n_{HJ} = var$	(5a)
$n_{\text{B,I}} = const; T_{\text{F}}^{*} = var; n_{\text{H,I}} = var$	(56)
B) $n_{\rm H,I} = const$; $T_{\rm F} = var$; $n_{\rm B,I} = var$	(5 _B)

Целесообразность использования того или иного закона управления обусловливается целью или назначением летательного аппарата. Например, закон управления (5б) оказывается выгодным для ВС с околозвуковыми скоростями полёта ($M_{\rm H}$ =0.9...0.95).

Для сверхзвуковых скоростей полёта более целесообразным может оказаться закон управления (5в). В этом случае с ростом $M_{\rm H}$ увеличиваются $n_{\rm BH}$ и $T_{\rm F}^*$, что существенно повышает тягу двигателя. Однако при этом необходимо ограничивать T_{Γ}^{*} , чтобы предохранить лопатки первых ступеней турбины высокого давления от «перегрева», то есть перейти на закон управления (5a).

Таким образом, для больших сверхзвуковых скоростей полёта получается комбинированный закон управления (5в и 5а). Закон управления (5а) является промежуточным между законами (5в) и (5б) и часто называется «ограничением по предельной температуре газа».

В форсированных ТРД (ТРДФ) чаще применяется закон управления (1). Однако непосредственное поддержание постоянной T_{ϕ}^* ещё более сложно, чем T_{r}^* . Поэтому у ТРДФ, имеющих на бесфорсажных режимах закон управления (4а), для режимов форсажа применяют:

$$\underline{\pi_{\mathrm{T}}}^* = const; F_{\mathrm{KP}} = const \tag{6}$$

<u>при включении форсажной камеры; $T_{\underline{\text{\tiny T}}}^*$ - температура газа за турбиной. При этом величина $T_{\underline{\text{\tiny \Phi}}}^*$ с достаточной степенью точности сохраняется постоянной.</u>

Для небольших скоростей полёта ($M_{\rm H}$ =0.6...0.7) применяют турбовинтовые двигатели (ТВД). Регулирующими факторами в ТВД обычно являются: G_{τ} – расход топлива и фуст – угол установки лопастей воздушного винта, а регулируемыми

параметрами n и $T_{\underline{\Gamma}}^*$. На всех отечественных ТВД (НК-12, АИ-20, АИ-24 и др.), а также на большинстве зарубежных ТВД применяется закон управления: n = const; $T_{\underline{\Gamma}}^* = var$, (7) а после, так называемой высоты $H_{\underline{orp}}$ и скорости $V_{\underline{orp}}$ ограничения винтовой мощности n = const; $T_{\underline{\Gamma}}^* = T_{\underline{\Gamma} \ max}^* = const$ (8)

Постоянство частоты вращения ротора ТВД имеет следующие преимущества: упрощается система автоматического управления; обеспечивается приемлемая экономичность двигателя на дроссельных режимах; уменьшается опасность возникновения резонансных колебаний вала и лопаток; увеличивается запас устойчивости компрессора на пониженных режимах работы двигателя; улучшается приёмистость ГТД и др. К недостаткам этого закона управления следует отнести требование большого диапазона изменения $\phi_{\text{уст}}$ (сложная конструкция воздушного винта), а также то, что двигатель в течение большей части периода эксплуатации должен работать на максимальной частоте вращения ротора ГТД.

Важное место в гражданской авиации занимают вертолётные ГТД. Они выполняются по двухвальной схеме со свободной турбиной, от которой осуществляется через главный редуктор привод несущего (НВ) и рулевого винта (РВ). Управление двигателем в данном случае производится в зависимости от положения НВ и условий эксплуатации вертолёта. Для турбокомпрессора обычно принимают закон управления $n_{\text{тк}}$ =const (обеспечивается подачей топлива в камеру сгорания $G_{\text{т}}$), а силовая турбина управляется в зависимости от положения рычага общего шага (РОШ).

Большое распространение получили в гражданской авиации вспомогательные ГТД (ВГТД). Входящие в состав вспомогательных силовых установок (ВСУ), они на воздушных судах обеспечивают: запуск основных (маршевых) двигателей ВС; питание системы кондиционирования (СКВ) сжатым воздухом; питание бортовой сети ВС электроэнергией переменного и постоянного токов и др. В связи с приводом электрогенератора переменного тока и удовлетворения требований стабильности его выходных параметров независимо от внешних и внутренних воздействий в ВГТД применяется закон и программа регулирования: $n_{\text{физ}} = const; T_{\Gamma}^* = var$ (9)

Обычно расчёт высотно-скоростных характеристик авиационных ГТД включает решение следующих задач:

- 1. Выбор и обоснование закона управления двигателя. В учебной практике для этих целей используется задание двигателя прототипа, который устанавливается на конкретных воздушных судах.
- 2. Определение (или задание) характеристик отдельных элементов двигателя (входного устройства, компрессора, камеры сгорания, турбины, выходного сопла, камеры смешения, форсажной камеры, редуктора, генератора, воздушного винта и др.).
- 3. Газодинамический расчёт двигателя в условиях старта воздушного судна (H=0, V=0) на взлётном режиме работы $\Gamma T \underline{\Pi}$.
- 4. Составление системы уравнений совместной работы элементов ГТД для нерасчётных режимов работы двигателя.

- 5. Расчёты ГТД на различных скоростях и высотах полёта с целью определения тяги (или мощности) и удельного расхода топлива.
 - 6. Построение эксплуатационных ограничений.
 - 1. Примеры расчёта высотно-скоростных характеристик авиационных ГТД.
 - 1.1. Одновальный турбореактивный двигатель.

Для расчёта высотно-скоростных характеристик ТРД необходимо иметь (или задать) характеристики отдельных элементов двигателя:

а) входное устройство

 $\underline{\sigma}_{\text{BX}} = \underline{\sigma}_{\text{BX}}(\underline{M}_{\text{H}});$

Отформатировано

Отформатировано

б) компрессор

1. Нерегулируемый компрессор. Закон управления n=const, $F_{\rm kp}=const$.

Изменение степени повышения давления в компрессоре π^*_{κ} и адиабатического КПД η_{κ}^* от приведенной частоты вращения $n_{\rm np}$ для различных значений π_{κ}^* расч приведено в работе [2]. В данной работе эти зависимости представляются в виде

$$\frac{}{\pi_{K}^{*}} = a_{1} \frac{-3}{n_{\Pi p}} + a_{2} \frac{-2}{n_{\Pi p}} + a_{3} \frac{-2}{n_{\Pi p}} + a_{4}$$

$$\underline{\underline{\Gamma_{ME}}} \bar{n}_{np} = \frac{\frac{n}{\sqrt{T_{\rm H}^*}}}{\frac{n_{\rm pacu}}{\sqrt{T_{\rm H}^*}\,{\rm pacu}}} = \sqrt{\frac{T_{\rm H}^*\,{\rm pacu}}{T_{\rm H}^*}} = \sqrt{\frac{288}{T_{\rm H}^*}}; \quad \overline{\pi_{\rm K}^*} = \frac{\pi_{\rm K}^*}{\pi_{\rm K}\,{\rm pacu}}; \quad \overline{\eta_{\rm K}^*} = \frac{\eta_{\rm K}^*}{\eta_{\rm K}\,{\rm pacu}}; \quad \overline{\eta_{\rm K}^*} = \frac{\eta_{\rm K}^*}{\eta_{\rm K}\,{\rm pacu}};$$

принят закон управления n = const.

Значения коэффициентов полиномов приведены в таблице 1.1. При π^*_{κ} , отличных от указанных в этой таблице, значения коэффициентов полиномов определяются линейной интерполяцией с соблюдением условия, что при

 $n_{\text{ПD}} = 1.0$ сумма коэффициентов равна единице.

Отформатировано

Отформатировано

2. Регулируемый компрессор:

при *n* ≤1.0

$$\frac{\overline{\pi_{\kappa}^{*}} = 2.5 \cdot \overline{n} - 1.5}{\overline{\pi_{\kappa}^{*}} = 3.2 \cdot \overline{n} - 2.2} (при \pi_{\kappa pacy}^{*} = 6...10)$$

$$\overline{\pi_{\kappa}^*} = 3.2 \cdot \overline{n} - 2.2$$
(при $\pi{\kappa \text{ pacy}}^* = 11...20$)

при n > 1.0

$$\overline{\pi_{\kappa}^*} = 2.1 \cdot \overline{n} - 1.1_{-} ($$
при $\pi_{\kappa \text{ pacy}}^* = 6...20)$

$$\frac{}{\overline{\eta_{\kappa}^{*}}} = -0.9 + 4.2 \cdot \overline{n} - 2.3 \cdot \overline{n}^{2}$$
 (при $\pi_{\kappa \text{ pacy}}^{*} = 6...20$)

Таблица 1 1

					Таолица 1.	<u>1</u>			
* ик расч	Параметр	$\underline{a_1}$	a ₂ ,	a_3	_			- - 0:	гформатировано
					<u>a</u> 4	#======		. >	гформатировано
_2	*	<u>-1.745</u>	3.445	<u>-0.935</u>	0.235			\sim	<u> </u>
	π_{K}						,	\rightarrow	тформатировано
<u>4</u>	/_	<u>-5.448</u>	<u>13.443</u>	<u>-9.367</u>	<u>2.372</u>			0	тформатировано
<u>6</u>	/_	<u>-9.924</u>	<u>25.448</u>	<u>-19.678</u>	<u>5.154</u>				
<u>8</u>	/_	<u>-12.929</u>	<u>33.395</u>	<u>-26.373</u>	<u>6.907</u>				
<u>10</u>	<u>-/-</u>	<u>-14.72</u>	<u>38.325</u>	<u>-30.694</u>	<u>8.089</u>				
<u>12</u>	/_	<u>-19.941</u>	<u>52.680</u>	<u>-43.577</u>	<u>11.838</u>				
<u>14</u>	<u>-/-</u>	<u>-20.32</u>	<u>53.885</u>	<u>-44.689</u>	<u>12.124</u>				
<u>16</u>	/_	<u>-21.898</u>	<u>58.617</u>	<u>-49.235</u>	<u>13.516</u>		-		
*	Параметр	<u></u>	<u></u>	<u></u>	<u>C4</u>	<u></u>		O	тформатировано
πк расч							"") O	тформатировано
_2	*	<u>22.3</u>	<u>-81.1</u>	108.2	<u>-62.9</u>	<u>14.5</u>	'\	<u>`</u> `(0:	тформатировано
	η_{K}							_\ O	тформатировано
<u>4</u>	/_	<u>24.9</u>	<u>-90.1</u>	<u>119.3</u>	<u>-68.5</u>	<u>15.4</u>		0	тформатировано
<u>6</u>	/_	<u>23.2</u>	<u>-83.5</u>	<u>109.0</u>	<u>-61.1</u>	<u>13.4</u>			
<u>8</u>	/_	<u>26.4</u>	<u>-93.4</u>	<u>119.5</u>	<u>-65.2</u>	<u>13.7</u>			
<u>10</u>	/_	<u>40.9</u>	<u>-145.0</u>	<u>186.9</u>	<u>-103.4</u>	<u>21.6</u>			
<u>12</u>	/_	<u>56.2</u>	<u>-200.8</u>	<u>262.1</u>	<u>-147.6</u>	<u>31.1</u>			
<u>14</u>	/_	<u>78.2</u>	<u>-282.3</u>	<u>373.8</u>	<u>-214.5</u>	<u>45.8</u>			
16	-/-	103.7	-376.4	502.0	-290.6	62.3			

С полученными значениями π_{κ}^{*} и η_{κ}^{*} далее рассчитываются:

- относительное изменение удельной работы компрессора

$$\overline{L_k} = \frac{L_k}{L_{k \ pacu}},$$

$$_{\underline{\text{где}}}\,L_{\mathbf{k}} = c_{\mathbf{p}}T_{\mathbf{h}}^{*}(\pi_{\kappa}^{\frac{\kappa-1}{\kappa}}-1)/\eta_{\kappa}^{*};\,L_{\kappa\,\,\mathrm{pacu}} = c_{\mathbf{p}}T_{\,\mathrm{H}\,\,\mathrm{pacu}}^{*}(\pi_{\kappa\,\,pacu}^{\frac{\kappa-1}{\kappa}}-1)/\eta_{\kappa\,\,\mathrm{pacu}}^{*}$$

 $\overline{\overline{T}_{_{\Gamma}}^{*}}=\overline{L_{k}}$

$$\overline{T_{\Gamma}^*} = \overline{L_k}$$

Отформатировано

 $\underline{\eta}_{\Gamma} = const, \, \underline{\sigma}_{KC} = const.$

Отформатировано

Отформатировано

```
Принимается, что параметр расхода газа через первый сопловой аппарат
                               и адиабатический КПД по параметрам заторможенного потока \eta_{\rm T}^*
 не меняются по режимам полёта, то есть:
      д) реактивное сопло
                                                                                                                                                                 Отформатировано
      Принимается, что коэффициент скорости в выходном сопле не меняется по
режимам полёта: \phi_c = const.
       е) система отбора мощности от турбины двигателя
       Мощность, отбираемая от турбины, на привод вспомогательных агрегатов
 (топливных и масляных насосов, генератора и др.), а также для преодоления трения
 в опорах ротора двигателя учитывается механическим КПД пмех, величина которого
 сохраняется постоянной на всех режимах полёта: \eta_{\text{mex}} = const.
       Исходными данными для выполнения расчёта высотно-скоростных
 характеристик одновального ТРД (рис.1.1) являются результаты газодинамического
 расчёта, приведенные в работе [1]:
      - тяга двигателя P=100 кH; - общая степень повышения давления воздуха в
компрессоре \pi_{\kappa\Sigma}^* = 15 ; - температура газа перед турбиной T_{\rm g}^* = 1370 K; - прототип
 двигатель РД-3M-500.
      Основные данные элементов проектируемого одновального ТРД:
    а) входное устройство
p_{\text{H}}=1.01325*10^{5} \text{ H/m}^{2}; T_{\text{H}}=288.15 \text{ K}; p_{\text{H}}^{*}=1.01325*10^{5} \text{ H/m}^{2}; T_{\text{H}}^{*}=288.15 \text{ K}; \sigma_{\text{nv}}=0.99:
                                                                                                                                                                 Отформатировано
 p_{B}^{*}=1.00312*10^{5} \text{ H/m}^{2}; T_{B}^{*}=288.15 \text{ K}; \overline{M_{H}=0};
      б) компрессор
p_{B}^{*}=1.00312*10^{5} \text{ H/m}^{2}; T_{B}^{*}=288.15 \text{ K}; c_{B}=200.3 \text{ m/c}; \lambda_{B}=0.6448; q(\lambda_{B})=0.8500;
F_{\text{\tiny B}} = 0.6114 \text{ M}^2; \pi_{\text{\tiny K}}^* = 15; \eta_{\text{\tiny O}} = 0.9; \eta_{\text{\tiny K}}^* = 0.857; p_{\text{\tiny K}}^* = 15.0468 \times 10^5 \text{ H/m}^2; T_{\text{\tiny K}}^* = 680.74 \text{ K}; c_{\text{\tiny K}} = 100
м/с; \lambda_{\kappa}=0.2095; g(\lambda_{\kappa})=0.3244; F_{\kappa}=0.16416 м<sub>2</sub>; G_{e}=124.07 кг/с; L_{\kappa}=394356 Дж/кг;
\underline{T_{\underline{r}}^*} = 1370 \text{ K; } \underline{c_{\underline{n}}} = 1.2421 \text{ } \frac{\kappa \text{Дж}}{\kappa \text{г·-K}} : \underline{q_{\mathtt{BH}}} = 856.113 \text{ кДж/кг; } \underline{G_{\underline{r}}} = 8538 \text{ кг/ч; } \underline{g_{\underline{r}}} = 0.02006;
\underline{R_r} = 287.5 \frac{\mathrm{J/m}}{\mathrm{Kr} \cdot \mathrm{K}} : \underline{T_{\kappa}}^* = 680.74 \mathrm{K}; \underline{p_r}^* = 14.44489 * 10^5 \mathrm{H/m}^2; \underline{\sigma_{\kappa c}} = 0.96; \underline{\eta_r} = 0.99;
\frac{r) \text{ туроина}}{p_{_{\perp}}^*=14.44489*10^5 \text{ H/m}^2; \ T_{_{\perp}}^*=1370 \text{ K}; \ L_{_{\perp}}=407847 \ \ \text{Дж/кг}; \ g_{_{\text{ОХЛ}}}=0.027; \ g_{_{\text{ОТБ}}}=0.02; \ g_{_{\parallel}}=0.9718; \ \eta_{_{\text{Mex}}}=0.995; \ \pi_{_{\perp}}^*=3.712; \ \eta_{_{\perp}}^*=0.925; \ p_{_{\perp}}^*=3.8917*10^5 \ \text{H/m}^2; \ c_{_{\text{DT}}}=1.117 \ \text{кДж/(кг.K)}; \ c_{_{\text{DB}}}=1.062 \ \text{кДж/(кг.K)}; \ a=\frac{c_{_{\text{DT}}}g_{_{\text{T}}}T_{_{\text{T}}}^*+c_{_{\text{DB}}}g_{_{\text{ОХЛ}}}T_{_{\text{K}}}^*}{g_{_{\text{T}}}+g_{_{\text{OХЛ}}}}=807.99;
 T^{*}_{T} = 1018.0 \text{ K}; T^{*}_{T} = 1009.4 \text{ K};
```

д) выходное сопло

Располагаемая степень понижения давления π_{cp} =3.841. При полном расширении газа (p_c = p_H) проточная часть реактивного сопла представляется суживающегося+ +расширяющегося типа. Основные данные сопла с полным расширением: c_c =806.7 м/с; ϕ_c =0.99; p_c =1.01325*10⁵ H/м²; T_c =728.5 K; ϕ_c =0.4838 кг/м³; λ_c =1.4016; $\gamma(\lambda_c)$ =3.0846; $\gamma(\lambda_c)$ =3.0

Для проектируемого ТРД принимается закон управления n=const. Критическая площадь сечения сопла не меняется по режимам полета, то есть $F_{\rm kp}$ =const. На основании уравнения совместной работы турбины и выходного сопла принимается

Рис.1.1. Схема одновального турбореактивного двигателя:

- 1 входное устройство для дозвуковых скоростей полёта; 2 компрессор;
- 3 камера сгорания; 4 турбина; 5 выходное сопло суживающегося типа;
- н, вх, в, к, г, т, с обозначения контрольных сечений потока воздуха и газа;
- $G_{\text{т}}$ расход воздуха, кг/с; V скорость полёта воздушного судна; $c_{\text{с}}$ скорость истечения газа из выходного сопла

Отформатировано

на всех режимах полёта $\pi_{\underline{\tau}}^*$ =const. Отсюда уравнение совместной работы элементов газогенератора на нерасчётных режимах работы двигателя определяется уравнением

$$\frac{\pi_{\rm K}^*}{q(\lambda_{\rm B})} = C \sqrt{\frac{\pi_{\rm K}^{-1}}{\pi_{\rm K}^*} - 1 \over \eta_{\rm K}^*} \underline{\quad \text{или} \quad} \frac{\pi_{\rm K}^*}{q(\lambda_{\rm B})} = C \sqrt{\pi_{\rm K}^* \frac{n_{\rm C} - 1}{n_{\rm C}}} - 1 \underline{\quad \text{, где $n_{\rm C}$ -- показатель политропы}}$$

находится из соотношения:

$$\frac{\kappa - 1}{\kappa \eta_O} = \frac{n_{\rm c} - 1}{n_{\rm c}}; n_{\rm c} = 1.4651$$

Таким образом, константа данного уравнения равна:

$$\frac{15}{0.85} = C\sqrt{15} \frac{1.4651 - 1}{1.4651} - 1; \quad C = 15.119$$

В расчетах высотно-скоростных характеристик одновального ТРД принимается, что двигатель работает на H=0 на максимальном режиме, при H>0 – на максимальном продолжительном (номинальном) режиме ($n_{\text{ном}}$ =(0.95...0.97) n_{max}), а при H=11 км – на крейсерском режиме ($n_{\text{кр}}$ =(0.78...0.88) n_{max}). Порядок расчёта и результаты приведены в таблице 1.2.

В случае установки на двигатель суживающегося сопла, как, например, у ТРД РД-3М-500, при сверхкритических перепадах давления в таком сопле

$$(\underline{\pi_{\rm cp}} \ge \pi_{\rm KP} = (\frac{\kappa_{\Gamma} + 1}{2})^{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}} = 1.8506$$
) происходит неполное расширение газа ($p_{\rm c} > p_{\rm H}$).

Соответственно, для такой схемы сопла имеет место «недобор тяги», величина которого зависит от располагаемой степени понижения давления в реактивном сопле $\pi_{\rm cp}$. Порядок расчёта высотно-скоростных характеристик одновального ТРД с суживающимся соплом приведен в таблице 1.3. В этой таблице позиции 1-34 совпадают с таблицей 1.2.

В случае использования одновального ТРД для обеспечения сверхзвуковых скоростей полёта воздушного судна применяется закон управления двигателя n_{max} =const, $T^*_{\Gamma max}$ =const. Однако при дозвуковых скоростях полёта $(T^*_{\perp} < T^*_{\perp pacq} = 288.15 \text{ K})$ возможна неустойчивая работа компрессора $(n_{\Pi p} > 115 \%)$ и поэтому при расчёте лётных характеристик режим работы двигателя понижается. Принимается также для данного закона управления ТРД, что адиабатическая работа сжатия в компрессоре не меняется по режимам полёта, то есть:

$$L_{\mathrm{K} \ \mathrm{ad}}^* = c_{\mathrm{pB}} T_{\mathrm{B} \ \mathrm{pacu}}^* (\pi_{\mathrm{K} \ \mathrm{pacu}}^{*-1} - 1) = const$$
 или при $c_{\mathrm{pB}} = const$ $T_{\mathrm{B} \ \mathrm{pacu}}^* (\pi_{\mathrm{K} \ \mathrm{pacu}}^{*-1} - 1) = C_1; \quad C_1 = 288.15 \cdot (15^{0.4/1.4} - 1) = 336.511$

Критерием выбора режима работы двигателя в дозвуковом полёте принимается максимально возможная относительная плотность тока на входе в компрессор $[q(\lambda_{\text{в max}})\approx 0.95]$. Порядок расчёта высотно-скоростных характеристик одновального ТРД для принятого закона управления и результаты приведены в таблице 1.4.

На основании полученных результатов вычерчиваются зависимости тяги и удельного расхода топлива от скорости полета при варьировании высоты (скоростные характеристики ТРД), а затем теже зависимости от высоты полета при варьировании скорости (высотные характеристики ТРД). На полученные зависимости наносятся эксплуатационные ограничения по устойчивой работе компрессора ($\pi^*_{\text{квд max}}$ =(1.05...1.15) $\pi^*_{\text{квд расч}}$), по прочности лопаток компрессора ВД

 $(p_{\underline{\kappa} \, max}^* = (1.05...1.15) \, p_{\underline{\kappa} \, pacu}^*)$, по устойчивой работе камеры сгорания ($\alpha_{\underline{\Sigma}} \le 1.8...2.2$). Далее осуществляется анализ протекания высотно-скоростных характеристик ТРД, отмечаются их характерные особенности и изучаются причины этих особенностей.

Таблица 1.2
Высотно-скоростные характеристики одновального ТРД при полном расширении в выходном сопле

В ВЫХОДНОМ СОПЛЕ												
<u>№</u>	Наименование параметра,	$M_{\scriptscriptstyle m H}$	Выс	<u>сота полёта.</u>	KM							
<u>п/п</u>	расчётная формула		0	<u>4</u>	<u>6</u>	8	<u>11</u>					
<u>1</u>	2	<u>3</u>	<u>4</u>	5	<u>6</u>	7	<u>8</u>					
	Температура наружного возду	<u>0.00</u>	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>					
	ха по ГОСТ 4401-81	<u>0.20</u>	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>					
<u>1</u>		0.40	288.15	<u>262.15</u>	249.15	236.15	216.65					
	$T_{\rm H} = 288.15 - 6.5 \cdot H$	0.60	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	236.15	<u>216.65</u>					
		0.80	288.15	<u>262.15</u>	249.15	236.15	216.65					
		1.00	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>					
	Давление наружного воздуха	0.00	1.0132	0.6126	0.4674	0.3514	0.2222					
	по ГОСТ 4401-81	0.20	1.0132	0.6126	0.4674	0.3514	0.2222					
	$p_{\rm H} = 1.01325 \cdot (1 -$	<u>0.40</u>	1.0132	<u>0.6126</u>	<u>0.4674</u>	0.3514	0.2222					
_2	- 11	0.60	1.0132	0.6126	0.4674	0.3514	0.2222					
	$\left(-\frac{H}{44.368}\right)^{5.2532} \cdot 10^5, \frac{H}{M^2}$	0.80	<u>1.0132</u>	<u>0.6126</u>	<u>0.4674</u>	<u>0.3514</u>	0.2222					
	$-\frac{1}{44.368}$, 10, $\frac{1}{2}$	1.00	1.0132	0.6126	0.4674	0.3514	0.2222					
d	M											
	T	0.00	288.15	262.15	249.15	226.15	216.65					
	Температура торможения на	0.00				236.15	216.65					
	входе в двигатель	0.20	<u>290.46</u>	264.25	251.14	238.04	218.38					
3	* 1 2	0.40	297.37 308.90	270.54	257.12	<u>243.71</u>	223.58					
	$T_{\rm H}^* = T_{\rm H} (1 + \frac{\kappa - 1}{2} M_{\rm H}^2)$	0.60	308.90 325.03	281.02	<u>267.09</u>	<u>253.15</u>	232.25					
		0.80		<u>295.71</u>	281.04	266.38	244.38					
	П	1.00	<u>345.78</u>	314.58	<u>298.90</u>	283.38	<u>259.98</u>					
	Полное давление воздуха на	0.00	1.0132	0.6126	0.4674	0.3514	0.2222					
	входе в двигатель	0.20	1.0419	0.6300	0.4806	0.3614	0.2285					
4	$*$ $T_{\text{H}}^* = \frac{K}{1}$	0.40	1.1313	0.6840	0.5219	0.3924	0.2481					
	$p_{\rm H}^* = p_{\rm H} (\frac{T_{\rm H}^*}{T_{\rm H}})^{\frac{\kappa}{\kappa-1}} \cdot 10^5, \Pi a$	0.60	1.2924	0.7814	0.5962	0.4483	0.2834					
	H	0.80	1.5445	0.9339	0.7125	0.5357	0.3387					
	Томичения	1.00	<u>1.9180</u>	<u>1.1597</u>	0.8847	0.6653	<u>0.4206</u>					
	Температура заторможенного	0.00	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	236.15	216.65					
5	потока воздуха на входе в	0.20	<u>290.46</u>	264.25	251.14	238.04	218.38					
	* *	0.40	<u>297.37</u>	270.54	<u>257.12</u>	<u>243.71</u>	223.58					
	$T_{\rm B}^* = T_{\rm H}^*$	0.60	308.90	281.02	<u>267.09</u>	<u>253.15</u>	232.25					
		0.80	325.03	295.71	281.04	<u>266.38</u>	244.38					
-	V-11	1.00	345.78	314.58	298.90	283.38	<u>259.98</u>					
	Коэффициент восстановления	0.00	0.990	0.990	0.990	0.990	0.990					
	полного давления во входном	0.20	0.983	0.983	0.983	0.983	0.983					
6	<u>устройстве</u>	0.40	0.977	0.977	0.977	0.977	0.977					
<u>6</u>		0.60	0.970	0.970	0.970	0.970	0.970					
<u> </u>		<u>0.80</u>	<u>0.964</u>	<u>0.964</u>	<u>0.964</u>	<u>0.964</u>	0.964					

$\sigma_{\rm BX} = \sigma_{\rm BX \ pacu} - 0.033 M_{\rm H}$	1.00	0.957	0.957	0.957	0.957	0.957
Полное давление на входе в	0.00	1.0031	0.6065	0.4627	0.3479	<u>0.2200</u>
компрессор	0.20	1.0246	0.6195	0.4726	0.3554	0.2247
$n - n = 10^5 \text{ H/s}^2$	0.40	1.1051	0.6682	0.5098	0.3833	0.2423
 $p_{\rm B} = p_{\rm H} \sigma_{\rm BX} = 10^5 {\rm H/M^2}$	0.60	1.2539	0.7581	0.5784	0.4349	<u>0.2750</u>
	0.80	1.4883	0.8999	0.6865	0.5162	0.3264
	<u>1.00</u>	1.8355	<u>1.1098</u>	<u>0.8467</u>	0.6367	<u>0.4025</u>

Продолжение табл.1.2

	<u>Продолжение табл.1.2</u>										
1	2	_3	4	5	<u>6</u>		8				
	Режим работы двигателя:	0.00	1.0000	0.9500	0.9500	0.9500	0.8500				
	<u>B=1.00 – взлётный</u>	0.20	1.0000	0.9500	0.9500	0.9500	0.8500				
	<u> В=0.95 – номинальный</u>	0.40	1.0000	0.9500	0.9500	0.9500	0.8500				
8	<u>В=0.85 – крейсерский</u>	0.60	1.0000	<u>9.9500</u>	0.9500	0.9500	0.8500				
		0.80	1.0000	0.9500	0.9500	0.9500	0.8500				
		1.00	1.0000	0.9500	0.9500	0.9500	0.8500				
	Относительное изменение при-	0.00	1.0000	0.9960	1.0079	1.0162	0.9874				
	веденной частоты вращения	<u>0.20</u>	0.9960	0.9920	1.0047	1.0168	0.9851				
	ротора двигателя	0.40	0.9844	<u>0.9871</u>	0.9982	1.0090	0.9851				
9	*	0.60	0.9856	0.9833	0.9867	1.0015	0.9747				
	$\frac{1}{R} = R \frac{I_{\text{H}}}{I_{\text{pacy}}}$	<u>0.80</u>	<u>0.9719</u>	0.9694	0.9833	0.9881	<u>0.9607</u>				
	$\overline{n}_{\text{пр}} = B \sqrt{\frac{T_{\text{H pacy}}^*}{T_{\text{H}}^*}}$	1.00	0.9540	0.9518	0.9665	<u>0.9811</u>	0.9425				
	Степень повышения давления	0.00	15.000	14.808	15.682	16.556	14.053				
	воздуха в компрессоре	0.20	14.809	14.618	15.554	16.425	13.866				
	* _	0.40	14.250	14.061	15.179	16.039	13.318				
10	$\pi{\mathbf{K}} = f(n_{\mathbf{\Pi}\mathbf{p}})$	0.60	13.360	13.174	14.364	15.427	12.446				
		0.80	12.195	12.014	13.173	14.427	11.303				
		1.00	10.818	10.642	11.766	12.982	9.954				
	Относительная плотность тока	0.00	0.8500	0.8421	0.8779	0.9144	0.8109				
	на входе в компрессор	0.20	0.8422	0.8343	0.8727	0.9080	0.8031				
<u>11</u>	*	0.40	0.8190	0.8112	0.8573	0.8924	0.7802				
	$q(\lambda_{\rm R}) = \frac{\kappa_{\rm K}}{}$	0.60	0.7819	0.7741	0.8238	0.8675	0.7433				
	$n_{\rm c}$ -1	0.80	0.7326	0.7249	0.7741	0.8264	0.6943				
	$q(\lambda_{\rm B}) = \frac{\pi_{\rm K}}{15.119 \sqrt{\pi_{\rm K}^* \frac{n_{\rm C} - 1}{n_{\rm C}} - 1}}$	1.00	0.6732	0.6656	0.7143	0.7660	0.6353				
		0.00	0.6440	0.6255	0.6002	0.7210	0.6001				
	Приведенная скорость на вхо-	0.00	0.6448	0.6355	0.6802	0.7310	0.6001				
	де в компрессор $\lambda_{\rm B}$ из таблиц	0.20	0.6355	0.6262	0.6733	0.7229	0.5917				
12	газодинамических функций по	0.40	0.6091	0.6003	0.6538	0.7000	0.5679				
12	значению $q(\lambda_{\rm B})$	0.60	0.5696	0.5618	0.6143	0.6665	0.5316				
		0.80	0.5215	0.5144	0.5616	0.6172	0.4868				
	Commence	1.00	0.4685	0.4619	0.5046	<u>0.5537</u>	0.4365				
	Скорость воздуха на входе в	0.00	200.3	188.3	196.5	<u>205.5</u>	161.6				
	компрессор	0.20	198.2	186.3	195.3	204.1	160.0				
13	$c_{\rm B} = \lambda_{\rm B} \sqrt{\frac{2\kappa R T_{\rm B}^*}{\kappa + 1}} $ M/C	0.40	192.2 183.2	180.7	191.8	199.9	155.4				
13	$c_{\rm B} = \lambda_{\rm B} \sqrt{\frac{B}{\kappa + 1}} \cdot \frac{M/C}{\kappa}$	0.60		<u>172.3</u>	183.7	194.0	148.2				
		0.80 1.00	172.0 159.4	161.9 149.9	172.3 159.7	184.3 170.6	139.3 128.8				
	Тампаратура торможения не	0.00	<u>139.4</u> <u>680.7</u>	616.8	597.0	575.6	501.3				
	Температура торможения на	0.00	683.4	619.2	600.2	578.8	503.2				
	выходе из компрессора	0.40									
		<u>0.40</u>	<u>691.2</u>	<u>626.1</u>	<u>609.7</u>	<u>588.1</u>	<u>508.6</u>				

<u>14</u>	$n_{\mathbf{C}}$ -1	<u>0.60</u>	<u>703.4</u>	<u>637.1</u>	<u>622.4</u>	<u>603.4</u>	<u>517.1</u>
		0.80	<u>719.0</u>	<u>651.0</u>	<u>637.1</u>	<u>621.6</u>	<u>527.7</u>
	* * * *	1.00	736.4	666.5	653.9	639.5	<u>539.2</u>
	$T_{\rm K}^{\prime} = T_{\rm B}^{\prime} \pi_{\rm K}^{\prime}$						

Продолжение табл.1.2

					Продо	олжение з	<u>габл.1.2</u>
1	2	_3	4	5	<u>6</u>		_8
	Адиабатический КПД	0.00	0.857	0.857	0.856	0.855	0.858
	компрессора	0.20	0.857	0.858	<u>0.857</u>	0.856	0.859
	<u>κ−1</u>	0.40	0.858	0.858	0.857	<u>0.856</u>	0.859
<u>15</u>	* K	0.60	0.859	0.859	0.858	0.857	0.860
	$n_{rr}^* = \frac{\pi_K}{1} - 1$	0.80	0.861	0.861	0.859	0.858	0.862
	T_{κ}^*	1.00	0.863	0.863	0.861	0.860	0.864
	- K -1						
	$\eta_{K}^{*} = \frac{\frac{\kappa - 1}{\kappa} - 1}{\frac{T_{K}^{*} - 1}{T_{B}^{*}}}$						
	Полное давление на выходе	0.00	15.046	8.8910	7.2562	5.7603	3.0914
	из компрессора	0.20	15.173	9.0557	7.3512	5.8370	3.1156
	$p_{\rm K}^* = p_{\rm B}^* \pi_{\rm K}^* \frac{*10^5 {\rm H/M}^2}{}$	0.40	15.747	9.3949	7.7376	6.1479	3.2275
<u>16</u>	$p_{\rm K} = p_{\rm B} \pi_{\rm K} \frac{*10^{\circ} \text{ H/M}}{}$	0.60	16.752	9.9879	8.3078	6.7092	3.4222
		0.80	18.149	10.810	9.0436	7.4475	3.6891
		1.00	19.856	11.810	9.9625	8.2652	4.0065
	Удельная работа сжатия в	0.00	<u>396356</u>	<u>356232</u>	<u>349386</u>	<u>341026</u>	<u>285972</u>
	компрессоре	0.20	<u>394715</u>	<u>356526</u>	<u>350611</u>	<u>342282</u>	<u>286104</u>
<u>17</u>	, к р _{(Т} * _Т * Дж	<u>0.40</u>	<u>395577</u>	<u>357210</u>	<u>354197</u>	<u>345965</u>	<u>286332</u>
	$L_{K} = \frac{\kappa}{\kappa - 1} R(T_{K}^{*} - T_{B}^{*}), \frac{\mathcal{J}_{K}}{\kappa \Gamma}$	0.60	<u>396295</u>	<u>357689</u>	<u>356871</u>	<u>351831</u>	<u>286138</u>
		<u>0.80</u>	<u>395763</u>	<u>356943</u>	<u>357689</u>	<u>356790</u>	<u>284632</u>
		<u>1.00</u>	<u>392351</u>	<u>353465</u>	<u>356546</u>	<u>357682</u>	<u>280488</u>
	Относительное изменение	0.00	<u>1.000</u>	<u>0.903</u>	<u>0.886</u>	<u>0.865</u>	<u>0.725</u>
	работы сжатия в компрессоре	<u>0.20</u>	<u>1.001</u>	<u>0.904</u>	0.889	0.868	<u>0.725</u>
	$\frac{1}{L}$ $L_{\rm K}$	<u>0.40</u>	1.003	<u>0.906</u>	<u>0.898</u>	<u>0.877</u>	<u>0.726</u>
<u>18</u>	$\overline{L}_{K} = \frac{L_{K}}{L_{K \text{ pac}^{H}}}$	<u>0.60</u>	<u>1.005</u>	<u>0.907</u>	<u>0.905</u>	0.892	<u>0.726</u>
	- K pue I	<u>0.80</u>	<u>1.004</u>	<u>0.905</u>	<u>0.907</u>	<u>0.905</u>	<u>0.722</u>
		1.00	0.995	<u>0.896</u>	<u>0.904</u>	0.907	<u>0.711</u>
	Температура газа перед тур-	0.00	<u>1370.0</u>	<u>1237.6</u>	<u>1213.8</u>	<u>1184.7</u>	<u>993.5</u>
	<u>биной</u>	0.20	<u>1371.2</u>	<u>1238.6</u>	<u>1218.0</u>	<u>1189.1</u>	<u>993.9</u>
10	$T_{\Gamma}^* = T_{\Gamma \text{ pacy}}^* \overline{L}_{KBJ}$	0.40	<u>1374.2</u>	<u>1241.0</u>	<u>1230.5</u>	<u>1201.9</u>	<u>994.7</u>
<u>19</u>	- г расч - къд	0.60	<u>1376.7</u>	<u>1242.6</u>	<u>1239.8</u>	<u>1222.3</u>	<u>994.0</u>
		0.80	<u>1374.9</u>	<u>1240.0</u>	<u>1242.6</u>	<u>1239.5</u>	<u>988.8</u>
		1.00	1363.0	<u>1227.9</u>	<u>1238.6</u>	<u>1242.6</u>	<u>974.4</u>
	Расход воздуха через двига-	0.00	124.07	<u>77.92</u>	63.57	<u>51.08</u>	<u>29.93</u>
	<u>тель</u>	0.20	125.06	78.53	64.29	51.66	30.16
20		0.40	129.65	81.40	<u>67.32</u>	<u>54.12</u>	31.23
<u>20</u>		0.60	<u>137.79</u>	86.48	<u>72.01</u>	<u>58.57</u>	<u>33.13</u>
		<u>0.80</u>	<u>149.39</u>	<u>93.70</u>	<u>78.30</u>	<u>64.56</u>	<u>35.81</u>

	$G_{\rm B} = G_{\rm B \ pac 4} \frac{p_{\rm K}^*}{p_{\rm K \ pac 4}}.$	1.00	164.15	102.87	86.39	71.56	39.17
	$\cdot \sqrt{\frac{T_{\Gamma \text{ pac}^{4}}^{*}}{T_{\Gamma}^{*}}}, \frac{\kappa\Gamma}{c}$						
	Относительная плотность тока	0.00	0.3244	0.3249	0.3227	0.3208	0.3269
	на выходе из компрессора	<u>0.20</u>	0.3249	<u>0.3254</u>	<u>0.3230</u>	<u>0.3211</u>	<u>0.3274</u>
	$C \cdot \sqrt{T^*}$	<u>0.40</u>	<u>0.3264</u>	<u>0.3269</u>	<u>0.3240</u>	<u>0.3219</u>	<u>0.3291</u>
<u>21</u>	$q(\lambda_{\rm K}) = \frac{G_{\rm B} \sqrt{T_{\rm K}}}{*}$	<u>0.60</u>	0.3290	<u>0.3295</u>	<u>0.3261</u>	0.3233	<u>0.3319</u>
	$q(\kappa_{\mathbf{K}}) - \frac{*}{0.0404 \cdot p_{\mathbf{K}}^* F_{\mathbf{K}}}$	<u>0.80</u>	0.3328	<u>0.3335</u>	<u>0.3295</u>	<u>0.3259</u>	<u>0.3362</u>
		1.00	0.3383	0.3390	0.3344	<u>0.3301</u>	<u>0.3423</u>

Продолжение табл.1.2 <u>5</u> 0.2098 <u>8</u> 0.2112 0.00 0.2084 0.2070 0.2095 Приведенная скорость на выходе 0.20 0.2097 0.2101 0.2085 0.2070 0.2115 из компрессора λ_{κ} из таблиц 0.2108 0.2112 0.2091 0.2078 0.2126 0.40 газодинамических функций по 22 0.60 0.2125 0.2129 0.2106 0.2087 0.2145 значению $q(\lambda_{\kappa})$ 0.80 0.2151 0.2156 0.2129 0.2104 0.2174 1.00 0.2188 0.2192 0.2162 0.2133 0.2216 Скорость на выходе из комп-<u>90.9</u> 0.00 100.0 <u>95.3</u> <u>93.1</u> <u>86.5</u> 91.2 <u>0.20</u> 100.3 <u>93.4</u> <u>86.8</u> <u>95.6</u> 23 $c_{\rm K} = \lambda_{\rm K} \sqrt{\frac{2\kappa R T_{\rm K}^*}{\kappa + 1}}, \underline{\text{M/c}}$ 96.7 103.1 96.1 93.8 89.2 0.80 105.5 100.6 98.3 96.0 91.4 1.00 108.6 103.5 101.1 98.7 94.1 1.2421 1.2035 1.1945 0.00 1.2092 1.1488 Средняя условная теплоём-1.2036 1.2036 1.2071 1.2102 1.2122 кость процесса подвода тепла в камере сгорания $c_{\Pi} = 0.9 + 10^{-4} (2T_{\Gamma}^* + T_{K}^*),$ 1.2048 1.2101 24 1.2469 1.1505 1.00 1.2462 1.2122 1.2131 1.2125 1.1488 кг∙К 750.62 749.24 741.67 743.65 856.11 Удельное количество тепла, подведенное к воздуху в камере 849.71 744.40 749.29 736.02 558.91 0.40 25 $q_{\text{KC}} = c_{\Pi} (T_{\Gamma}^* - T_{K}^*), \frac{\kappa \cancel{\square}_{\text{Ж}}}{\kappa \Gamma}$ 838.74 734.01 747.19 745.59 817.78 733.99 0.80 714.49 747.72 530.48 1.00 780.97 680.65 709.33 731.27 499.96 Отношение расходов топлива 0.00 0.0200 0.0175 0.0173 0.0170 0.0132 и воздуха в камере сгорания 0.20 <u>0.0200</u> 0.0175 0.0174 0.0171 0.0132 $g_{\mathrm{T}} = \frac{q_{\mathrm{KC}}}{H_{u}\eta_{\mathrm{KC}}}$ 0.0175 0.40 0.0199 0.0174 0.0172 0.0131 26 0.60 0.0196 0.0172 0.0175 0.0174 0.0128 0.0175 0.0191 0.0124 0.0167 0.0172 1.00 0.0183 0.0159 0.0166 0.0171 0.0117 0.9767 0.00 0.9718 0.9769 0.9764 0.9727 Относительный расход газа 0.9769 0.9767 0.9764 0.9727 0.20 0.9716 в турбине

	$g_{\Gamma} = (1 + g_{\rm T})(1 - g_{\rm OTG} -$	0.40	0.9711	0.9767	0.9769	9.9766	0.9726
<u>27</u>	$-g_{\text{ОХЛ}}$)	0.60	0.9706 0.9703	0.9765 0.9761	0.9768 0.9765	0.9768 0.9768	0.9723 0.9719
	- 30AJI)	1.00	0.9709	0.9753	0.9760	0.9765	0.9712
	Удельная работа расширения	0.00	407847	366492	359524	<u>351035</u>	<u>295469</u>
	газа в турбине	0.20	<u>408296</u>	<u>366806</u>	360768	<u>352310</u>	<u>295616</u>
	$_{L}$ $_{L}$ Дж	0.40	<u>409391</u>	<u>367551</u>	<u>364410</u>	<u>356049</u>	<u>295886</u>
<u>28</u>	$L_{\mathrm{T}} =$,	<u>0.60</u>	410371	<u>368132</u>	<u>367179</u>	<u>362007</u>	<u>295755</u>
	$g_{\Gamma}\eta_{\text{Mex}}$ K Γ	0.80	<u>409919</u>	<u>367529</u>	<u>368132</u>	<u>367091</u>	<u>294322</u>
		1.00	406123	<u>364233</u>	<u>367164</u>	<u>368148</u>	<u>290242</u>
	Полное давление газа на входе	<u>0.00</u>	<u>14.444</u>	<u>8.6218</u>	<u>6.9660</u>	<u>5.5299</u>	<u>2.9677</u>
	<u>в турбину</u>	<u>0.20</u>	<u>14.566</u>	<u>8.6934</u>	<u>7.0572</u>	<u>5.6035</u>	<u>2.9910</u>
<u>29</u>	$p_{\Gamma}^* = p_{K}^* \sigma_{KC} \cdot 10^5, \frac{H}{2}$	<u>0.40</u>	<u>15.117</u>	<u>9.0191</u>	<u>7.4281</u>	<u>5.9020</u>	<u>3.0984</u>
	$p_{\Gamma} - p_{K} o_{KC} \cdot 10^{\circ}, \frac{2}{\sqrt{2}}$	<u>0.60</u>	<u>16.082</u>	<u>9.5884</u>	<u>7.9755</u>	<u>6.4408</u>	<u>3.2853</u>
	M ⁻	<u>0.80</u>	<u>17.423</u>	<u>10.378</u>	<u>8.6818</u>	<u>7.1496</u>	<u>3.5416</u>
		1.00	<u>19.062</u>	<u>11.338</u>	9.5640	<u>7.9346</u>	<u>3.8463</u>

Продолжение табл.1.2 8 3.709 3.710 4 3.712 3.713 6 3.684 3.686 3.686 Степень расширения газа 3.683 3.683 в турбине $\pi_{\mathrm{T}}^* = \left(1 - \frac{L_{\mathrm{T}}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma} T_{\Gamma}^* \eta_{\mathrm{T}}^*}\right)^{\frac{-\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}}$ 0.40 3.684 3.683 3.685 3.710 30 3.719 3.712 0.60 3.685 3.683 3.684 0.80 3.721 3.714 3.688 3.685 3.683 1.00 3.717 3.693 3.689 3.686 3.719 903.4 881.7 <u>738.3</u> 0.00 1018.0 921.2 Температура газа за турбиной без учёта охлаждения ло-0.20 1018.9 921.9 906.6 885.0 738.3 739.2 923.7 915.9 894.5 паток 0.40 1020.9 $T_4^* = T_{\Gamma}^* - \frac{L_{T}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma}}$ 1022.5 909.8 31 924.8 922.8 738.6 1021.1 922.7 922.6 0.80 924.8 734.6 1.00 <u>1012.5</u> <u>913.5</u> <u>921.7</u> <u>924.8</u> <u>723.7</u> 900.9 879.1 736.7 Температура газа за турбиной 0.00 1009.4 918.8 882.4 0.20 1010.2 <u>919.6</u> 904.1 737.1 при смешении охлаждаю-892.0 <u>1012.0</u> 921.5 <u>913.5</u> щего воздуха с потоком газа <u>0.40</u> <u>737.7</u> $T_{\rm T}^{*'} = \frac{c_{\rm pr} g_{\rm r} T_4^* + c_{\rm pB} g_{\rm OXJ} T_{\rm K}^*}{c_{\rm p cm} (g_{\rm r} + g_{\rm OXJ})}$ 32 0.60 1013.7 907.3 <u>737.4</u> 922.9 921.2 920.4 922.9 1.00 912.5 920.2 723.4 1006.0 3.8917 2.3410 1.8908 1.5002 0.8001 Полное давление газа на вы-0.00 ходе из турбины 0.20 3.9234 2.3603 1.9157 1.5203 0.8063 $p_{\rm T}^* = \frac{p_{\rm \Gamma}}{\pi_{\rm T}}^* \frac{*10^5 \, \text{,H/m}^2}{}$ 0.40 4.0686 2.4483 2.0168 1.6016 0.8351 33 2.6018 0.60 4.3241 2.1652 1.7485 0.8851 2.3558 1.9411 0.9535 0.80 4.6827 2.8140 1.00 5.1277 3.0704 2.5927 2.1528 1.0343 Располагаемая степень пони-3.841 3.821 3.601 жения давления газа в РС $\pi_{\rm cp} = \frac{p_{\rm T}}{p_{\rm H}}$ 4.557 4.015 0.40 3.996 4.315 3.758 34 4.247 4.975 4.268 4.633 3.983 0.60 5.523 0.80 4.621 4.593 5.040 4.291 1.00 5.061 5.012 5.547 6.126 4.655

	Скорость истечения газа из РС	0.00	<u>806.7</u>	<u>768.37</u>	<u>774.26</u>	<u>776.93</u>	<u>674.80</u>
	при полном расширении	<u>0.20</u>	809.05	<u>770.68</u>	<u>778.66</u>	<u>781.33</u>	<u>676.70</u>
<u>35</u>	*	<u>0.40</u>	<u>818.86</u>	<u>780.18</u>	<u>794.44</u>	<u>797.02</u>	<u>684.75</u>
	$2c_{\mathbf{p}\Gamma}R_{\Gamma}T_{\mathrm{T}}^{*}$	<u>0.60</u>	<u>834.30</u>	<u>794.88</u>	<u>813.28</u>	<u>822.56</u>	<u>697.08</u>
		<u>0.80</u>	<u>852.55</u>	<u>811.66</u>	832.32	<u>849.85</u>	<u>710.71</u>
	$\left[\begin{array}{c c} \kappa_{\Gamma}-1 \end{array}\right]$	1.00	869.88	826.38	850.63	<u>871.21</u>	<u>721.65</u>
	$c_{\mathbf{c}} = \varphi_{\mathbf{c}} \left[1 - \left(\frac{1}{\pi_{\mathbf{cp}}} \right)^{\kappa_{\Gamma}} \right]$						
	Тяга ТРД при полном	0.00	100000	<u>59682</u>	<u>49054</u>	<u>39538</u>	<u>20052</u>
	расширении газа в РС	0.20	<u>92576</u>	<u>55235</u>	<u>45825</u>	<u>37037</u>	<u>18481</u>
	$P = G_{\rm B}(g_{\rm \Gamma} + g_{\rm OXJI})c_{\rm C} - G_{\rm B}V$	<u>0.40</u>	<u>88408</u>	<u>52730</u>	<u>44794</u>	<u>36320</u>	<u>17541</u>
<u>36</u>		0.60	<u>86681</u>	<u>51659</u>	44708	<u>37197</u>	<u>17051</u>
	<u>H</u>	0.80	<u>86472</u>	<u>51424</u>	<u>45123</u>	<u>38783</u>	<u>16790</u>
		<u>1.00</u>	<u>86572</u>	<u>51224</u>	<u>45856</u>	<u>40080</u>	<u>16464</u>

Продолжение табл.1.2 Удельная тяга ТРД 0.00 805.99 765.98 771.69 774.10 669.89 740.26 712.83 $P_{\rm yд} = \frac{P}{G_{\rm B}}, \frac{{\rm H} \cdot {\rm c}}{{\rm \kappa} {\rm r}}$ 0.20 703.35 716.92 0.40 681.90 665.39 647.82 671.06 561.65 37 0.60 629.07 597.38 620.85 635.09 514.72 0.80 578.84 548.84 576.30 600.72 468.94 1.00 527.40 497.96 530.79 560.09 420.30 Удельный расход топлива ТРД 0.0854 0.0794 0.0778 0.0761 0.0684 $C_{y,x} = \frac{3600g_{T}(1-g_{0X,y}-g_{0T6})}{P_{y,x}}$ 0.20 0.0863 0.0845 0.0824 0.0745 38 0.1071 0.0995 0.0975 0.0951 0.0863 0.80 0.1135 0.1054 0.1032 0.1008 0.0916 1.00 0.1191 0.1107 0.1082 0.1058 0.0963 $\frac{V_{acoвой pacxoд топлива TPД}}{G_{TH}} = P \cdot C_{yД}, \quad \kappa \Gamma/\Psi$ 3009 0.00 4737 3818 1370 0.20 8590 4765 3872 3053 1377 8849 4907 3226 1413 0.40 4085 39 0.60 <u>9281</u> <u>5141</u> <u>4358</u> <u>3537</u> 1472 0.80 9813 5422 4655 3910 1538 1.00 10312 <u>5671</u> <u>4963</u> <u>4238</u> <u> 1586</u> Скорость полёта ВС 0.00 0.0 0.0 0.0 0.0 0.0 $V = M_H \sqrt{kRT_H}$, M/C 0.20 64.9 61.6 68.1 63.3 59.0 0.40 136.1 129.8 126.6 118.0 <u>123.2</u> 204.2 272.2 184.8 246.4 40 194.7 189.8 0.80 324.5 316.1 308.0 239.5 1.00 340.3 864.76 758.21 749.16 734.90 571.08 Располагаемая энергия топли-0.00 0.20 863.34 751.16 737.11 756.81 569.59 0.40 858.29 751.92 756.86 743.45 564.55 $q_{\rm O} = \frac{q_{\rm KC}}{\eta_{\rm \Gamma}}, \frac{\kappa \Delta m}{\kappa \Gamma}$ <u>754.73</u> 0.60 847.22 741.43 753.13 554.27 755.27 738.66 826.04 741.41 0.80 <u>721.70</u> 535.84 1.00 716.49 <u> 788.86</u> <u>687.52</u> <u>505.02</u> <u>0.00</u> <u>0.20</u> 2039 2041 1832 1834 1755 1762 Эффективная работа на валу <u>1798</u> <u>1477</u> 1804 1478 турбокомпрессора

	$L_{\rm e} = (1 - \eta_{\rm MeX}) L_{\rm T}, \frac{\Pi \kappa}{\kappa \Gamma}$	0.40	<u>2047</u>	<u>1838</u>	<u>1822</u>	<u>1780</u>	<u>1479</u>
<u>42</u>	$L_{\rm e} = (1 - \eta_{\rm Mex}) L_{\rm T}, \frac{\Delta T}{ME}$	0.60	<u>2052</u>	<u>1841</u>	<u>1836</u>	<u>1810</u>	<u>1479</u>
	KI	<u>0.80</u>	<u>2050</u>	<u>1838</u>	<u>1841</u>	<u>1835</u>	<u>1472</u>
		<u>1.00</u>	<u>2031</u>	<u>1821</u>	<u>1836</u>	<u>1841</u>	<u>1451</u>
	<u>Работа цикла ТРД</u>	<u>0.00</u>	<u>326848</u>	<u>295192</u>	<u>299552</u>	<u>301374</u>	<u>225851</u>
	$L_{\text{II}} = L_{\text{P}} +$	0.20	<u>326407</u>	<u>294837</u>	<u>300978</u>	<u>302918</u>	225359
	$egin{align*} & rac{ ext{Работа цикла ТРД}}{L_{ ext{II}} = L_{ ext{e}}} + & & \\ & + rac{P_{ ext{yI}}(P_{ ext{yI}} + 2V)}{2}, rac{ ext{Дж}}{ ext{к}\Gamma} & & \\ & \end{array}$	0.40	<u>327352</u>	<u>295775</u>	307402	309625	<u>225486</u>
<u>43</u>	$P_{\text{VЛ}}(P_{\text{VЛ}}+2V)$ Дж	0.60	<u>328344</u>	<u>296603</u>	312422	<u>320854</u>	<u>225065</u>
	+	0.80	327147	294950	313770	330303	222112
	Z KI	1.00	<u>320564</u>	<u>287416</u>	<u>310646</u>	<u>331217</u>	<u>213781</u>
	Внутренний (эффективный)	0.00	0.378	0.389	0.400	<u>0.410</u>	0.395
	КПД ТРД	0.20	0.378	0.390	0.401	<u>0.411</u>	0.396
	$n = \frac{L_{II}}{L_{II}}$	0.40	0.381	0.393	0.406	<u>0.416</u>	0.399
44	I IIDH —	0.60	0.388	0.400	0.414	0.426	0.406
	q_o	0.80	0.396	0.409	0.423	0.437	0.415
		1.00	<u>0.406</u>	0.418	0.434	0.448	0.423

Продолжение табл.1.2

	Продолжение тиол.т.2									
1	2	_3	4	5	<u>6</u>		8			
	Тяговый (полётный) КПД ТРД	0.00	0.000	0.000	0.000	0.000	0.000			
	$P_{y \perp} V$	<u>0.20</u>	0.154	<u>0.155</u>	0.150	0.146	<u>0.160</u>			
	$\eta_{TSIT} = \frac{JA}{I}$	<u>0.40</u>	0.284	0.284	0.274	0.267	0.294			
<u>45</u>		0.60	0.391	0.392	0.377	0.366	<u>0.405</u>			
		0.80	0.482	0.483	<u>0.465</u>	0.448	<u>0.498</u>			
		<u>1.00</u>	0.560	0.562	<u>0.541</u>	<u>0.521</u>	<u>0.580</u>			
	Полный (общий) КПД ТРД	0.00	0.000	0.000	0.000	0.000	0.000			
	$\eta_{\Pi} = \eta_{BH} \eta_{TS\Gamma}$	<u>0.20</u>	<u>0.058</u>	<u>0.060</u>	<u>0.060</u>	<u>0.060</u>	<u>0.063</u>			
	THE VIEW TOTAL	<u>0.40</u>	<u>0.108</u>	<u>0.112</u>	<u>0.111</u>	<u>0.111</u>	<u>0.117</u>			
<u>46</u>		<u>0.60</u>	<u>0.152</u>	<u>0.157</u>	<u>0.156</u>	<u>0.156</u>	<u>0.164</u>			
		0.80	<u>0.191</u>	<u>0.197</u>	<u>0.197</u>	<u>0.196</u>	0.207			
		1.00	0.227	0.235	0.234	0.234	0.246			

Таблица 1.3. Высотно-скоростные характеристики одновального ТРД с нерегулируемым соплом

<u>No</u>	Наименование параметра,	$M_{\rm H}$	Выс	ота полёта,	KM		
$\underline{\Pi}/\underline{\Pi}$	расчётная формула		0	4	<u>6</u>	8	<u>11</u>
<u>1</u>	2	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	8
	Статическое давление на срезе	0.00	2.1030	1.2650	1.0217	0.8106	0.4323
	<u>PC</u>	0.20	2.1200	1.2754	1.0352	0.8215	0.4357
	*	0.40	<u>2.1985</u>	1.3230	1.0898	<u>0.8655</u>	0.4512
<u>35</u>	$p_{\mathbf{C}} = \frac{p_{\mathbf{T}}}{\pi_{\mathbf{K}\mathbf{p}}} \cdot 10^5 , \frac{\mathbf{H}}{\mathbf{M}^2}$	0.60	2.3366	1.4059	1.1700	0.9448	0.4783
	π_{KD} π_{KD} π_{M}^{2}	0.80	2.5304	1.5206	1.2730	1.0489	0.5152
	1	1.00	2.7708	1.6591	<u>1.4010</u>	1.1633	0.5589
	Скорость истечения газа из	0.00	<u>569.81</u>	<u>543.61</u>	<u>538.28</u>	<u>531.71</u>	<u>486.66</u>
	сопла при неполном расшире-	0.20	570.03	543.84	539.23	532.70	486.78
	нии	<u>0.40</u>	<u>570.56</u>	<u>544.39</u>	<u>542.02</u>	<u>535.60</u>	<u>487.00</u>
<u>36</u>	2 P. T*	0.60	<u>571.02</u>	544.80	544.12	540.18	486.89
	$c_{\rm C} = \omega_{\rm CA} \frac{2K_{\rm \Gamma}K_{\rm \Gamma}I_{\rm T}}{M_{\rm C}}$, M/c	0.80	<u>570.76</u>	<u>544.28</u>	<u>544.80</u>	<u>544.05</u>	485.67
	$c_{\mathbf{C}} = \varphi_{C} \sqrt{\frac{2\kappa_{\Gamma} R_{\Gamma} T_{\mathrm{T}}^{*}}{\kappa_{\Gamma} + 1}}, \mathbf{M/c}$	1.00	<u>568.81</u>	<u>541.69</u>	<u>543.99</u>	<u>544.80</u>	<u>482.20</u>
	Тяга ТРД при неполном	0.00	<u>98807</u>	<u>59090</u>	48434	38931	19889

	расширении газа в РС	0.20	<u>91326</u>	<u>54613</u>	<u>45163</u>	<u>36392</u>	<u>18314</u>
	$P_1 = G_{\mathbf{B}}(g_{\Gamma} + g_{\mathbf{OXJI}})c_{\mathbf{C}} -$	0.40	86893	<u>51965</u>	43946	<u>35509</u>	<u>17333</u>
<u>37</u>		0.60	<u>84662</u>	<u>50617</u>	<u>43552</u>	<u>36052</u>	<u>16762</u>
	$-G_{\mathbf{B}}V + F_{\mathbf{C}}(p_{\mathbf{C}} - p_{\mathbf{H}}), \mathbf{H}$	0.80	<u>83672</u>	<u>49944</u>	<u>43517</u>	<u>37134</u>	<u>16373</u>
		1.00	<u>82717</u>	<u>49130</u>	43609	<u>37794</u>	<u>15870</u>
	<u>Удельная тяга ТРД</u>	0.00	<u>796.37</u>	<u>758.37</u>	<u>761.94</u>	<u>762.20</u>	<u>664.60</u>
	$P_{\rm УД} = \frac{P_{\rm l}}{G_{\rm B}}, \frac{{\rm H\cdot c}}{{\rm \kappa \Gamma}}$	0.20	<u>730.26</u>	<u>695.42</u>	<u>702.52</u>	<u>704.41</u>	<u>607.20</u>
	$P_{\text{VA}} = \frac{1}{G}, \frac{11C}{KE}$	0.40	<u>670.21</u>	<u>638.42</u>	<u>652.78</u>	<u>656.07</u>	<u>554.97</u>
<u>38</u>	$G_{\rm B}$ KI	0.60	<u>614.41</u>	<u>585.33</u>	604.79	615.54	<u>505.98</u>
		0.80	<u>560.10</u>	533.03	<u>555.77</u>	<u>575.17</u>	<u>457.28</u>
		<u>1.00</u>	<u>503.92</u>	<u>477.60</u>	<u>504.78</u>	<u>528.13</u>	<u>405.14</u>
	«Недобор тяги» (в процентах)	0.00	<u>1.193</u>	0.993	<u>1.264</u>	<u>1.537</u>	<u>0.790</u>
	$\overline{}$ $P-P_1$ 1000/	<u>0.20</u>	<u>1.351</u>	<u>1.127</u>	1.446	1.745	<u>0.903</u>
<u>39</u>	$\overline{\Delta P} = \frac{P - P_1}{P} \cdot 100\%$	0.40	<u>1.714</u>	<u>1.451</u>	<u>1.894</u>	<u>2.233</u>	<u>1.189</u>
		<u>0.60</u>	<u>2.331</u>	<u>2.018</u>	<u>2.586</u>	3.078	<u>1.698</u>
		<u>0.80</u>	<u>3.239</u>	<u>2.880</u>	<u>3.561</u>	4.253	<u>2.487</u>
		<u>1.00</u>	<u>4.454</u>	4.088	<u>4.901</u>	<u>5.795</u>	<u>3.606</u>

Продолжение табл.1.3 4 7 0.00 0.0864 Удельный расход топлива ТРД 0.0801 0.0788 0.0773 0.0689 $C_{y,x} = \frac{3600g_{\rm T}(1-g_{\rm OX,x}-g_{\rm OT6})}{2}$ 0.0940 0.0872 0.0857 0.0839 0.0752 0.0815 0.1018 0.0944 0.0929 0.0908 40 0.0981 0.1052 0.1015 <u>0.1000</u> 0.80 0.1172 0.1085 0.1069 0.0939 ΚГ Н∙ч 1.00 0.1246 0.1121 0.0999 <u>0.1154</u> <u>0.1138</u> Работа цикла ТРД 289396 288779 292074 293030 292232 293258 222321 221656 0.00 <u>319143</u> $L_{\text{II}} = L_{\text{e}} +$ 220969 297500 297834 288507 0.40 <u>317858</u> 219056 41 316235 287128 299538 305019 282295 311369 296960 308987 213959 0.80 1.00 300459 270880 288946 303986 203054 Внутренний (эффективный) КПД 0.00 0.369 0.382 0.390 0.398 0.389 0.398 ТРД 0.20 0.369 0.390 0.389 0.382 0.40 0.370 0.391 $\eta_{\rm BH} = \frac{L_{\rm II}}{q_{\it O}}$ 0.393 0.401 0.384 42 0.60 0.373 0.405 0.397 0.387 0.391 0.401 0.409 0.399 1.00 0.394 0.381 0.403 0.412 0.402 0.00 Тяговый (полётный) КПД ТРД 0.000 0.000 0.000 0.000 0.20 0.152 0.148 0.156 0.156 0.162 $\eta_{\rm TST} = \frac{P_{\rm YJ} V}{L_{\rm II}}$ 0.40 0.287 0.287 0.278 0.271 0.296 43 0.60 0.397 0.397 0.383 0.373 0.409 0.80 0.490 0.490 0.474 0.459 0.504 0.589 1.00 0.571 0.572 0.553 0.535 Полный (общий) КПД ТРД 0.00 0.000 0.000 0.0000.000 0.0000.20 0.058 0.060 0.059 0.059 0.063 $\eta_\Pi = \eta_{BH} \eta_{T \! H \! \Gamma}$ 0.109 0.109 0.148 0.152 44 0.154 0.151 0.162 0.185 0.192 0.190 0.188 0.201 0.80 0.217 0.225 0.223 0.220 0.237 1.00

Таблица 1.4

Вь	исотно-скоростные характер	истики	и одновал	ьного ТР	Д с регу.	пируемы	м соплом
<u>No</u>	Наименование параметра,	$\underline{M}_{\mathrm{H}}$	Выс	сота полёта	, KM		
Π/Π	расчётная формула	_	0	4	6	8	_11
1	2	3	4	5	<u>6</u>		8
	Температура наружного возду	0.00	288.15	262.15	249.15	236.15	216.65
	ха по ГОСТ 4401-81	0.50	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	236.15	<u>216.65</u>
		1.00	288.15	262.15	249.15	236.15	216.65
<u>1</u>	$T_{\rm H} = 288.15 - 6.5 \cdot H$	1.50	288.15	<u>262.15</u>	<u>249.15</u>	236.15	216.65
	<u> </u>	2.00	288.15	262.15	249.15	236.15	216.65
		2.50	<u>288.15</u>	262.15	249.15	236.15	216.65
	Давление наружного воздуха	0.00	1.0132	0.6126	0.4674	0.3514	0.2222
	по ГОСТ 4401-81	0.50	1.0132	0.6126	0.4674	0.3514	0.2222
		1.00	1.0132	0.6126	0.4674	0.3514	0.2222
_2	$p_H = 1.01325 \cdot (1 - 1.01325)$	1.50	1.0132	0.6126	0.4674	0.3514	0.2222
	* **	2.00	1.0132	0.6126	0.4674	0.3514	0.2222
	$-\frac{H}{44.368}$) ^{5.2532} · 10 ⁵ , Πa	2.50	1.0132	0.6126	0.4674	0.3514	0.2222
	44.368'						
	Температура торможения на	0.00	<u>288.15</u>	<u>262.15</u>	249.15	236.15	<u>216.65</u>
	входе в двигатель	0.50	<u>302.6</u>	<u>275.3</u>	<u>261.6</u>	<u>248.0</u>	<u>227.5</u>
		1.00	<u>345.8</u>	314.6	<u>299.0</u>	<u>283.4</u>	<u>260.0</u>
<u>3</u>	$T_{\rm H}^* = T_{\rm H} (1 + \frac{\kappa - 1}{2} M_{\rm H}^2)$	<u>1.50</u>	<u>417.8</u>	<u>380.1</u>	<u>361.3</u>	<u>342.4</u>	<u>314.1</u>
	$I_{\rm H} - I_{\rm H} (1 + \frac{1}{2} M_{\rm H})$	2.00	<u>518.7</u>	<u>471.9</u>	<u>448.5</u>	<u>425.1</u>	<u>390.0</u>
		<u>2.50</u>	<u>648.3</u>	<u>589.8</u>	<u>560.6</u>	<u>531.3</u>	<u>487.5</u>
	Полное давление воздуха на	0.00	1.0132	0.6126	0.4674	0.3514	0.2222
	входе в двигатель	<u>0.50</u>	1.2019	0.7267	0.5544	0.4169	0.2636
	* K	1.00	<u>1.9180</u>	1.1597	0.8847	0.6653	0.4206
4	$p{\rm H}^* = p_{\rm H} (\frac{T_{\rm H}^*}{T})^{\frac{\kappa}{\kappa - 1}} \cdot 10^5, \Pi a$	1.50	3.7197	2.2490	1.7158	1.2902	0.8157
	$T_{\rm H}$	2.00	7.9281	4.7935	3.6570	2.7499	1.7386
		2.50	<u>17.312</u>	10.467	7.9857	6.0048	3.7965
	<u>Температура заторможенного</u>	0.00	288.15	<u>262.15</u>	249.15	236.15	<u>216.65</u>
	потока воздуха на входе в	0.50	<u>302.6</u>	<u>275.3</u>	<u>261.6</u>	<u>248.0</u>	<u>227.5</u>

5	компрессор	1.00	<u>345.8</u>	<u>314.6</u>	<u>299.0</u>	<u>283.4</u>	<u>260.0</u>
	$T_{\rm B}^* = T_{\rm H}^*$	<u>1.50</u>	<u>417.8</u>	<u>380.1</u>	<u>361.3</u>	<u>342.4</u>	<u>314.1</u>
	$I_B - I_H$	<u>2.00</u>	<u>518.7</u>	<u>471.9</u>	<u>448.5</u>	<u>425.1</u>	<u>390.0</u>
		<u>2.50</u>	<u>648.3</u>	<u>589.8</u>	<u>560.6</u>	<u>531.3</u>	<u>487.5</u>
		0.00	<u>0.990</u>	<u>0.990</u>	<u>0.990</u>	<u>0.990</u>	<u>0.990</u>
	$C = M_H - 1; \sigma_{BX} = \sigma_{BX pacy} -$	<u>0.50</u>	<u>0.974</u>	<u>0.974</u>	<u>0.974</u>	<u>0.974</u>	<u>0.974</u>
		<u>1.00</u>	<u>0.957</u>	<u>0.957</u>	<u>0.957</u>	<u>0.957</u>	<u>0.957</u>
<u>6</u>	$-0.02241C^2 - 0.14561C^3 +$	<u>1.50</u>	<u>0.970</u>	<u>0.970</u>	<u>0.970</u>	<u>0.970</u>	<u>0.970</u>
		<u>2.00</u>	<u>0.874</u>	<u>0.874</u>	<u>0.874</u>	<u>0.874</u>	<u>0.874</u>
	$+0.066282C^4-0.014342C^5$	<u>2.50</u>	<u>0.675</u>	<u>0.675</u>	<u>0.675</u>	<u>0.675</u>	<u>0.675</u>
	Полное давление на входе в	0.00	1.0031	0.6065	0.4627	0.3479	0.2200
	компрессор	0.50	<u>1.1701</u>	<u>0.7075</u>	0.5397	0.4058	<u>0.2566</u>
	$n - n = 10^5 \text{ H/s}^2$	1.00	<u>1.8355</u>	<u>1.1098</u>	<u>0.8467</u>	0.6367	<u>0.4025</u>
	$p_{\rm B} = p_{\rm H} \sigma_{\rm BX} = 10^5, \text{H/M}^2$	<u>1.50</u>	<u>3.6077</u>	<u>2.1813</u>	<u>1.6641</u>	<u>1.2513</u>	<u>0.7911</u>
		<u>2.00</u>	<u>6.9285</u>	<u>4.1891</u>	<u>3.1959</u>	<u>2.4032</u>	<u>1.5194</u>
		<u>2.50</u>	<u>11.682</u>	<u>7.0632</u>	<u>5.3886</u>	<u>4.0519</u>	<u>2.5618</u>

Продолжение табл.1.4

0.00

154.02

308.03

462.05

616.07

<u>770.09</u>

0.00

147.52

295.04

442.56

590.08

737.61

1.0000 0.9800 0.9300 Режим работы двигателя: 0.00 0.8800 0.8100 0.9800 0.9300 0.8500 0.50 1.0000 1.0000 B=1.00 — взлётный <u>В=0.95...0.97 – номинальный</u> 1.00 1.0000 1.0000 1.0000 1.0000 0.9700 8 <u>В=0.78...0.85 – крейсерский</u> 1.50 1.0000 1.0000 1.0000 1.0000 1.0000 2.00 1.0000 1.0000 1.0000 1.0000 1.0000 2.50 1.0000 1.0000 1.0000 1.0000 1.0000 Степень повышения давления 0.00 15.000 17.299 17.248 17.192 17.303 воздуха в компрессоре 0.50 13.696 16.367 17.369 17.411 17.283 10.792 12.755 14.000 1.00 15.481 17.234 $\pi_{K}^{*} = (1 + \frac{336.511B}{T_{B}^{*}})^{\frac{K}{K-1}}$ 1.50 2.00 7.907 5.756 9 9.201 10.014 10.976 12.787 7.095 7.698 2.50 4.320 6.279 4.855 5.184 5.569 0.8500 0.9389 0.9423 Относительная плотность тока 0.00 0.9431 0.9411 0.7960 0.9057 0.9459 0.9476 на входе в компрессор 0.50 0.9425 $= \frac{\frac{\pi_{\rm KOMMpercec}}{\pi_{\rm K}}^*}{15.119\sqrt{\frac{n_{\rm C} - 1}{\pi_{\rm K}} n_{\rm C}} - 1}$ 1.00 0.6721 0.7564 0.8087 0.8697 0.9405 $q(\lambda_{\rm B}) =$ 10 0.7578 1.50 0.5429 0.6017 0.6379 0.6801 <u>2.00</u> <u>0.4417</u> <u>0.4811</u> <u>0.5052</u> <u>0.5333</u> <u>0.5848</u> <u>2.50</u> <u>0.3716</u> 0.3979 <u>0.4140</u> 0.4326 <u>0.4667</u> Приведенная скорость на вхо-0.00 0.6448 0.7827 0.7788 0.7744 0.7827 де в компрессор $\lambda_{\rm B}$ из таблиц 0.50 0.5842 0.7192 0.7881 0.7913 0.7813 __11 0.4675 0.5442 0.5977 0.6694 0.7776 газодинамических функций по 1.00 1.50 0.3640 0.4094 0.4387 0.4744 0.5457 значению $q(\lambda_{\rm B})$ 0.2900 0.3182 0.3358 0.3567 0.3961

0.00

0.50

1.00

1.50

2.00

2.50

0.00

170.13 340.26

510.39

680.53

<u>850.66</u>

0.00

162.27

324.55

486.82

649.10

811.37

0.00

158.20

316.40

474.60

632.80

<u>791.00</u>

Скорость полёта ВС

12

 $V = M_H \sqrt{kRT_H} \, \underline{M/c}$

Отформатировано

						T.	
	Скорость на входе в компрес-	<u>0.00</u>	<u>200.3</u>	<u>231.9</u>	<u>224.9</u>	<u>217.8</u>	<u>210.8</u>
	<u>cop</u>	0.50	<u>186.0</u>	218.4	<u>233.2</u>	228.0	<u>215.6</u>
	*	1.00	159.1	176.4	189.1	206.2	229.4
13	$C = \lambda \sqrt{\frac{2\kappa RT_{\rm B}}{\kappa}}$ w/c	1.50	136.2	146.1	152.6	160.6	177.0
	$c_{\rm B} = \lambda_{\rm B} \sqrt{\frac{2\kappa R T_{\rm B}^*}{\kappa + 1}} \ \underline{\text{M/c}}$	2.00	120.9	126.5	130.1	134.6	143.1
		2.50	112.5	115.3	117.2	119.7	124.4
	Температура торможения на	0.00	680.7	648.0	615.3	582.6	535.6
	выходе из компрессора	0.50	694.4	668.5	647.5	614.2	562.1
	$n_{\rm c}$ -1	1.00	735.8	705.9	691.0	676.2	641.9
14		1.50	805.5	768.9	750.7	732.6	705.5
	$n_{\rm C}$	2.00	904.0	858.2	835.4	812.6	778.5
	$T_{K}^{*} = T_{B}^{*} \pi_{K}^{*}$	2.50	1031.7	974.0	945.2	916.5	873.5
	K B K						
	Адиаоатический КПД	0.00	0.857	0.855	0.855	0.855	0.855
	компрессора	0.50	0.859	0.856	0.855	0.855	0.855
1.5	<u> </u>	1.00	0.863	0.860	0.858	0.857	0.855
<u>15</u>	* * K _1	1.50	0.868	0.865	0.864	0.862	0.860
	$\eta_{K} = \frac{n_{K}}{*}$	2.00	0.873	<u>0.871</u>	0.870	0.868	0.866
	$T_{\mathbf{K}-1}^{\tau}$	<u>2.50</u>	<u>0.878</u>	<u>0.876</u>	<u>0.875</u>	<u>0.874</u>	0.872
	$\eta_{K}^{*} = \frac{\pi_{K}^{*} - 1}{\frac{T_{K}^{*} - 1}{T_{B}^{*}}}$						
	I B						
			*		Прод	олжение	табл 1 4
1	2	3	4	5	6	7	8
	Полное давление на выходе	0.00	15.046	10.492	7.9810	5.9817	3.8063
	из компрессора	0.50	16.025	11.578	9.3746	7.0659	4.4347
	* * *	1.00	19.808	14.155	11.853	9.8564	6.9369
16	$p_{\rm K}^* = p_{\rm B}^* \pi_{\rm K}^* \frac{*10^5}{10^5}$, H/M ²	1.50	28.525	20.069	16.664	13.734	10.116
		2.00	39.877	27.567	22.674	18.500	13.407
		2.50	50.467	34.288	27.936	22.564	16.086
	Удельная работа сжатия в	0.00	394356	387584	367788	347991	320352
	компрессоре	0.50	393638	395050	387616	367858	336164
<u>17</u>	-	1.00	391787	<u>393081</u>	393811	394607	383600
	$L_{K} = \frac{\kappa}{\kappa - 1} R(T_{K}^{*} - T_{B}^{*}), \frac{\mu_{K}}{\kappa_{\Gamma}}$	1.50	389434	390571	391214	391917	393101
	$\kappa = \kappa - 1$	2.00	387105	388078	388530	389235	390256
		2.50	385065	385887	386355	386867	<u>387736</u>
	Относительное изменение	$\frac{2.50}{0.00}$	1.000	0.983	0.933	0.882	0.812
	работы сжатия в компрессоре	0.50	0.998	1.002	0.983	0.933	0.852
		1.00	0.993	0.997	0.999	1.001	0.973
18	$\overline{L}{K} = \frac{L_{K}}{L_{K \text{ pac}\Psi}}$	1.50	0.988	0.990	0.992	0.994	0.997
	$L_{\rm K}$ расч	2.00	0.982	0.984	0.985	0.987	0.990
		2.50	0.976	0.979	0.980	0.981	0.983
	Температура газа перед тур-	0.00	1370.0	1346.5	1277.7	1208.9	1112.9
	биной	0.50	1367.5	1372.4	1346.6	1277.9	1167.8
	**	1.00	1361.1	1365.6	1368.1	1370.9	1332.6
19	$T_{\Gamma}^* = T_{\Gamma \text{ pacy}}^* \overline{L}_{KBJ}$	1.50	1352.9	1356.9	1359.1	1361.5	1365.6
		2.00	1344.8	1348.2	<u>1350.1</u>	1352.2	1355.8
		2.50	1337.7	1340.6	1342.2	1344.0	1347.0
	Расход воздуха через двига-	0.00	124.07	<u>87.27</u>	68.14	<u>52.51</u>	34.82
	тель	0.50	132.26	95.39	77.97	60.33	39.61
		1.00	163.87	<u>116.91</u>	97.81	81.25	<u>58.00</u>
20		1.50	236.70	166.28	137.96	113.60	83.55
		2.00	331.88	<u>229.15</u>	188.34	<u>113.66</u> <u>153.55</u>	<u>83.33</u> <u>111.13</u>
	<u> </u>	<u>2.00</u>	<u> </u>	<u>447.13</u>	100.34	100.00	111.13

	$G_{\rm B} = G_{\rm B} \operatorname{pacy} \frac{p_{\rm K}^*}{p_{\rm K} \operatorname{pacy}}.$	2.50	421.13	285.82	232.73	187.85	133.77
	$\cdot \sqrt{\frac{T_{\Gamma \text{ pacy}}^*}{T_{\Gamma}^*}}, \frac{\text{K}\Gamma}{\text{c}}$						
	Относительная плотность тока	0.00	0.3244	0.3193	0.3194	0.3195	0.3192
	на выходе из компрессора	0.50	0.3279	0.3212	0.3191	0.3190	0.3193
	$C = \sqrt{T^*}$	1.00	0.3384	0.3309	0.3271	0.3232	0.3194
21	$q(\lambda_{K}) = \frac{G_{B} \sqrt{T_{K}}}{T_{K}}$	1.50	0.3551	0.3464	0.3420	0.3376	0.3308
	$q(\lambda_{K}) = \frac{G_{B}\sqrt{T_{K}^{*}}}{0.0404 \cdot p_{K}^{*}F_{K}}$	<u>2.00</u>	<u>0.3773</u>	<u>0.3672</u>	0.3620	<u>0.3567</u>	<u>0.3487</u>
		<u>2.50</u>	0.4041	0.3923	0.3862	0.3800	0.3706
	Приведенная скорость на выхо	0.00	0.2095	<u>0.2061</u>	0.2061	0.2062	<u>0.2061</u>
	де из компрессора λ_{κ} из таблиц	<u>0.50</u>	<u>0.2118</u>	<u>0.2073</u>	<u>0.2059</u>	<u>0.2058</u>	<u>0.2061</u>
	газодинамических функций по	1.00	0.2189	<u>0.2139</u>	0.2112	<u>0.2086</u>	<u>0.2061</u>
<u>22</u>	значению $q(\lambda_{\underline{\kappa}})$	<u>1.50</u>	<u>0.2302</u>	<u>0.2242</u>	<u>0.2213</u>	<u>0.2183</u>	<u>0.2137</u>
		<u>2.00</u>	<u>0.2454</u>	<u>0.2384</u>	0.2349	<u>0.2313</u>	<u>0.2258</u>
		<u>2.50</u>	0.2638	<u>0.2556</u>	0.2513	0.2472	<u>0.2407</u>

 Продолжение табл. 1.4

 2
 3
 4
 5
 6
 7
 8

 Скорость на выходе из комп 0.00
 100.01
 95.98
 93.53
 91.06
 87.26

<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
	Скорость на выходе из комп-	0.00	100.01	<u>95.98</u>	93.53	<u>91.06</u>	<u>87.26</u>
	peccopa	<u>0.50</u>	102.13	<u>98.07</u>	<u>95.89</u>	93.33	<u>89.40</u>
<u>23</u>	2 DT*	<u>1.00</u>	<u>108.64</u>	<u>103.98</u>	<u>101.58</u>	<u>99.27</u>	<u>95.53</u>
	$c_{\mathbf{K}} = \lambda_{\mathbf{K}} \sqrt{\frac{2\kappa R T_{\mathbf{K}}^*}{\kappa + 1}}, \underline{\mathbf{M/c}}$	<u>1.50</u>	<u>119.56</u>	113.78	<u>110.96</u>	<u>108.10</u>	<u>103.89</u>
	κ κ κ κ κ κ κ κ κ	<u>2.00</u>	134.99	<u>127.80</u>	<u>124.21</u>	<u>120.66</u>	<u>115.30</u>
		<u>2.50</u>	<u>155.04</u>	<u>145.98</u>	<u>141.40</u>	<u>136.93</u>	<u>130.18</u>
	Средняя условная теплоём-	0.00	1.2421	1.2341	1.2171	1.2000	1.1761
	кость процесса подвода тепла	<u>0.50</u>	1.2429	1.2413	1.2341	<u>1.2170</u>	<u>1.1898</u>
	в камере сгорания	<u>1.00</u>	1.2458	<u>1.2437</u>	<u>1.2427</u>	<u>1.2418</u>	<u>1.2307</u>
<u>24</u>	$c_{\Pi} = 0.9 + 10^{-4} (2T_{\Gamma}^* + T_{\kappa}^*),$	<u>1.50</u>	<u>1.2511</u>	<u>1.2483</u>	1.2469	<u>1.2456</u>	<u>1.2437</u>
	$c_{\Pi} = 0.5 + 10 (21_{\Gamma} + 1_{K}),$	<u>2.00</u>	1.2594	<u>1.2555</u>	<u>1.2536</u>	<u>1.2517</u>	<u>1.2490</u>
	кДж	<u>2.50</u>	1.2707	1.2655	1.2630	1.2604	<u>1.2567</u>
	кг⋅К						
	Удельное количество тепла,	0.00	856.11	861.98	806.19	<u>751.64</u>	<u>679.03</u>
	подведенное к воздуху в камере	0.50	836.59	873.74	862.73	807.81	720.64
	сгорания	1.00	<u>778.94</u>	820.43	841.42	862.61	<u>850.14</u>
<u>25</u>	$q_{KC} = c_{\Pi} (T_{\Gamma}^* - T_{K}^*), \frac{K \coprod K}{K \coprod K}$	<u>1.50</u>	<u>684.85</u>	<u>733.86</u>	<u>758.55</u>	<u>783.39</u>	<u>821.02</u>
	$q_{\rm KC} - c_{\rm II} (I_{\rm \Gamma} - I_{\rm K}), {\kappa \Gamma}$	<u>2.00</u>	<u>555.08</u>	<u>615.15</u>	<u>645.26</u>	<u>675.47</u>	<u>721.01</u>
		<u>2.50</u>	<u>388.89</u>	<u>463.91</u>	<u>501.38</u>	<u>53885</u>	<u>595.12</u>
	Отношение расходов топлива	0.00	<u>0.0200</u>	<u>0.0202</u>	<u>0.0188</u>	<u>0.0176</u>	<u>0.0159</u>
	и воздуха в камере сгорания	<u>0.50</u>	<u>0.0196</u>	<u>0.0204</u>	<u>0.0202</u>	<u>0.0189</u>	<u>0.0168</u>
	$q_{\rm KC}$	<u>1.00</u>	<u>0.0182</u>	<u>0.0192</u>	<u>0.0197</u>	0.0202	<u>0.0199</u>
<u>26</u>	$g_{\mathrm{T}} = \frac{q_{\mathrm{KC}}}{H_{u}\eta_{\mathrm{KC}}}$	<u>1.50</u>	<u>0.0160</u>	<u>0.0172</u>	0.0177	0.0183	<u>0.0192</u>
	u inc	<u>2.00</u>	0.0130	<u>0.0144</u>	<u>0.0151</u>	<u>0.0158</u>	<u>0.0169</u>
		<u>2.50</u>	<u>0.0091</u>	<u>0.0108</u>	<u>0.0117</u>	<u>0.0126</u>	<u>0.0139</u>
	Относительный расход газа	0.00	0.9718	0.9747	0.9781	0.9769	0.9753

	в турбине	0.50	0.9716	0.9719	0.9747	0.9782	0.9762
	$\overline{g_{r}=(1+g_{\tau})(1-g_{\text{OXJ}}-g_{\text{OT6}})}$	1.00	0.9711	0.9715	0.9717	0.9718	0.9759
<u>27</u>		1.50	0.9700	0.9706	0.9709	0.9712	0.9715
		2.00	0.9680	0.9690	0.9694	0.9698	0.9705
		2.50	0.9650	0.9664	0.9671	0.9677	0.9686
	Удельная работа расширения	0.00	407847	<u>399655</u>	<u>377897</u>	<u>358006</u>	330123
	газа в турбине	0.50	407160	408525	<u>399686</u>	<u>377955</u>	<u>346085</u>
	L_{κ} Лж	1.00	405460	406637	407324	<u>408091</u>	<u>395045</u>
<u>28</u>	$L_{\rm T} = \frac{L_{\rm K}}{g_{\rm \Gamma} \eta_{\rm MeX}}, \frac{\Pi_{\rm K}}{\kappa_{\rm \Gamma}}$	1.50	403504	404416	404960	<u>405576</u>	406655
	g _Γ η _{Mex} κι	2.00	401919	402526	402909	403353	<u>404156</u>
		<u>2.50</u>	<u>401025</u>	401309	401520	<u>401785</u>	402302
	Полное давление газа на входе	0.00	14.444	10.072	<u>7.6618</u>	<u>5.7424</u>	<u>3.6540</u>
	<u>в турбину</u>	<u>0.50</u>	<u>15.384</u>	<u>11.115</u>	<u>8.9996</u>	<u>6.7833</u>	4.2573
<u>29</u>	* * 10 ⁵ H	<u>1.00</u>	<u>19.016</u>	13.589	<u>11.379</u>	<u>9.4621</u>	<u>6.6594</u>
	$p_{\Gamma}^* = p_{K}^* \sigma_{KC} \cdot 10^5, \frac{H}{M^2}$	<u>1.50</u>	<u>27.384</u>	<u>19.266</u>	<u>15.998</u>	<u>13.185</u>	<u>9.7119</u>
	M	<u>2.00</u>	<u>38.282</u>	<u>26.465</u>	<u>21.767</u>	<u>17.760</u>	<u>12.871</u>
		<u>2.50</u>	<u>48.448</u>	<u>32.917</u>	<u>26.818</u>	<u>21.661</u>	<u>15.442</u>
	Степень расширения газа	0.00	<u>3.712</u>	<u>3.695</u>	<u>3.675</u>	<u>3.683</u>	<u>3.693</u>
	<u>в турбине</u>	<u>0.50</u>	<u>3.713</u>	<u>3.711</u>	<u>3.695</u>	<u>3.675</u>	<u>3.687</u>
	$-\kappa_{\Gamma}$	<u>1.00</u>	<u>3.716</u>	<u>3.714</u>	<u>3.712</u>	<u>3.711</u>	<u>3.688</u>
<u>30</u>	$L_{\rm T}$ $L_{\rm T}$ $\kappa_{\rm F}-1$	<u>1.50</u>	<u>3.724</u>	<u>3.720</u>	<u>3.718</u>	<u>3.716</u>	<u>3.714</u>
	$\pi_{\mathrm{T}}^* = \left(1 - \frac{L_{\mathrm{T}}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma} T_{\Gamma}^* \eta_{\mathrm{T}}^*}\right)^{\frac{-\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}}$	<u>2.00</u>	<u>3.738</u>	<u>3.731</u>	<u>3.728</u>	<u>3.725</u>	<u>3.721</u>
	$\frac{1}{\kappa_{-1}}R_{\Gamma}T_{\Gamma}\eta_{T}$	<u>2.50</u>	<u>3.758</u>	<u>3.748</u>	<u>3.744</u>	<u>3.740</u>	<u>3.733</u>

Продолжение табл. 1.4 4 5 6 7 8 0.00 1018.0 1001.5 899.9 827.9 Температура газа за турбиной 951.5 0.50 1016.1 1019.8 1001.6 <u>951.7</u> 869.1 без учёта охлаждения ло-1.00 1011.1 1014.6 1016.5 1018.7 991.7 31 $T_4^* = T_{\Gamma}^* - \frac{L_{\Gamma}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma}}$ <u>1.50</u> 1004.5 <u>1007.7</u> 1009.5 <u>1011.4</u> <u>1014.6</u> 997.7 2.00 1002.2 1004.0 1006.8 1000.6 2.50 991.3 994.0 <u>995.4</u> <u>997.0</u> 999.6 994.7 897.1 825.4 948.6 0.00 1009.4 Температура газа за турбиной 994.8 948.7 0.50 1010.6 1008.1 при смешении охлаждаю-866.4 щего воздуха с потоком газа 1.00 1008.4 1009.8 1004.8 1007.1 986.1 $T_{\rm T}^{*'} = \frac{c_{\rm pr} g_{\rm r} T_4^* + c_{\rm pB} g_{\rm OXJ} T_{\rm K}^*}{c_{\rm p \ cM} (g_{\rm r} + g_{\rm OXJ})}$ 32 1.50 1000.9 1002.7 1003.8 1005.0 1007.1 2.00 2.50 997.5 998.8 999.6 1000.6 1002.2 996.1 996.6 997.2 995.3 998.4 Полное давление газа на вы-0.00 3.8917 2.7262 2.0848 1.5593 0.9894 1.8459 2.5495 ходе из турбины <u>0.50</u> 2.4359 $p_{\rm T}^* = \frac{p_{\rm \Gamma}^*}{\pi_{\rm T}^*} \frac{*10^5 \,\mathrm{H/M^2}}{}$ 1.00 3.0653 3.5481 33 7.3529 1.50 5.1792 4.3029 2.6152 2.00 10.242 7.0928 5.8387 4.7676 3.4590 2.50 12.893 8.7817 7.1633 5.7925 4.1364 Располагаемая степень пони-0.00 3.841 4.450 4.461 4.437 4.453 жения давления газа в РС 0.50 4.089 4.889 5.212 5.252 5.196 $\pi_{\rm cp} = \frac{p_{\rm T}}{p_{\rm H}}$ 1.00 5.050 <u>5.973</u> <u>6.558</u> 7.254 <u>8.128</u> 34 8.454 7.257 9.206 11.770 10.096 1.50 2.00 10.108 11.578 12.492 13.566 15.567 14.334 12.725 15.326 16.482 18.616

	Скорость истечения газа из РС	0.00	806.70	836.28	817.14	<u>793.46</u>	<u>761.77</u>
	2 " " *	<u>0.50</u>	821.72	864.39	871.42	<u>852.58</u>	<u>812.56</u>
<u>35</u>	$2c_{\mathbf{p}\Gamma}R_{\Gamma}T_{\mathrm{T}}^{*}$	1.00	868.91	905.11	924.13	943.83	<u>952.86</u>
		1.50	939.54	<u>967.58</u>	982.53	<u>998.17</u>	<u>1023.0</u>
	$C_{-} = \emptyset_{-} $	2.00	994.40	<u>1016.1</u>	1027.9	1040.2	<u>1060.2</u>
	$\begin{pmatrix} c_{\rm c} & \varphi_{\rm c} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & \kappa_{\rm r} \end{pmatrix}$	2.50	1028.1	<u>1045.4</u>	1054.9	1064.9	1081.3
	$c_{c} = \varphi_{c} \sqrt{\frac{2c_{p\Gamma}R_{\Gamma}T_{T}^{*}}{\left[1 - \left(\frac{1}{\pi_{cp}}\right)^{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}}\right]}}$						
	('F')						
	<u>Тяга ТРД при полном</u>	0.00	<u>100000</u>	<u>72927</u>	<u>55580</u>	<u>41533</u>	<u>26401</u>
	расширении газа в РС	<u>0.50</u>	<u>86036</u>	<u>66935</u>	<u>55563</u>	<u>42047</u>	<u>26217</u>
	$P = G_{\rm B}(g_{\rm \Gamma} + g_{\rm OXJI})c_{\rm C} - G_{\rm B}V$	<u>1.00</u>	<u>86261</u>	<u>67697</u>	<u>59332</u>	<u>51599</u>	<u>38099</u>
<u>36</u>	$\frac{B}{H}$	<u>1.50</u>	<u>100537</u>	<u>79365</u>	<u>69663</u>	<u>60621</u>	<u>48358</u>
	<u> 11</u>	<u>2.00</u>	<u>101673</u>	<u>82659</u>	<u>73336</u>	<u>64357</u>	<u>51790</u>
		<u>2.50</u>	<u>69844</u>	<u>64035</u>	<u>59268</u>	<u>53807</u>	<u>45011</u>
	Удельная тяга ТРД	0.00	<u>805.99</u>	<u>835.69</u>	<u>815.62</u>	<u>791.00</u>	<u>758.18</u>
	$P - P + H \cdot c$	<u>0.50</u>	<u>650.51</u>	<u>701.69</u>	<u>712.63</u>	<u>697.01</u>	<u>661.96</u>
	$P_{\rm YJ} = \frac{P}{G_{\rm B}}, \frac{\rm H \cdot c}{\rm \kappa \Gamma}$	<u>1.00</u>	<u>526.40</u>	<u>578.04</u>	<u>606.61</u>	<u>635.09</u>	<u>656.93</u>
<u>37</u>	B M	<u>1.50</u>	<u>424.75</u>	<u>477.29</u>	<u>594.95</u>	<u>533.63</u>	<u>578.78</u>
		2.00	<u>306.35</u>	<u>360.73</u>	<u>389.38</u>	419.13	466.02
		<u>2.50</u>	165.85	224.04	<u>254.67</u>	<u>286.44</u>	<u>336.49</u>

Примечание: В пункте 32: $c_{\rm pr}$ =0.9+3*10⁻⁴ $T^*_{\underline{4}}$; $c_{\rm ps}$ =0.9+3*10⁻⁴ $T^*_{\underline{\kappa}}$; $c_{\rm pcm}$ =0.9+3*10⁻⁴ $T^*_{\underline{\tau}_{\underline{\lambda}}}$. Отформатировано

			Продолжение табл.					
1	2	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	_8	
	Удельный расход топлива ТРД	0.00	0.0854	0.0831	0.0801	0.0770	0.0725	
	$g = 3600g_{\rm T}(1-g_{\rm OXII}-g_{\rm OTO})$	<u>0.50</u>	0.1034	<u>0.1001</u>	0.0976	0.0939	0.0882	
	$C_{\rm yd} = \frac{3600g_{\rm T}(1-g_{\rm OXJ}-g_{\rm OTG})}{P_{\rm yd}}$	<u>1.00</u>	<u>0.1191</u>	<u>0.1139</u>	<u>0.1115</u>	<u>0.1092</u>	<u>0.1045</u>	
<u>38</u>	уд	<u>1.50</u>	0.1299	<u>0.1238</u>	0.1209	<u>0.1181</u>	<u>0.1141</u>	
	<u>ΚΓ</u>	<u>2.00</u>	<u>0.1461</u>	<u>0.1374</u>	0.1335	<u>0.1298</u>	<u>0.1246</u>	
	Н∙ч	<u>2.50</u>	0.1892	<u>0.1670</u>	0.1588	<u>0.1517</u>	<u>0.1426</u>	
	Часовой расход топлива ТРД	0.00	<u>8537</u>	<u>6063</u>	<u>4449</u>	<u>3196</u>	<u>1915</u>	
	$G_{\text{TH}} = P \cdot C_{\text{VЛ}}$, кг/ч	<u>0.50</u>	<u>8896</u>	<u>6697</u>	<u>5422</u>	<u>3947</u>	<u>2311</u>	
		<u>1.00</u>	<u>10271</u>	<u>7714</u>	<u>6616</u>	<u>5632</u>	<u>3980</u>	
<u>39</u>		<u>1.50</u>	<u>13056</u>	<u>9824</u>	<u>8422</u>	<u>7160</u>	<u>5516</u>	
		<u>2.00</u>	<u>14852</u>	<u>11359</u>	<u>9791</u>	<u>8354</u>	<u>6451</u>	
		<u>2.50</u>	<u>13214</u>	<u>10695</u>	<u>9410</u>	<u>8161</u>	<u>6416</u>	
	Располагаемая энергия топли-	0.00	<u>864.76</u>	<u>870.69</u>	<u>814.34</u>	<u>759.23</u>	<u>685.89</u>	
	ва в ТРД	<u>0.50</u>	<u>845.04</u>	<u>882.56</u>	<u>871.44</u>	<u>815.97</u>	<u>727.92</u>	
	$q_{ m KC}$ кДж	<u>1.00</u>	<u>786.81</u>	<u>828.72</u>	<u>849.92</u>	<u>871.33</u>	<u>858.72</u>	
<u>40</u>	$q_{\rm O} = \frac{q_{\rm KC}}{\eta_{\rm \Gamma}}, \frac{\kappa \mu_{\rm K}}{\kappa \Gamma}$	<u>1.50</u>	<u>691.77</u>	<u>741.28</u>	<u>766.21</u>	<u>791.30</u>	<u>829.31</u>	
		<u>2.00</u>	<u>560.69</u>	<u>621.36</u>	<u>651.78</u>	<u>682.29</u>	<u>728.30</u>	
		<u>2.50</u>	<u>392.82</u>	<u>468.60</u>	<u>506.44</u>	<u>544.29</u>	<u>601.13</u>	
	Эффективная работа на валу	0.00	<u>2039</u>	<u>1998</u>	<u>1889</u>	<u>1790</u>	<u>1651</u>	
4.1	<u>турбокомпрессора</u>	0.50	<u>2036</u>	<u>2043</u>	<u>1998</u>	<u>1890</u>	<u>1730</u>	
<u>41</u>	$I = (1-n)I \xrightarrow{\textstyle \angle I \times }$	1.00	<u>2027</u>	<u>2033</u>	<u>2037</u>	<u>2040</u>	<u>1975</u>	
	$L_{e} = (1 - \eta_{\text{MeX}}) L_{\text{T}}, \frac{\mathcal{H}^{\mathcal{K}}}{\kappa \Gamma}$	1.50	<u>2018</u>	<u>2022</u>	<u>2025</u>	<u>2028</u>	<u>2033</u>	
		2.00	<u>2010</u>	<u>2013</u>	<u>2015</u>	<u>2017</u>	<u>2021</u>	
		2.50	2005	<u>2007</u>	2008	2009	2012	
	<u>Работа цикла ТРД</u>	<u>0.00</u>	<u>326848</u>	<u>351189</u>	<u>334507</u>	<u>314634</u>	<u>289067</u>	

	$L_{\text{II}} = L_{\text{e}} + \frac{P_{\text{y}\text{I}}(P_{\text{y}\text{I}} + 2V)}{2} \frac{\text{Дж}}{\text{кг}}$	0.50	<u>324290</u>	<u>362091</u>	<u>368656</u>	<u>352154</u>	<u>318478</u>
42	$L_{\text{II}} = L_{\text{e}} + \frac{2}{\text{K}\Gamma}$	1.00 1.50	319688 309015	357608 348279	377956 369156	399344 390973	411575 425676
		2.00	<u>257416</u>	301223	324226	348067	385603
		<u>2.50</u>	<u>156838</u>	208883	<u>235877</u>	<u>263616</u>	<u>306819</u>
	Внутренний (эффективный)	<u>0.00</u>	<u>0.378</u>	<u>0.403</u>	<u>0.411</u>	0.414	<u>0.421</u>
	<u>КПД ТРД</u>	<u>0.50</u>	<u>0.384</u>	<u>0.410</u>	<u>0.423</u>	<u>0.432</u>	<u>0.438</u>
	L_{II}	<u>1.00</u>	<u>0.406</u>	0.432	<u>0.445</u>	0.458	<u>0.479</u>
<u>43</u>	$\eta_{\mathrm{BH}} = \frac{L_{\mathrm{II}}}{q_{o}}$	<u>1.50</u>	<u>0.447</u>	<u>0.470</u>	0.482	0.494	<u>0.513</u>
		<u>2.00</u>	<u>0.459</u>	<u>0.485</u>	0.497	<u>0.510</u>	<u>0.529</u>
		<u>2.50</u>	0.399	<u>0.446</u>	<u>0.466</u>	0.484	<u>0.510</u>
	<u>Тяговый (полётный) КПД ТРД</u>	0.00	0.000	0.000	0.000	0.000	0.000
	$P_{V \square} V$	<u>0.50</u>	<u>0.341</u>	<u>0.314</u>	<u>0.306</u>	<u>0.305</u>	0.307
	$\eta_{\text{TM}\Gamma} = \frac{P_{\text{y}}}{L_{\text{II}}}$	1.00	0.560	<u>0.525</u>	0.508	0.490	<u>0.471</u>
<u>44</u>		<u>1.50</u>	0.702	0.667	0.649	0.631	0.602
		2.00	0.810	0.777	0.760	0.742	0.713
		<u>2.50</u>	0.900	0.870	0.854	0.837	0.809
	Полный (общий) КПД ТРД	0.00	0.000	0.000	0.000	0.000	0.000
	$\eta_{\Pi} = \eta_{BH} \eta_{TS\Gamma}$	0.50	0.131	0.129	0.129	0.132	0.134
4.5		1.00	0.228	0.227	0.226	0.225	0.226
<u>45</u>		<u>1.50</u>	0.313	0.313	0.313	0.312	0.309
		2.00	0.372	0.377	0.378	0.378	0.378
		<u>2.50</u>	0.359	<u>0.388</u>	0.398	<u>0.405</u>	<u>0.413</u>

Продолжение табл. 1.4 7 1.4624 8 6 0.00 1.4016 1.4636 1.4646 1.4639 Приведенная скорость в выход ном сечении РС 0.50 1.4286 1.5008 1.5132 1.6395 1.7384 1.6064 1.7119 1.7949 1.6394 1.7381 1.8156 1.6749 1.7795 1.8488 1.5744 1.6868 1.7752 46 2.00 2.50 1.8621 1.7996 1.8292 1.8452 1.8895 $\kappa_{\Gamma} + 1$ 3.0846 3.3375 3.3416 3.3324 3.3387 $y(\lambda_{c}) = \left(\frac{\kappa_{\Gamma} + 1}{2}\right)^{\frac{1}{\kappa_{\Gamma} - 1}}.$ 3.1921 0.50 3.5010 3.6126 3.6262 3.6074 1.00 1.50 3.5574 4.2056 <u>4.4149</u> 4.0216 4.2049 <u>3.8539</u> 4.4884 4.6493 4.8257 <u>5.1255</u> 2.00 4.8281 5.0929 5.2440 5.4101 <u>5.6930</u> <u>5.2810</u> <u>5.6606</u> 5.8125 <u>6.0716</u> $F_{\rm C} = \frac{G_{\rm B}(g_{\Gamma} + g_{\rm OXJI})\sqrt{T_{\rm T}^*}}{m_{\Gamma}p_{\rm H}y(\lambda_{\rm C})}, M^2 = \frac{0.00}{\frac{1.50}{1.50}}$ $m_{\Gamma} = 0.0396 \, ({\rm KF \cdot K/Дж})^{0.5}$ 0.3176 0.3390 0.3381 0.3374 0.3383 0.3268 0.3562 0.3668 0.3668 0.3652 0.3623 0.3954 0.4160 0.4400 0.4675 0.5055 0.5339 0.4409 0.4809 0.6090 0.6983 0.5360 0.6408 0.5814 $m_{\Gamma} = 0.0396 \left(\kappa_{\Gamma} \cdot \text{К/Дж} \right)^{0.5}$ 0.6188 0.6656 0.6938 0.7262 0.7845 0.00 0.657 Диаметр обреза 0.636 0.656 0.656 0.657 реактивного сопла 0.645 0.674 0.684 0.682 0.684

	$\overline{\Delta F}$	1.00	0.679	0.710	0.728	0.749	0.772
<u>49</u>	$D_C = \sqrt{\frac{4\Gamma_C}{M}}$, M	<u>1.50</u>	0.749	0.783	0.802	0.825	0.864
	$\nabla \pi$	2.00	0.826	0.861	0.881	0.903	0.943
		2.50	0.888	0.921	0.940	0.962	1.000

1.2. Двухвальный турбореактивный двигатель.

Исходными данными для выполнения расчёта высотно-скоростных характеристик двухвального ТРД (рис.1.2) являются результаты газодинамического расчёта, приведенные в работе [1]:

- тяга двигателя Р=100 кН; - общая степень повышения давления воздуха в

компрессоре $\pi_{\kappa\Sigma}^* = 15$; - температура газа перед турбиной $T_{\Sigma}^* = 1370$ K; - прототип двигатель РД-3M-500.

Хотя двигатель РД-3М-500 выполнен по одновальной схеме, ниже приводится метод расчёта высотно-скоростных характеристик двухвального ТРД.

Двигатель выполнен по двухвальной схеме с нерегулируемым компрессором (имеется лишь входной направляющий аппарат с поворотными лопатками на входе в компрессор ВД для улучшения запуска двигателя). Основные данные элементов проектируемого двигателя:

а) компрессор низкого давления

$$\pi_{\text{кнд}}^* = 3.873; \underline{T}_{\text{в}}^* = 288 \text{ K}; \underline{\eta}_{\text{кнд}}^* = 0.88; \underline{\eta}_{\text{о нд}} = 0.9; \underline{L}_{\text{кнд}} = 155366 \text{ Дж/кг}; \underline{T}_{\text{x}}^* = 442.82 \text{ K}; \underline{\eta}_{\text{s}}^* = 3.8652*10^5 \text{ H/m}^2; \underline{G}_{\text{B}} = 126.6 \text{ кг/c};$$

б) компрессор высокого давления
$$\pi^*_{\text{квд}} = 3.873; \underline{T^*_{\text{x}}} = 442.82 \text{ K; } \eta^*_{\text{квд}} = 0.87; \underline{\eta_{\text{o вд}}} = 0.89; \underline{L_{\text{кнд}}} = 241507 \text{ Дж/кг; } \underline{T^*_{\text{g}}} = 683.2 \text{ K;}$$

 $p^* = 14.9699*10^5 \text{ H/m}^2$; $G_B = 126.6 \text{ kg/c}$;

в) камера сгорания

$$\underline{T_{\underline{r}}^*}\!\!=\!\!1370\;\underline{\mathrm{K}};\,\underline{c_{\underline{n}}}\!\!=\!\!1.2423\;\frac{\mathrm{кДж}}{\mathrm{кr}\cdot\underline{\mathrm{K}}};\,\underline{q_{\mathtt{BH}}}\!\!=\!\!853.22\;\underline{\mathrm{кДж/kr}};\,\underline{G_{\underline{r}}}\!\!=\!\!8657\;\underline{\mathrm{kr/y}};\,\underline{g_{\underline{r}}}\!\!=\!\!0.0201;$$

$$R_{\rm E} = 287.5 \frac{\text{Дж}}{\text{K} \cdot \text{K}} : T_{\rm K}^* = 683.2 \text{ K}; p_{\rm E}^* = 14.2963*10^5 \text{ H/M}^2; \sigma_{\rm KC} = 0.955;$$

г) турбина высокого давления

 $\overline{L_{\text{твд}}}$ =251787 Дж/кг; $g_{\text{охд}}$ =0.04; $g_{\text{отб}}$ =0.015; $\pi^*_{\text{твд}}$ =2.164; $\eta^*_{\text{твд}}$ =0.91; T^*_{y} =1152.7 K; $T_{\text{vv}}^* = 1135.6 \text{ K}; p_{\text{v}}^* = 6.6054*10^5 \text{ H/m}^2;$

д) турбина низкого давления

 $L_{\text{THJ}} = 154747 \, \text{Дж/кг}; \, \pi^*_{\text{THJ}} = 1.735; \, \eta^*_{\text{THJ}} = 0.92; \, T^*_{\text{T}} = 1002.0 \, \text{K};$

 $p_{T}^{*}=3.807*10^{5} \text{ H/m}^{2}$;

е) выходное сопло

 π_{cp} =3.757; c_c =562 M/c; p_c =2.0572*10⁵ H/m²; ϕ_{pc} =0.98; F_c = $F_{\kappa p}$ =0.2736 m²; D_c =0.5902 m;

Рис. 1.2. Схема двухвального турбореактивного двигателя:

- 1 входное устройство для дозвуковых скоростей полёта; 2 компрессор низкого давления; 3 компрессор высокого давления; 4 камера сгорания;
- 5 турбина привода компрессора ВД; 6 турбина привода компрессора НД;
- 7 выходное сопло;

н, вх, в, х, к, г, у, т, с – обозначения контрольных сечений потока воздуха и газа

$$P_{yz} = 789.9 \frac{\text{H} \cdot \text{c}}{\text{K}\Gamma} : C_{yz} = 0.08657 \frac{\text{K}\Gamma}{\text{H} \cdot \text{H}} : \frac{1}{100} = \frac{1}{100$$

Принимаем величину относительной плотности тока на входе в компрессор НД $q(\lambda_{\text{в расч}})$ =0.85 на расчётном режиме.

Задаёмся осевой скоростью на выходе из компрессора высокого давления $\underline{c_{\kappa}}$ =110 м/с. Приведенная скорость и относительная плотность тока в данном сечении рассчитываются по формулам:

рассчитываются по формулам:
$$\lambda_{\kappa \text{ pacч}} = \frac{c_{\kappa}}{\sqrt{\frac{2\kappa RT_{\kappa}^{*}}{\kappa+1}}} = \frac{110}{18.32\sqrt{683..2}} = 0.3067;$$

$$\frac{\sqrt{\kappa+1}}{q(\lambda_{\kappa \text{ pacy}}) = (\frac{k+1}{2})^{\frac{1}{k-1}} \lambda_{\kappa \text{ pacy}} (1 - \frac{k-1}{k+1} \lambda_{\kappa \text{ pacy}}^2)^{\frac{1}{k-1}} =$$

$$=1.2^{2.5} \cdot 0.3067 \cdot (1 - \frac{0.4}{2.4} \cdot 0.3067^2)^{2.5} = 0.4651$$

Осевая скорость на входе в компрессор высокого давления $c_{\underline{x}}$ =139.4 м/с,

приведенная скорость равна $\lambda_{\underline{x}}$ =0.3615, относительная плотность тока $q(\lambda_{\underline{x}})$ =0.5832,

Отформатировано

Двигатель — прототип РД-3М-500 установлен в 1957 году на первый реактивный самолёт Ту-104, высота крейсерского полёта которого равна 10 км, а крейерская скорость 800 км/ч. Из таблицы стандартной атмосферы [2] находим температуру воздуха на этой высоте $T_{\rm H}$ =223.252 К. Соответственно, скорость звука равна

$$a = \sqrt{\kappa R T_{\scriptscriptstyle H}} = \sqrt{1.4 \cdot 287 \cdot 223.252} = 275.34$$
 м/с , а число

$$M_{\rm kp} = \frac{V_{\rm kp}}{a} = \frac{800}{3.6 \cdot 275.34} = 0.807$$
. То есть полёты Ту-104 происходят с

дозвуковыми скоростями. Поэтому для проектируемого двигателя принимаем закон управления $n_{\text{вд}}$ = const.

Определяются значения констант:

а) показатель политропы сжатия в компрессоре низкого и высокого давлений

$$\frac{\kappa-1}{\kappa\eta_{0 \text{ H/I}}} = \frac{n_1-1}{n_1}; \quad \frac{1.4-1}{1.4\cdot0.9} = \frac{n_1-1}{n_1}; \quad n_1 = 1.4651;$$

$$\frac{\kappa-1}{\kappa\eta_{0 B, \text{B}}} = \frac{n_2-1}{n_2}; \quad \frac{1.4-1}{1.4\cdot0.9} = \frac{n_2-1}{n_2}; \quad n_2 = 1.4651;$$

б) в уравнении совместной работы элементов турбокомпрессора высокого давления

$$\frac{\pi_{\text{кнд}}^*\pi_{\text{квд}}^*}{q(\lambda_{\text{B}})} = C_2 \sqrt{\pi_{\text{кнд}}^{\frac{n_1-1}{n_1}}} - 1 : \frac{3.873 \cdot 3.873}{0.65} = C_2 \sqrt{3.873^{\frac{1.4651-1}{1.4651}}} - 1;$$

 $C_2 = 31.4906$

 в) в уравнении неразрывности между входом и выходом из компрессора низкого давления

$$\frac{m_{\rm B}F_{\rm B}p_{\rm B}^*q(\lambda_{\rm B})}{\sqrt{T_{\rm B}^*}} = \frac{m_{\rm B}F_{\rm X}p_{\rm X}^*q(\lambda_{\rm X})}{\sqrt{T_{\rm X}^*}}; \frac{F_{\rm B}}{F_{\rm X}} = \sqrt{\frac{T_{\rm B}^*}{T_{\rm X}^*}} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{1}{\pi_{\rm KHJ}^*} \frac{n_1 - 1}{n_1}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda$$

$$=\frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})}\pi_{\rm KHJ}^*\frac{1}{n_{\rm I}}=C_3;\,C_3=\frac{0.5832}{0.65}\cdot 3.873^{\frac{1}{1.4651}}=2.26086$$

г) в уравнении совместной работы элементов турбокомпрессора высокого авления

$$\frac{\pi_{\text{KB,I}}^*}{q(\lambda_{\text{X}})} = C_1 \sqrt{\pi_{\text{KB,I}}^* - 1}, \quad \frac{\frac{3.873}{0.5832}}{0.5832} = C_1 \sqrt{3.873} \frac{\frac{1.4651 - 1}{1.4651}}{1.4651} - 1; \quad C_1 = 9.0622898;$$

д) в уравнении для адиабатной работы компрессора низкого давления

$$C_{10} = T_{\text{H}}^* (\pi_{\text{кнд}}^{\frac{\kappa - 1}{\kappa}} - 1) = 288.15 \cdot (3.873^{\frac{1.4 - 1}{1.4}} - 1) = 136.11$$

<u>Принимаем следующие режимы работы ТРД при расчёте высотно-скоростных характеристик:</u>

- а) взлёт воздушного судна (H=0, $n_{\text{вд}}=n_{\text{вд }max}$);
- б) набор высоты (H=4; 6; 8 км, $n_{\text{вд}}$ =0.95 $n_{\text{вд max}}$);
- в) крейсерский полёт (эшелон) (*H*=11 км, *n*_{вд}=0.85 *n*_{вд тах}).

Результаты расчёта высотно-скоростных характеристик двухвального ТРД при законе управления n_{so} =const приведены в таблице 1.5.

Отформатировано

Отформатировано

Таблица 1.5

Высс	Высотно-скоростные характеристики двухвального ТРД с нерегулируемым соплом									
<u>No</u>	Наименование параметра,	$M_{\rm H}$	Выс	ота полёта,	КМ					
<u>π/π</u>	расчётная формула		0	4	<u>6</u>	8	<u>11</u>			
<u>1</u>	2	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	8			
	Температура наружного возду	<u>0.00</u>	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>			
	ха по ГОСТ 4401-81	<u>0.20</u>	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>			
		<u>0.40</u>	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	236.15	<u>216.65</u>			
1	$T{\rm H} = 288.15 - 6.5 \cdot H$	0.60	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>			
		<u>0.80</u>	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>			
		1.00	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	<u>236.15</u>	<u>216.65</u>			
	Давление наружного воздуха	0.00	<u>1.0132</u>	<u>0.6126</u>	0.4674	0.3514	0.2222			
	<u>по ГОСТ 4401-81</u>	<u>0.20</u>	<u>1.0132</u>	<u>0.6126</u>	0.4674	0.3514	0.2222			
		<u>0.40</u>	<u>1.0132</u>	<u>0.6126</u>	0.4674	0.3514	<u>0.2222</u>			
_2	$p_H = 1.01325 \cdot (1 - 1.01325)$	0.60	1.0132	0.6126	0.4674	0.3514	0.2222			
		0.80	1.0132	0.6126	0.4674	0.3514	0.2222			
	$\left(-\frac{H}{}\right)^{5.2532} \cdot 10^{5} \cdot \frac{H}{}$	1.00	1.0132	0.6126	0.4674	0.3514	0.2222			
	$\left[-\frac{H}{44.368}\right]^{5.2532} \cdot 10^5, \frac{H}{M^2}$									
	Температура торможения на	0.00	<u>288.15</u>	<u>262.15</u>	<u>249.15</u>	236.15	<u>216.65</u>			

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0.00 306.90 281.02 267.09 235.13 232.23 0.80 325.03 295.71 281.04 266.38 244.38 1.00 345.78 314.58 298.90 283.38 259.98
<u>1.00</u> <u>345.78</u> <u>314.58</u> <u>298.90</u> <u>283.38</u> <u>259.98</u>
Коэффициент восстановления 0.00 0.990 0.990 0.990 0.990 0.990
<u>полного давления во входном</u> <u>0.20</u> <u>0.983</u> <u>0.983</u> <u>0.983</u> <u>0.983</u> <u>0.983</u>
<u>устройстве</u> <u>0.40</u> <u>0.977</u> <u>0.977</u> <u>0.977</u> <u>0.977</u> <u>0.977</u>
$ \begin{vmatrix} \underline{6} \\ 0.60 \end{vmatrix} \begin{vmatrix} \underline{0.970} \\ 0.970 \end{vmatrix} $
$\sigma_{\rm BX} = \sigma_{\rm BX \ pac 4} - 0.033 M_{\rm H}$ $\frac{0.80}{1.00}$ $\frac{0.964}{0.964}$ $\frac{0.964}{0.965}$ $\frac{0.964}{0.965}$ $\frac{0.964}{0.965}$
1.00 0.957 0.957 0.957 0.957 0.957
<u>Полное давление на входе в</u> <u>0.00 1.0031 0.6065 0.4627 0.3479 0.2200</u>
<u>КНД</u> <u>0.20 1.0246 0.6195 0.4726 0.3554 0.2247</u>
<u>0.40 1.1051 0.6682 0.5098 0.3833 0.2423</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$P_{B} = P_{H} O_{BX} O_{A} O$
<u>M</u> ² 1.00 1.8355 1.1098 0.8467 0.6367 0.4025

Продолжение табл.1.5

	продолжение табл.т.э									
<u>1</u>	2	3	4	5	<u>6</u>		<u>8</u>			
	Режим работы двигателя:	<u>0.00</u>	<u>1.0000</u>	<u>0.9500</u>	0.9500	<u>0.9500</u>	<u>0.8500</u>			
_8	B=1.00 — взлётный	0.20	1.0000	0.9500	0.9500	0.9500	0.8500			
	<u>В=0.95 – номинальный</u>	0.40	1.0000	0.9500	0.9500	0.9500	0.8500			
	<u>В=0.85 – крейсерский</u>	0.60	1.0000	9.9500	0.9500	0.9500	0.8500			
		0.80	1.0000	0.9500	0.9500	0.9500	0.8500			
		1.00	1.0000	0.9500	0.9500	0.9500	0.8500			
	Относительное изменение при	0.00	1.0000	0.9960	1.0079	1.0162	0.9874			
_9	веденной частоты вращения	0.20	0.9960	0.9920	1.0047	1.0168	0.9851			
	ротора ВД	0.40	0.9844	0.9871	0.9982	1.0090	0.9851			
	*	0.60	0.9856	0.9833	0.9867	1.0015	0.9747			
	$\frac{-}{n_{\text{BH, HD}}} = B \cdot \frac{T_{\text{H pacy}}^*}{T_{\text{H pacy}}}$	0.80	0.9719	0.9694	0.9833	0.9881	0.9607			
	$n_{\rm BJ} _{\rm \Pi p} = B_{\rm V} \frac{11 \rm pac T}{T_{\rm H}^*}$	1.00	0.9540	0.9518	0.9665	0.9811	0.9425			
	V 1 H									
	Степень повышения давления	0.00	<u>3.873</u>	<u>3.840</u>	<u>3.938</u>	<u>4.006</u>	<u>3.769</u>			
	воздуха в КВД	<u>0.20</u>	<u>3.840</u>	<u>3.808</u>	<u>3.912</u>	<u>4.011</u>	<u>3.751</u>			
		<u>0.40</u>	<u>3.745</u>	<u>3.767</u>	<u>3.858</u>	<u>3.946</u>	<u>3.750</u>			
<u>10</u>		<u>0.60</u>	<u>3.755</u>	<u>3.736</u>	<u>3.764</u>	<u>3.885</u>	<u>3.665</u>			
		0.80	<u>3.642</u>	<u>3.622</u>	<u>3.736</u>	<u>3.775</u>	<u>3.550</u>			

	$\pi_{KBJ} = f(\overline{n_{BJ} \Pi p},$	<u>1.00</u>	<u>3.496</u>	<u>3.477</u>	3.598	<u>3.718</u>	<u>3.401</u>
	$\kappa_{\text{КВД}} = J \ (\kappa_{\text{ВД}} \text{ пр})$						
	* квд расч)						
	«квд расч)						
1		0.00	0.5022	0.5005	0.5005	0.5041	0.5747
	Относительная плотность тока	0.00	0.5832	0.5805	0.5885	0.5941	0.5747
11	на входе в КВД	0.20	0.5805	0.5778	0.5864	0.5946	0.5732
	$\pi_{\mathrm{KB}\Pi}^{\tau}$	0.40	0.5726	0.5745	0.5819	0.5892	0.5731
	$q(\lambda_{\rm X}) = \frac{1}{\sqrt{n_{\rm X} + 1}}$	0.60	0.5735	0.5719	0.5742	0.5842	0.5661
	$q(\lambda_{X}) = \frac{\pi_{KBA}}{9.0624\sqrt{\pi_{KBA}^{*} \frac{n_{2}-1}{n_{2}} - 1}}$	0.80	0.5642 0.5523	0.5626 0.5508	0.5719 0.5606	0.5751	0.5567
	9.0624 $\sqrt{\pi_{KBД}}$ n_2 -1	<u>1.00</u>	0.3323	<u>0.3308</u>	<u>0.3000</u>	<u>0.5705</u>	0.5445
	-						
	Степень повышения давления	0.00	3.8729	3.9598	4.3478	4.6841	3.5373
	воздуха в КНД	0.20	3.8385	3.8297	4.2216	4.7316	3.4624
	$\pi_{KHZ}^* = \left(1 + \frac{136.1096 \cdot B}{T_H^*}\right)^{\frac{K}{K-1}}$	0.40	3.6437	3.5564	4.0138	4.3944	3.3884
<u>12</u>		0.60	3.3952	3.3571	3.6922	4.1166	3.2029
		0.80	3.1499	3.1162	3.3568	3.7401	<u>2.9758</u>
		1.00	<u>2.8878</u>	2.8567	3.0666	3.3154	2.7367
	Относительная плотность тока	0.00	<u>0.6500</u>	0.6524	<u>0.7052</u>	<u>0.7491</u>	0.6028
	на входе в КНД	<u>0.20</u>	<u>0.6414</u>	<u>0.6351</u>	<u>0.6887</u>	<u>0.7546</u>	0.5932
	$q(\lambda_{6}) = \frac{\pi_{\text{KHД}}^{*} \pi_{\text{KBД}}^{*}}{31.4906 \sqrt{\pi_{\text{KHД}}^{*} \frac{n_{1} - 1}{n_{1}} - 1}}$	<u>0.40</u>	<u>0.6082</u>	<u>0.6041</u>	<u>0.6603</u>	<u>0.7110</u>	<u>0.5866</u>
<u>13</u>		<u>0.60</u>	<u>0.5879</u>	<u>0.5817</u>	<u>0.6157</u>	<u>0.6744</u>	<u>0.5575</u>
	n_1-1	<u>0.80</u>	<u>0.5496</u>	<u>0.5437</u>	<u>0.5817</u>	<u>0.6217</u>	<u>0.6216</u>
	$31.4906\sqrt{\pi_{KHJ}^*} n_1 = 1$	<u>1.00</u>	<u>0.5067</u>	<u>0.5016</u>	<u>0.5360</u>	<u>0.5753</u>	<u>0.4816</u>
	у кид						
	Температура торможения на	0.00	442.89	405.78	397.27	385.56	323.55
	выходе из КНД	0.20	445.17	404.71	396.72	389.89	323.93
		0.40	448.30	404.72	399.71	389.91	329.38
<u>14</u>	$T_{\mathbf{X}}^* = T_{\mathbf{B}}^* \pi_{\mathbf{KH}\mathbf{A}}^{-1}$	0.60	455.35	412.78	404.34	396.71	336.08
	$T_{\rm x}^* = T_{\rm p}^* \pi_{\rm run}^{*}$	0.80	467.86	424.20	412.79	404.92	345.48
	л в кнд	1.00	484.19	438.99	426.72	414.59	357.88

Продолжение табл.1.5 4 6 7 622.00 598.98 493.04 0.00 680.74 613.86 Температура торможения на 682.41 681.72 выходе из КВД 611.69 605.98 618.70 $T_{\mathrm{K}}^* = T_{\mathrm{X}}^* \pi_{\mathrm{KBJ}}^{\frac{n_2 - 1}{n_2}}$ 616.62 627.25 638.27 613.61 615.89 602.89 610.36 693.03 507.60 0.60 705.21 627.26 516.53 0.80 617.32 527.83 0.7781 640.70 1.00 720.38 652.03 629.02 Полное давление на выходе 0.00 3.8851 2.4016 2.0118 1.6298 $p_{\rm X} = p_{\rm B} \pi_{\rm KHJ} \cdot 10^5, \frac{\rm H}{\rm M}^2$ 0.20 3.9330 2.3725 1.9952 1.6816 0.7780 0.40 4.0267 2.3763 2.0461 1.6844 0.8212 16 0.60 4.2573 2.5452 2.1356 1.7904 0.8807 2.3045 1.9307 0.80 4.6881 2.8042 0.9712 5.3007 2.5965 1.00 3.1704 2.1108 1.1016 0.00 0.20 15.046 15.104 9.2225 9.0337 7.9226 7.8045 6.5283 6.7452 2.9330 2.9181 Полное давление на выходе из КВД 17 0.40 15.078 8.9519 7.8936 6.6475 3.0796

	$p_{K}^{*} = p_{X}^{*} \pi_{KBJ}^{*} \cdot 10^{5}, \frac{H}{2}$	<u>0.60</u>	<u>15.984</u>	<u>9.5090</u>	<u>8.0386</u>	<u>6.9558</u>	<u>3.2279</u>
	$p_{\rm K} = p_{\rm X} n_{\rm KBJ} \cdot 10^{\circ}, \frac{1}{2}$	0.80	<u>17.073</u>	<u>10.156</u>	<u>8.6098</u>	<u>7.2885</u>	<u>3.4479</u>
	M	<u>1.00</u>	<u>18.529</u>	<u>11.023</u>	<u>9.3415</u>	<u>7.8477</u>	<u>3.7460</u>
	Удельная работа сжатия в КНД	0.00	<u>155440</u>	144273	148787	<u>150077</u>	107380
	_* _* Лж	0.20	155415	141095	146234	152530	106020
	$L_{KHJ} = c_{pB}(T_X^* - T_B^*), \frac{J\!\!/\!\!/}{K\!\!/\!\!\!/\!\!\!/}$	0.40	151606	134786	143231	146861	106269
18	KI	0.60	147112	132350	137871	144206	104299
		0.80	143472	129071	132345	139163	101549
		1.00	139028	124967	128311	131801	98344
	Удельная работа сжатия в КВД	0.00	238915	217200	217561	214386	170254
19		0.20	238301	214949	215939	217064	169684
	$L_{\text{KBJ}} = c_{\text{pB}}(T_{\text{K}}^* - T_{\text{X}}^*), \frac{\Pi_{\text{K}}}{\kappa_{\Gamma}}$	0.40	234467	212852	214859	213938	172510
		0.60	238746	215433	212496	214609	172286
		0.80	238417	215 435 215036	<u>212490</u> <u>215433</u>	213363	171822
		1.00	237252	213997	214948		
	0					215398	<u>170706</u>
	Относительное изменение	0.00	1.0000	0.9091	0.9106	0.8973	0.7126
	работы сжатия в КВД	0.20	0.9974	0.8997	0.9038	0.9085	0.7102
20	$\frac{L}{I}$ $L{\text{KBД}}$	0.40	0.9814	0.8909	0.8993	0.8955	0.7221
	$\overline{L}_{KBД} = \frac{L_{KBД}}{L_{KBД pacч}}$	0.60	0.9993	0.9017	0.8894	0.8983	0.7211
	квд рас т	0.80	0.9979	0.9001	0.9017	0.8930	<u>0.7192</u>
		<u>1.00</u>	0.9930	<u>0.8957</u>	<u>0.8997</u>	<u>0.9016</u>	<u>0.7145</u>
	Температура газа перед тур-	<u>0.00</u>	<u>1370.0</u>	<u>1245.4</u>	<u>1247.5</u>	<u>1229.3</u>	<u>976.28</u>
	биной ВД	<u>0.20</u>	<u>1366.4</u>	<u>1232.5</u>	<u>1238.2</u>	<u>1244.7</u>	<u>973.01</u>
	$T_{\Gamma}^* = T_{\Gamma}^* \operatorname{pacy} \overline{L}_{KBJ}$	<u>0.40</u>	<u>1344.5</u>	<u>1220.5</u>	<u>1232.0</u>	<u>1226.7</u>	<u>989.22</u>
	I _Г - I _Г расч L квд	<u>0.60</u>	<u>1369.0</u>	<u>1235.3</u>	<u>1218.5</u>	<u>1230.6</u>	<u>987.93</u>
		0.80	<u>1367.1</u>	<u>1233.0</u>	<u>1235.3</u>	<u>1223.4</u>	<u>985.27</u>
		1.00	<u>1360.4</u>	1227.1	1232.5	<u>1235.1</u>	<u>978.87</u>
	Расход воздуха через двига-	0.00	<u>112.36</u>	<u>72.23</u>	<u>62.00</u>	<u>51.46</u>	<u>25.95</u>
	<u>тель</u>	0.20	<u>112.93</u>	<u>71.12</u>	61.30	<u>52.84</u>	<u>25.86</u>
_22	*	0.40	113.66	70.82	62.16	52.46	27.06
	$G_{\rm B} = G_{\rm B \ pac \ mac \ mac$	0.60	119.41	<u>74.78</u>	63.65	54.80	28.38
	ob ob pace *	0.80	127.63	79.94	67.71	57.59	30.36
	$p_{ m \kappa}$ расч	1.00	138.85	86.98	73.54	61.72	33.09
	*						
	$T_{\Gamma \text{ pacy } \kappa \Gamma}$						
	$\left \cdot \right = \frac{1}{m^*}, \frac{M}{C}$						
	$\cdot \sqrt{\frac{T_{\Gamma \text{ pacy}}^*}{T_{\Gamma}^*}, \frac{\kappa\Gamma}{c}}$						
L		1	l	т	Трополо	· · · · · · · · · · · · · · · · · · ·	1.5
1	1 2	1 2	1		<u>Тродолже</u>		_
1	2	3	4	5	6	7	8
	Относительная плотность тока	0.00	0.3244	0.3352	0.3228	0.3212	0.3270
	на выходе из КВД	0.20	0.3252	0.3260	0.3235	0.3211	0.3275
<u>23</u>	$G_{-}\sqrt{T}^*$	0.40	0.3277	<u>0.3271</u>	0.3248	0.3226	<u>0.3275</u>
	$q(\lambda_{\rm K}) = \frac{G_{\rm B} \sqrt{T_{\rm K}^*}}{*}$	0.60	0.3274	0.3279	0.3272	0.3241	0.3299
	$m_{\rm B}F_{\rm K}p_{\rm K}^*$	0.80	<u>0.3305</u>	<u>0.3311</u>	0.3279	0.3269	0.3332
	D KI K	1.00	0.3349	0.3355	0.3318	0.3284	0.3379
	Средняя условная теплоём-	0.00	<u>1.2421</u>	<u>1.2113</u>	<u>1.2109</u>	1.2058	<u>1.1446</u>
	кость процесса подвода тепла	0.20	<u>1.2415</u>	<u>1.2084</u>	<u>1.2088</u>	<u>1.2095</u>	<u>1.1439</u>
	в камере сгорания	<u>0.40</u>	<u>1.2371</u>	<u>1.2058</u>	<u>1.2078</u>	<u>1.2056</u>	<u>1.1480</u>
<u>24</u>	$c_{\Pi} = 0.9 + 10^{-4} (2T_{\Gamma}^* + T_{K}^*),$	0.60	1.2431	1.2098	1.2053	1.2072	1.1483
	$c_{\Pi} = 0.9 \pm 10 (2I_{\Gamma} \pm I_{K}),$	0.80	1.2439	1.2104	1.2098	1.2064	1.1487
	кДж	1.00	1.2441	1.2106	1.2106	1.2099	1.1486
	κ Γ·Κ]
		1				1	1

0.00 856.11

Удельное количество тепла,

	подведенное к воздуху в камере	0.20	849.29	741.79	757.38	772.55	549.24
1	сгорания	0.40	819.90	728.19	746.94	752.17	560.32
<u>25</u>	<i>(</i> Т* Т* кДж	0.60	840.34	735.66	726.32	748.75	551.59
	$q_{\text{KC}} = c_{\Pi} (T_{\Gamma}^* - T_{K}^*), \frac{\kappa \Lambda \kappa}{\kappa \Gamma}$	0.80	823.40	719.97	735.65	731.27	538.44
		1.00	796.35	696.21	716.50	733.36	518.04
	Отношение расходов топлива	0.00	0.0200	0.0177	0.0179	0.0178	0.0129
	и воздуха в камере сгорания	0.20	0.0199	0.0173	0.0177	0.0181	0.0128
<u>26</u>		0.40	0.0192	0.0170	0.0175	0.0176	0.0131
	$g_{\rm T} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}}$	0.60	0.0196	0.0172	0.017	0.0175	0.0129
		0.80	0.0193	0.0168	0.0172	0.0171	0.0126
		1.00	0.0186	0.0163	<u>0.0167</u>	0.0171	0.0121
	Относительный расход газа	0.00	0.9820	0.9770	0.9777	0.9771	0.9724
	в турбине ВД	0.20	0.9823	0.9767	0.9770	0.9774	<u>0.9724</u>
27	$g{\Gamma} = (1 + g_{\rm T})(1 - g_{\rm OTO} -$	0.40	0.9841	0.9764	0.9768	<u>0.9769</u>	<u>0.9726</u>
	,	<u>0.60</u>	<u>0.9817</u>	<u>0.9766</u>	<u>0.9763</u>	<u>0.9768</u>	<u>0.9724</u>
	$-g_{\text{OXJ}}$)	<u>0.80</u>	<u>0.9816</u>	<u>0.9762</u>	<u>0.9766</u>	<u>0.9765</u>	<u>0.9721</u>
		<u>1.00</u>	<u>0.9818</u>	<u>0.9757</u>	<u>0.9761</u>	<u>0.9765</u>	<u>0.9717</u>
	Удельная работа расширения	0.00	<u>244522</u>	<u>223432</u>	<u>223741</u>	<u>220513</u>	<u>175958</u>
	газа в турбине ВД	0.20	<u>243825</u>	<u>221186</u>	<u>222124</u>	<u>223203</u>	<u>175385</u>
28	$L{\kappa_{\rm RH}}$ Дж	<u>0.40</u>	<u>239443</u>	<u>219096</u>	<u>221067</u>	<u>220092</u>	<u>178260</u>
	$L_{\text{ТВД}} = \frac{L_{\text{КВД}}}{g_{\Gamma} \eta_{\text{Mex}}}, \frac{\mathcal{I}_{\mathcal{K}}}{\kappa \Gamma}$	<u>0.60</u>	<u>244408</u>	<u>221714</u>	<u>218739</u>	<u>220800</u>	<u>178065</u>
		<u>0.80</u>	<u>244109</u>	<u>221386</u>	<u>221715</u>	<u>219606</u>	<u>177639</u>
		<u>1.00</u>	<u>242869</u>	<u>220437</u>	<u>221313</u>	<u>221690</u>	<u>176568</u>
	Полное давление газа на входе	0.00	14.444	<u>8.8536</u>	<u>7.6057</u>	<u>6.2672</u>	<u>2.8157</u>
	в турбину ВД	<u>0.20</u>	<u>14.500</u>	<u>8.6723</u>	<u>7.4923</u>	<u>6.4754</u>	<u>2.8014</u>
	$p_{\Gamma}^* = p_{K}^* \sigma_{KC} \cdot 10^5, \frac{H}{M^2}$	<u>0.40</u>	<u>14.475</u>	<u>8.5938</u>	<u>7.5779</u>	<u>6.3816</u>	<u>2.9564</u>
	$p_{\Gamma} = p_{K} \circ \kappa c^{-1} \circ ,$	<u>0.60</u>	<u>15.345</u>	<u>9.1286</u>	<u>7.7170</u>	<u>6.6775</u>	<u>3.0987</u>
		<u>0.80</u>	<u>16.390</u>	<u>9.7501</u>	<u>8.2654</u>	<u>6.9970</u>	<u>3.3100</u>
		1.00	<u>17.787</u>	10.582	<u>8.9678</u>	<u>7.5338</u>	<u>3.5962</u>
	Степень расширения газа	0.00	<u>2.102</u>	<u>2.111</u>	<u>2.111</u>	2.111	2.120
	в турбине ВД	0.20	<u>2.102</u>	<u>2.112</u>	<u>2.111</u>	<u>2.111</u>	2.120
20	$-\kappa_{\Gamma}$	0.40	2.099	2.112	2.112	<u>2.111</u>	<u>2.120</u>
<u>30</u>	$\pi_{\text{твд}}^* = \left(1 - \frac{L_{\text{твд}}}{c_{\text{рг}}T_{\Gamma}\eta_{\text{твд}}}\right)^{\frac{-\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}}$	0.60	2.103	2.112	2.113	<u>2.112</u>	<u>2.120</u>
	$n_{\text{TB},\text{I}} = (1 - \frac{1}{\text{TB},\text{I}})^{-1}$	0.80	2.103	2.113	2.112	2.112	2.121
	ргі г птвд	<u>1.00</u>	<u>2.103</u>	<u>2.114</u>	<u>2.113</u>	<u>2.112</u>	<u>2.122</u>

Продолжение табл.1.5 4 <u>6</u> 7 8 824.3 1054.4 Температура газа за турбиной 0.00 1159.0 <u>1052.6</u> 1039.0 ВД без учёта охлаждения ло-0.20 1156.0 1041.6 1046.5 1052.0 <u>821.6</u> 1041.2 1031.4 0.40 <u>1137.8</u> 1036.8 <u>835.3</u> 31 $T_{y}^{*} = T_{\Gamma}^{*} - \frac{L_{\text{твд}}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma}}$ 1158.1 1156.4 1043.9 1042.0 1029.7 1043.9 1040.0 1033.9 834.2 831.9 0.60 0.80 1.00 1150.8 1043.8 1036.8 1041.5 826.4 1030.9 0.00 1151.4 1044.7 1046.3 818.1 Температура газа за турбиной 0.20 ВД при смешении охлаждаю-1148.7 1033.8 1038.5 1043.9 815.4 $T_{y}^{*'} = \frac{c_{p_{\Gamma}}g_{\Gamma}T_{y}^{*} + c_{p_{B}}g_{OX\Pi}T_{K}^{*}}{c_{p_{CM}}(g_{\Gamma} + g_{OX\Pi})}$ 0.40 1131.8 1023.8 1033.4 1028.8 829.0 32 0.60 1150.8 1036.3 1022.0 1032.1 <u>828.0</u> 0.80 1149.4 1034.5 1036.3 1026.2 825.9 1.00 <u>1144.4</u> <u>1029.7</u> <u>1034.1</u> <u>1036.1</u> <u>820.7</u> 0.00 6.8714 4.1934 3.6033 2.9687 Полное давление газа на вы-

	ходе из турбины ВД	0.20	<u>6.8991</u>	4.1064	3.5488	3.0681	<u>1.3212</u>
	$p_{y}^{*} = \frac{p_{\Gamma}^{*}}{\pi_{TBJ}^{*}} \cdot 10^{5}, \frac{H}{M^{2}}$	0.40	6.8978	4.0681	3.5886	3.0224	1.3947
<u>33</u>		<u>0.60</u>	<u>7.2982</u>	<u>4.3219</u>	<u>3.6529</u>	<u>3.1623</u>	<u>1.4615</u>
		0.80	<u>7.7941</u>	<u>4.6147</u>	<u>3.9132</u>	<u>3.3124</u>	<u>1.5607</u>
		<u>1.00</u>	<u>8.4594</u>	<u>5.0063</u>	<u>4.2441</u>	<u>3.5667</u>	<u>1.6950</u>
	Удельная работа расширения	0.00	<u>155546</u>	<u>144708</u>	<u>149195</u>	<u>150514</u>	<u>108197</u>
	газа в турбине НД	0.20	<u>155544</u>	<u>141564</u>	<u>146668</u>	<u>152930</u>	<u>106837</u>
	$L_{\text{кнл}}$ Лж	0.40	<u>151825</u>	<u>135275</u>	<u>143690</u>	<u>147315</u>	<u>107060</u>
<u>34</u>	$L_{\text{TH}, \Pi} = \frac{L_{\text{KH}, \Pi}}{g_{\Gamma} + g_{\text{OX}, \Pi}}, \frac{\Pi_{\text{K}}}{\kappa_{\Gamma}}$	0.60	<u>147264</u>	<u>132808</u>	<u>138377</u>	<u>144663</u>	<u>105097</u>
	$g_{\Gamma}^{+}g_{0XJI}^{-}$ KI	0.80	<u>143676</u>	<u>129563</u>	<u>132803</u>	<u>139659</u>	<u>102357</u>
		<u>1.00</u>	<u>139309</u>	<u>125511</u>	<u>128811</u>	<u>132264</u>	<u>99172</u>
	Степень расширения газа	0.00	<u>1.721</u>	<u>1.747</u>	<u>1.778</u>	<u>1.805</u>	<u>1.701</u>
	в турбине НД	<u>0.20</u>	<u>1.724</u>	<u>1.735</u>	<u>1.768</u>	<u>1.809</u>	<u>1.692</u>
<u>35</u>	$\pi^*_{\text{THД}} = (1 -$	<u>0.40</u>	<u>1.714</u>	<u>1.700</u>	<u>1.751</u>	<u>1.783</u>	<u>1.678</u>
		<u>0.60</u>	<u>1.669</u>	<u>1.671</u>	1.724	<u>1.759</u>	<u>1.663</u>
	$-\kappa_{\Gamma}$	<u>0.80</u>	<u>1.648</u>	<u>1.650</u>	<u>1.671</u>	<u>1.729</u>	<u>1.641</u>
	$L_{\text{THA}} \qquad \frac{1}{\kappa_{\text{F}}-1}$	<u>1.00</u>	<u>1.626</u>	<u>1.627</u>	<u>1.646</u>	1.667	<u>1.620</u>
	$-\frac{L_{\text{THA}}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma}-1}R_{\Gamma}T_{\mathcal{Y}}^{*'}\eta_{\text{THA}}^{*}})^{\frac{-\kappa_{\Gamma}}{\kappa_{\Gamma}-1}}$						
	$\frac{1}{K_{\Gamma}-1}R_{\Gamma}T_{V}\eta_{THA}$						
	Температура газа за турбиной	0.00	<u>1017.2</u>	<u>919.8</u>	<u>917.5</u>	901.0	<u>724.7</u>
<u>36</u>	$T_{\mathrm{T}}^{*} = T_{\mathrm{Y}}^{*'} - \frac{L_{\mathrm{TH},\mathrm{T}}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma}}$	0.20	<u>12014.</u>	<u>911.6</u>	<u>911.9</u>	<u>911.8</u>	<u>723.1</u>
		0.40	1000.8	907.0	909.3	<u>901.6</u>	<u>736.6</u>
		0.60	<u>1023.7</u>	<u>921.6</u>	902.6	<u>907.2</u>	<u>737.3</u>
		0.80	<u>1025.4</u>	<u>922.6</u>	<u>921.6</u>	<u>905.6</u>	<u>737.5</u>
		<u>1.00</u>	<u>1024.1</u>	<u>921.3</u>	<u>922.9</u>	<u>921.9</u>	<u>735.1</u>
	Полное давление газа на вы-	0.00	<u>3.9923</u>	<u>2.4004</u>	<u>2.0266</u>	<u>1.6451</u>	<u>0.7808</u>
	ходе из турбины НД	0.20	<u>4.0030</u>	<u>2.3667</u>	<u>2.0077</u>	<u>1.6965</u>	<u>0.7809</u>
	* n 5 II	<u>0.40</u>	<u>4.0239</u>	<u>2.3935</u>	<u>2.0494</u>	<u>1.6954</u>	<u>0.8310</u>
<u>37</u>	$p_{\rm T}^* = \frac{p_{\rm y}^*}{\pi_{\rm THJI}^*} \cdot 10^5, \frac{\rm H}{\rm M}^2$	<u>0.60</u>	<u>4.3716</u>	<u>2.5865</u>	<u>2.1193</u>	<u>1.7973</u>	<u>0.8791</u>
	$\pi_{\text{THД}}^*$ m^2	<u>0.80</u>	<u>4.7281</u>	<u>2.7962</u>	<u>2.3419</u>	<u>1.9160</u>	<u>0.9508</u>
	тнд	<u>1.00</u>	<u>5.2034</u>	<u>3.0769</u>	<u>2.5791</u>	<u>2.1391</u>	<u>1.0463</u>
<u> </u>							

Продолжение табл. 1.5 <u>3.5</u>14 0.00 3.940 3.918 4.336 4.681 Располагаемая степень понижения давления газа в РС 0.20 3.951 3.863 4.296 4.827 3.514 4.824 5.114 5.452 3.971 0.40 3.907 4.385 <u>3.740</u> $\pi_{\rm cp} = \frac{p_{\rm T}^*}{2}$ 4.222 4.564 38 0.60 4.314 4.534 3.956 <u>4.666</u> <u>5.135</u> 5.011 4.279 4.709 0.80 5.022 6.087 1.00 5.518 <u>482.67</u> <u>482.15</u> 0.00 0.20 <u>543.88</u> <u>541.46</u> 543.23 538.30 Скорость истечения газа из 571.25 567.36 541.55 541.54 реактивного сопла при неполном расширении 0.40 540.07 540.78 538.49 486.62 $c_{c} = \varphi_{c} \sqrt{\frac{2\kappa_{\Gamma} R_{\Gamma} T_{T}^{*}}{\kappa_{\Gamma} + 1}}, \frac{M}{c}$ 39 573.82 574.30 0.60 544.41 538.76 540.16 486.85 544.71 539.68 544.51 544.42 0.80 486.92 573.94 1.00 544.30 544.78 486.11

	Стотического пописких в пото	0.00	2.1573	1.2971	1.0951	0.8890	0.4219
	<u>Статическое давление в пото-</u> ке газа в обрезе реактивного	0.00	2.15/3 2.1631	1.2789	1.0849	0.8890	0.4219
			2.1744	1.2933			
40	сопла	0.40			1.1074	0.9161	0.4490
40	р _{т 10} 5 Н	0.60	2.3623	1.3976	1.1452	0.9712	0.4750
	$p_{\rm C} = \frac{p_{\rm T}}{\pi_{\rm kp}} \cdot 10^5, \frac{\rm H}{\rm M}^2$	0.80	2.5549	1.5110	1.2655	1.0353	0.5138
	π _K p M ²	1.00	<u>2.8117</u>	<u>1.6627</u>	<u>1.3937</u>	<u>1.1559</u>	0.5654
	Скорость полёта ВС	0.00	0.0	0.0	0.0	0.0	0.0
	$V = M_H \sqrt{kRT_H}$, M/C	0.20	68.1	64.9	63.3	61.6	<u>59.0</u>
41	$V = W_H \sqrt{KKT_H}$	0.40	<u>136.1</u>	129.8	126.6	123.2	118.0
		0.60	204.2	<u>194.7</u>	<u>189.8</u>	<u>184.8</u>	<u>177.0</u>
		0.80	<u>272.2</u>	<u>259.6</u>	<u>253.1</u>	246.4	236.0
		1.00	<u>340.3</u>	<u>324.5</u>	<u>316.1</u>	308.0	2395.0
	Тяга турбореактивного двига-	0.00	<u>100000</u>	<u>60568</u>	<u>53214</u>	<u>44430</u>	<u>18674</u>
	<u>теля</u>	0.20	<u>92729</u>	<u>54599</u>	48531	<u>42962</u>	<u>17093</u>
	$P = G_{\rm R}(g_{\rm L} + g_{\rm OXII})c_{\rm C} - G_{\rm R}V$	0.40	<u>85231</u>	<u>50202</u>	<u>45653</u>	<u>39356</u>	<u>16971</u>
<u>42</u>	D (01 00.01) V D	0.60	86253	<u>50555</u>	43278	38761	16596
	$+F_{\rm c}(p_{\rm c}-p_{\rm H}), {\rm H}$	0.80	86660	<u>50714</u>	44552	<u>38164</u>	<u>16619</u>
		1.00	88523	<u>51743</u>	<u>45605</u>	<u>39633</u>	16920
	<u>Удельная тяга ТРД</u>	0.00	890.0	838.6	<u>858.3</u>	863.3	<u>719.7</u>
	$P = P H \cdot c$	<u>0.20</u>	<u>821.1</u>	<u>767.7</u>	<u>791.7</u>	<u>813.0</u>	<u>661.0</u>
	$P_{\rm yd} = \frac{P}{G_{\rm B}}, \frac{{\rm H} \cdot {\rm c}}{{\rm \kappa} \Gamma}$	0.40	<u>749.9</u>	<u>708.9</u>	<u>734.5</u>	<u>750.2</u>	<u>627.1</u>
<u>43</u>		0.60	<u>722.3</u>	<u>676.1</u>	<u>679.9</u>	707.3	<u>584.7</u>
		0.80	<u>679.0</u>	<u>634.4</u>	<u>658.0</u>	<u>662.7</u>	<u>547.4</u>
		1.00	<u>637.5</u>	<u>594.9</u>	<u>620.1</u>	642.1	<u>511.3</u>
	Удельный расход топлива ТРД	0.00	0.0781	0.0729	0.0724	<u>0.0713</u>	0.0622
	$C_{\rm yd} = \frac{3600g_{\rm T}(1-g_{\rm OXJ}-g_{\rm OTG})}{P_{\rm yd}}$	<u>0.20</u>	0.0840	<u>0.0783</u>	<u>0.0775</u>	<u>0.0770</u>	0.0673
	$C_{\rm yg} = \frac{1}{P_{\rm yg}}$	0.40	0.0891	0.0832	0.0824	<u>0.0812</u>	0.0724
<u>44</u>	т уд	0.60	0.0945	0.881	0.0865	0.0857	0.0764
	<u>ΚΓ</u>	0.80	0.0985	0.0919	0.0906	0.0894	0.0797
	<u>Н·ч</u>	1.00	<u>0.1016</u>	0.0948	0.0936	0.0925	0.0821
	Часовой расход топлива ТРД	0.00	<u>7812</u>	4418	<u>3853</u>	<u>3168</u>	1162
	$G_{\text{тч}} = C_{\text{VЛ}} P$, кг/ч	0.20	7793	4272	<u>3760</u>	3306	1150
	- 14 - уд- ,	0.40	7591	4177	3760	3195	1228
<u>45</u>		0.60	<u>8150</u>	<u>4455</u>	<u>3744</u>	<u>3323</u>	1268
		0.80	8538	4661	4034	<u>3411</u>	1324
		1.00	8991	4904	4267	3665	1388
	•		•		·	•	• —

Продолжение табл.1.5

1	2	3	4	5	<u>6</u>		<u>8</u>
	<u>Работа цикла ТРД</u>	0.00	<u>397278</u>	<u>352719</u>	<u>369500</u>	<u>373788</u>	<u>259906</u>
	$L_{\mathrm{II}} = L_{\mathrm{TB},\mathrm{I}} (1 - \eta_{\mathrm{Mex}}) +$	<u>0.20</u>	<u>394196</u>	<u>345631</u>	<u>364585</u>	<u>381701</u>	<u>258384</u>
		<u>0.40</u>	<u>384419</u>	<u>344360</u>	<u>363801</u>	<u>374980</u>	<u>271533</u>
<u>46</u>	$+\frac{P_{\text{уд}}(P_{\text{уд}}+2V)}{2},\frac{\text{Дж}}{\text{кг}}$	<u>0.60</u>	<u>409589</u>	<u>361307</u>	<u>361342</u>	<u>381941</u>	<u>275320</u>
	$+{2},{\kappa\Gamma}$	<u>0.80</u>	<u>416574</u>	<u>367051</u>	<u>384176</u>	<u>383951</u>	<u>279911</u>
		1.00	<u>421393</u>	<u>371126</u>	<u>389586</u>	<u>405101</u>	<u>282434</u>
	Внутренний (эффективный) КПД	0.00	0.459	0.462	0.477	<u>0.487</u>	<u>0.465</u>
	ТРД	0.20	0.460	<u>0.461</u>	0.477	0.489	<u>0.466</u>
<u>47</u>	$n_{\text{DVL}} = \frac{L_{\text{II}} \eta_{\text{KC}}}{1}$	0.40	<u>0.464</u>	0.468	0.482	0.494	<u>0.480</u>
	I TIKH	0.60	0.483	0.486	0.493	0.505	0.494
	q_{KC}	<u>0.80</u>	<u>0.501</u>	0.505	<u>0.517</u>	0.520	<u>0.515</u>
		1.00	0.524	0.528	0.538	0.547	0.540
	Тяговый (полётный) КПД ТРД	0.00	0.000	0.000	0.000	0.000	0.000

	$P_{\text{УД}}V$	0.20	0.154	0.167	0.154	0.144	0.203
48	$\eta_{\text{TM}\Gamma} = \frac{S}{L_{\text{II}}}$	0.40 0.60	0.315 0.444	0.336 0.480	0.310 0.468	0.292 0.431	0.387 0.572
	<u> </u>	0.80	0.582	0.630	0.586	<u>0.431</u> <u>0.571</u>	<u>0.750</u>
		1.00	0.719	0.778	0.723	0.677	0.930
	Полный (общий) КПД ТРД	<u>0.00</u>	0.000	0.000	0.000	0.000	0.000
	$\eta_{\Pi} = \eta_{BH} \eta_{TS\Gamma}$	<u>0.20</u>	<u>0.071</u>	<u>0.077</u>	0.074	<u>0.070</u>	<u>0.095</u>
	<u> </u>	<u>0.40</u>	<u>0.146</u>	<u>0.157</u>	<u>0.149</u>	<u>0.144</u>	<u>0.186</u>
<u>49</u>		0.60	<u>0.214</u>	0.233	0.230	0.217	0.283
		<u>0.80</u>	<u>0.291</u>	0.318	0.303	<u>0.297</u>	0.386
		<u>1.00</u>	0.376	<u>0.411</u>	0.389	0.370	0.502

1.3. Турбореактивный двигатель с форсажной камерой.

Исходными данными для выполнения расчёта высотно-скоростных характеристик ТРДФ (рис.1.3) являются результаты газодинамического расчёта, приведенные в работе [1]:

- тяга двигателя *P*=132500 H; общая степень повышения давления воздуха в

<u>компрессоре</u> $\pi_{\kappa\Sigma}^* = 15$ <u>; температура газа перед турбиной $T_{\underline{r}}^* = 1370$ K; температура</u>

газа в форсажной камере $T_{\phi}^*=1700 \text{ K}$; прототип – двигатель РД-3М-500.

Двигатель выполнен по двухвальной схеме с нерегулируемым компрессором (имеется лишь входной направляющий аппарат с поворотными лопатками на входе в компрессор высокого давления для улучшения запуска двигателя). Основные данные элементов проектируемого двигателя:

а) компрессор низкого давления

 $\pi_{\text{кнл}}^* = 3.873; \underline{T}_{\text{в}}^* = 288.15 \text{ K}; \underline{\eta}_{\text{кнл}}^* = 0.88; \underline{\eta}_{\text{о нл}} = 0.9; \underline{L}_{\text{кнл}} = 155440 \text{ Дж/кг}; \underline{T}_{\text{x}}^* = 442.9 \text{ K};$

 $\overline{p_{\rm B}^*}=1.0031*10^5 \,\text{H/m}^2$; $p_{\rm X}^*=3.8851*10^5 \,\text{H/m}^2$; $G_{\rm B}=123.1 \,\text{kg/c}$; $q(\lambda_{\rm B})=0.6500$;

 $F_{\rm B}$ =0.79574 ${\rm M}^2$; $\lambda_{\rm B}$ =0.4487; $c_{\rm B}$ =139.4 ${\rm M/c}$;

б) компрессор высокого давления $\pi_{\text{квд}}^* = 3.873; \underline{T}_{\text{x}}^* = 442.9 \text{ K; } \eta_{\text{квд}}^* = 0.88; \, \eta_{\text{овд}} = 0.90; \, \underline{L}_{\text{кнд}} = 238915 \, \text{Дж/кг; } \underline{T}_{\text{k}}^* = 680.74 \, \text{K;}$

 $\overline{p_{\underline{\kappa}}^* = 15.0468*10^5} \frac{1}{\text{H/m}^2; G_{\underline{\kappa}} = 123.48 \text{ kg/c}; q(\lambda_{\underline{\kappa}}) = 0.5832; F_{\underline{\kappa}} = 0.28391 \text{ m}^2; \lambda_{\underline{\kappa}} = 0.3949; }{c_{\underline{\kappa}} = 152.1 \text{ m/c}; q(\lambda_{\underline{\kappa}}) = 0.3244; \lambda_{\underline{\kappa}} = 0.2095; c_{\underline{\kappa}} = 100.0 \text{ m/c}; F_{\underline{\kappa}} = 0.16338 \text{ m}^2; }$

в) камера сгорания

 $\underline{T_{\underline{r}}^*=1370\text{ K; } \underline{c_{\underline{n}}}=1.2421} \frac{\kappa \underline{\mathsf{K}}\underline{\mathsf{K}}}{\kappa \underline{\mathsf{K}} \cdot \mathbf{K}} \underbrace{: \underline{q_{\mathtt{BH}}}=856.113\text{ к}\underline{\mathsf{K}}\underline{\mathsf{K}} \kappa \underline{\mathsf{K}}; \ \underline{g_{\underline{r}}}=0.02006; \ \underline{\sigma_{\mathtt{KC}}}=0.9600;}$

 $R_{\underline{r}}$ =287.487 $\frac{\mathcal{J}_{xx}}{\kappa \Gamma \cdot K}$; $T_{\underline{\kappa}}^*$ =680.74 K; $p_{\underline{r}}^*$ =14.44489*10⁵ H/м²; $G_{\underline{r}\underline{q}}$ =8497 кг/ч;

г) турбина высокого давления

 $L_{\text{твд}}$ =247089 Дж/кг; $g_{\text{охл}}$ =0.027; $g_{\text{отб}}$ =0.02; $\pi^*_{\text{твд}}$ =2.120; $\eta^*_{\text{твд}}$ =0.915; $T^*_{\text{у}}$ =1156.7 K; $T^*_{\text{VV}} = 1144.9 \text{ K}; p^*_{\text{V}} = 6.8127*10^5 \text{ H/m}^2;$

д<u>) турбина низкого давления</u>

 $L_{\text{тнл}} = 155578 \, \text{Дж/кг}; \, \pi^*_{\text{тнл}} = 1.727; \, \eta^*_{\text{тнл}} = 0.925; \, T^*_{\text{т}} = 1010.6 \, \text{K};$ $p_{T}^{*}=3.9446*10^{5} \text{ H/m}^{2}$;

е) форсажная камера сгорания

 $\underline{T}_{\underline{\phi}}^*$ =1700 К; $c_{\underline{n}\underline{\phi}}$ =1.3411 $\underline{\mathcal{A}}_{\underline{\kappa}\Gamma}$; $\underline{q}_{\underline{\kappa}\underline{\phi}}$ =924.542 кДж/к Γ ; $\underline{g}_{\underline{\tau}\underline{\phi}}$ =0.02189;

Рис. 1.3. Схема турбореактивного двигателя с форсажной камерой:

1 — входное устройство для сверхзвуковых скоростей полёта; 2 — компрессор низкого давления; 3 — компрессор высокого давления; 4 - — основная камера сгорания; 5 — турбина высокого давления; 6 — турбина низкого давления;

7 – форсажная камера; 8 – стабилизатор с коллектором топливных форсунок;

9 – антивибрационный экран; 10 – выходное сопло;

вх, в,х, к, г,у,т, ф, кр, с – обозначения контрольных сечений газовоздушного тракта ТРДФ

Отформатировано

 $G_{\text{T-H-}\Phi}$ =9721 κΓ/H; $p^*_{\text{-K-}\Phi}$ =3.7474*10⁵ H/M²; $\sigma_{\text{-K-}\Phi}$ =0.95; $R_{\text{-}}$ =288.013 $\frac{\text{Π-K-}}{\text{κ}\text{Γ-K-}}$; $\eta_{\text{-K-}\Phi}$ =0.98;

ж) выходное сопло

 $\frac{\pi_{\rm cp}=3.893;\ c_{\rm c}=1050.96\ {\rm m/c};\ p_{\rm c}=1.01325*10^5\ {\rm H/m^2};\ \phi_{\rm pc}=0.99;\ F_{\rm c}=0.4489\ {\rm m^2};\ D_{\rm c}=0.755\ {\rm m};}{F_{\rm kp}=0.35393\ {\rm m^2};\ D_{\rm kp}=0.6715\ {\rm m};\ \lambda_{\rm c}=1.4249;\ y(\lambda_{\rm c})=2.9472;}$

3) удельные параметры двигателя

 $P_{\text{уд}} = 1073.0 \frac{\text{H·c}}{\text{кг}} : C_{\text{уд}} = 0.1375 \frac{\text{кг}}{\text{H·ч}} : G_{\text{тч}} = 18218 \text{ кг/ч}; G_{\text{отб}} = 2.47 \text{ кг/c}; N_{\text{отб}} = 147 \text{ кВт};$

<u>Работа цикла $L_{\text{п}}$ =576918 Дж/кг; Внутренний КПД $\eta_{\text{вн}}$ =0.319.</u>

и) бесфорсажный режим

 $\underline{P_{\text{б/ф}}}$ =100000 H; $\underline{C_{\text{уд}}}$ =0.08497 $\underline{\frac{\text{кг}}{\text{H}\cdot\text{H}}}$; $\underline{c_{\text{c}}}$ =809.9 м/с; Коэффициент форсирования

 $\underline{K_{\phi}}$ =1.325; Коэффициент ухудшения экономичности $K_{c \text{ уд}}$ =2.144

Задаёмся величиной относительной плотности тока на входе в компрессор НД $q(\lambda_{\text{в расч}})$ =0.65 на расчётном режиме.

Задаёмся осевой скоростью на выходе из компрессора высокого давления $\underline{c_{\kappa}}$ =100 м/с. Приведенная скорость и относительная плотность тока в данном сечении рассчитываются по формулам:

$$\lambda_{\text{K pacu}} = \frac{c_{\text{K}}}{\sqrt{\frac{2\kappa R T_{\text{K}}^*}{\kappa + 1}}} = \frac{100}{18.32\sqrt{680.74}} = 0.2095;$$

$$\frac{q(\lambda_{\text{к pacy}}) = (\frac{k+1}{2})^{\frac{1}{k-1}} \lambda_{\text{к pacy}} (1 - \frac{k-1}{k+1} \lambda_{\text{к pacy}}^{2})^{\frac{1}{k-1}} = }{= 1.2^{2.5} \cdot 0.2095 \cdot (1 - \frac{0.4}{2.4} \cdot 0.2095^{2})^{2.5} = 0.3244}$$

Относительная плотность тока $q(\lambda_{x \, \text{расч}}) = 0.5832$. Поскольку в задании ТРДФ, то полёты воздушного судна сверхзвуковые. Для двухвальной схемы ТРДФ принимается закон управления $n_{\text{нд}} = const$, а режим работы двигателя в зависимости от высоты полёта:

- а) H=0 полный форсированный режим (ПФ). На этом режиме максимальный расход топлива в форсажной камере и $T^*_{\Phi max}$, $n_{\rm HJ}_{max}$, $n_{\rm BJ}_{max}$, что соответствует $P_{\Phi max}$. Время работы двигателя на этом режиме ограничено.
- б) H>0 частичный форсированный режим (ЧФ). Режим работы двигателя характеризуется пониженными значениями тяги P и расхода топлива в форсажной камере $G_{\tau \varphi}(T^*_{-\varphi} < T^*_{-\varphi} max)$ при максимальных или несколько пониженных значениях $T^*_{-\Gamma}$ и n. Время непрерывной работы на этом режиме, как правило, не ограничего. Используется при длительном сверхзвуковом полёте. При расчёте лётных характеристик ТРДФ принимаем $T^*_{-\varphi} = 0.9T^*_{-\varphi} max = 0.9*1700 = 1530$ K, а режим работы газогенератора максимальный.

Определяются значения констант:

а) показатель политропы сжатия в компрессоре низкого и высокого давлений

$$\frac{\kappa-1}{\kappa\eta_{0 \text{ HZ}}} = \frac{n_1-1}{n_1}; \quad \frac{1.4-1}{1.4\cdot0.9} = \frac{n_1-1}{n_1}; \quad n_1 = 1.4651;$$

$$\frac{\kappa-1}{\kappa\eta_{0 BJ}} = \frac{n_2-1}{n_2}; \quad \frac{1.4-1}{1.4\cdot0.9} = \frac{n_2-1}{n_2}; \quad n_2 = 1.4651;$$

б) в уравнении совместной работы элементов турбокомпрессора НД

$$-\frac{\pi_{\text{KH},\Pi}^* \pi_{\text{KB},\Pi}^*}{q(\lambda_{\text{B}})} = C_2 \sqrt{\pi_{\text{KH},\Pi}^{\frac{n_1-1}{n_1}}} - 1; \frac{3.873 \cdot 3.873}{0.65} = C_2 \sqrt{3.873 \cdot \frac{1.4651-1}{1.4651}} - 1; \underline{C_2 = 31.4906};$$

в) в уравнении неразрывности между входом и выходом из компрессора НД

$$\frac{m_{\rm B}F_{\rm B}p_{\rm B}^*q(\lambda_{\rm B})}{\sqrt{T_{\rm B}^*}} = \frac{m_{\rm B}F_{\rm X}p_{\rm X}^*q(\lambda_{\rm X})}{\sqrt{T_{\rm X}^*}}; \frac{F_{\rm B}}{F_{\rm X}} = \sqrt{\frac{T_{\rm B}^*}{T_{\rm X}^*}} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} = \sqrt{\frac{1}{\frac{n_{\rm 1}-1}{n_{\rm 1}}}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{n_{\rm B}}{T_{\rm X}^*}} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} = \sqrt{\frac{n_{\rm B}}{T_{\rm KHJ}^*}} \cdot \frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})} \cdot \pi_{\rm KHJ}^* = \sqrt{\frac{n_{\rm B}}{T_{\rm X}^*}} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm X}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm X}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm A}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm B}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm A}^*} \cdot \frac{p_{\rm X}^*}{p_{\rm A}$$

$$=\frac{q(\lambda_{\rm X})}{q(\lambda_{\rm B})}\pi_{\rm KHJ}^*\frac{n_1+1}{2n_1}=C_3; C_3=\frac{0.5832}{0.65}\cdot 3.873^{\frac{1.4651+1}{2\cdot 1.4651}}=2.80293$$

г) в уравнении совместной работы элементов турбокомпрессора ВД

$$\frac{\pi_{\text{KB},\Pi}^*}{q(\lambda_{\text{X}})} = C_1 \sqrt{\pi_{\text{KB},\Pi}^*} - 1, \underline{\frac{3.873}{0.5832}} = C_1 \sqrt{3.873 \frac{1.4651 - 1}{1.4651}} - 1; \quad C_1 = 9.0622898;$$

д) в уравнении для адиабатной работы компрессора НД и ВД

$$C_{10} = T_{\mathrm{H}}^{*}(\pi_{\mathrm{KHД}}^{*} - 1) = 288.15 \cdot (3.873^{\frac{1.4-1}{1.4}} - 1) = 136.11$$
 $C_{11} = T_{\mathrm{X}}^{*}(\pi_{\mathrm{KBA}}^{*} - 1) = 442.9 \cdot (3.873^{\frac{1.4-1}{1.4}} - 1) = 209.2$

Порядок расчёта основных параметров рабочего процесса ТРДФ следующий:

1. Для заданной температуры торможения на входе в двигатель $T^*_{\ \ \mu}$ находится степень повышения давления воздуха в КНД:

$$\pi_{\text{KHД}}^* = (1 + \frac{136.11}{T_{\text{H}}^*})^{\frac{\kappa}{\kappa - 1}}$$

2. Рассчитывается температура торможения на выходе из КНД:

$$T_{\mathbf{X}}^* = T_{\mathbf{B}}^* \pi_{\mathbf{KH}\mathbf{A}}^{\frac{n_1 - 1}{n_1}}$$

3. Находится степень повышения давления воздуха в КВД:

$$\pi_{\text{KB,I}}^* = (1 + \frac{209.2}{T_{\text{X}}^*})^{\frac{\kappa}{\kappa - 1}}$$

4. Из уравнения совместной работы элементов газогенератора высокого давления определяется относительная плотность тока на входе в КВД:

$$q(\lambda_{x}) = \frac{\pi_{\text{KB}, L}^{*}}{\sqrt{\frac{\frac{n_{2} - 1}{*}}{\pi_{\text{KB}, L}^{*}}} - 1} = \frac{\pi_{\text{KB}, L}^{*}}{\sqrt{\frac{\frac{1.4651 - 1}{*}}{\pi_{\text{KB}, L}^{*}}} - 1}$$

5. Из уравнения совместной работы элементов газогенератора низкого давления рассчитывается относительная плотность тока на входе в КНД:

$$\frac{\pi_{\text{KH},\Pi}^*\pi_{\text{KB},\Pi}^*}{q(\lambda_{\text{B}})} = C_2 \sqrt{\pi_{\text{KH},\Pi}^* - 1} = 31.4906 \sqrt{\pi_{\text{KH},O}^* \frac{1.4651 - 1}{1.4651}} - 1$$

Результаты расчета высотно-скоростных характеристик двухвального ТРДФ приведены в таблице 1.6.

На основании полученных результатов вычерчиваются зависимости тяги и удельного расхода топлива от скорости полета при варьировании высоты (скоростные характеристики ТРДФ), а затем теже зависимости от высоты полета при варьировании скорости (высотные характеристики ТРДФ). На полученные

зависимости наносятся эксплуатационные ограничения по устойчивой работе компрессора ($\pi^*_{\text{квд max}}$ =(1.05...1.15) $\pi^*_{\text{квд расч}}$), по прочности лопаток компрессора ВД ($p^*_{\text{к max}}$ =(1.05...1.15) $p^*_{\text{к расч}}$), по устойчивой работе камеры сгорания (α_{Σ} <1.8...2.2). Далее осуществляется анализ протекания высотно-скоростных характеристик ТРДФ, отмечаются их характерные особенности и изучаются причины этих особенностей.

Таблица 1.6

Выс	сотно-скоростные характерис	тики	<u>двухваль</u>	<u>ного ТР</u>	<u>ДФ с все</u>	режимны	м сопло
<u>Vo</u>	Наименование параметра,	$M_{\rm H}$	Выс	сота полёта	<u>, KM</u>		
<u> 1/п</u>	расчётная формула		0	<u>4</u>	<u>6</u>	8	<u>11</u>
_	2	_3	<u>4</u>	5	<u>6</u>		_8
	Температура наружного возду	0.00	288.15	262.15	249.15	236.15	216.65
	ха по ГОСТ 4401-81	0.50	288.15	262.15	249.15	236.15	216.65
		1.00	288.15	262.15	249.15	236.15	216.65
1	$T_{\rm H} = 288.15 - 6.5 \cdot H$	1.50	288.15	262.15	249.15	236.15	216.65
	н	2.00	288.15	262.15	249.15	236.15	216.65
		2.50	288.15	262.15	249.15	236.15	216.65
	Давление наружного воздуха	0.00	1.0132	0.6126	0.4674	0.3514	0.2222
	по ГОСТ 4401-81	0.50	1.0132	0.6126	0.4674	0.3514	0.2222
		1.00	1.0132	0.6126	0.4674	0.3514	0.2222
2	$p_H = 1.01325 \cdot (1 - 1.01325)$	1.50	1.0132	0.6126	0.4674	0.3514	0.2222
		2.00	1.0132	0.6126	0.4674	0.3514	0.2222
	$-\frac{H}{44.368}$) ^{5.2532} ·10 ⁵ , Πa	2.50	1.0132	0.6126	0.4674	0.3514	0.2222
	Температура торможения на входе в двигатель	<u>0.00</u> 0.50	288.15 302.6	<u>262.15</u> 275.3	<u>249.15</u> 261.6	236.15 248.0	216.65 227.5
	Bridge B ABIII WI'WIB	1.00	345.8	314.6	299.0	283.4	260.0
3	* T (1 ×-1 x 2)	1.50	417.8	380.1	361.3	342.4	314.1
_	$T_{\rm H}^* = T_{\rm H} (1 + \frac{\kappa - 1}{2} M_{\rm H}^2)$	2.00	518.7	471.9	448.5	425.1	390.0
		2.50	648.3	589.8	560.6	531.3	487.5
	Полное давление воздуха на	0.00	1.0132	0.6126	0.4674	0.3514	0.2222
	входе в двигатель	0.50	1.2019	0.7267	0.5544	0.4169	0.2636
		1.00	1.9180	1.1597	0.8847	0.6653	0.4206
4	$p_{\rm H}^* = p_{\rm H} (\frac{T_{\rm H}^*}{T_{\rm H}})^{\frac{\kappa}{\kappa-1}} \cdot 10^5, \Pi a$	1.50	3.7197	2.2490	1.7158	1.2902	0.8157
	$p_{\rm H} = p_{\rm H} \left(\frac{1}{T}\right)^{\kappa} \cdot 1 \cdot 10$, IIa	2.00	7.9281	4.7935	3.6570	2.7499	1.7386
	* H	2.50	17.312	10.467	7.9857	6.0048	3.7965
	Температура заторможенного	0.00	288.15	262.15	249.15	236.15	216.65
	потока воздуха на входе в	0.50	302.6	275.3	261.6	248.0	227.5
	компрессор	1.00	345.8	314.6	299.0	283.4	260.0
5		1.50	417.8	380.1	361.3	342.4	314.1
	$T_{\rm B}^* = T_{\rm H}^*$	$\frac{1.50}{2.00}$	518.7	471.9	448.5	425.1	390.0
	The state of the s	4.00	1 210.7	1 11.7	1770.5	1 743.1	1 270.0

	Продолжение табл. 1.6										
1	2	_3	4	5	<u>6</u>	<u>7</u>	<u>8</u>				
		0.00	0.990	0.990	0.990	0.990	0.990				
		<u>0.50</u>	0.974	0.974	0.974	0.974	0.974				
_6		1.00	0.957	0.957	0.957	0.957	0.957				
		<u>1.50</u>	0.962	0.962	0.962	0.962	0.962				
		2.00	0.910	0.910	0.910	0.910	0.910				

	$C = M_H - 1; \sigma_{BX} = \sigma_{BX pacy} -$	2.50	0.843	0.843	0.843	0.843	0.843
	$-0.02241C^2 - 0.14561C^3 +$						
	$+0.066282C^4-0.014342C^5$	5					
	Полное давление на входе в	0.00	<u>1.0031</u>	<u>0.6065</u>	<u>0.4627</u>	0.3479	0.2200
	компрессор	<u>0.50</u>	<u>1.1701</u>	<u>0.7075</u>	0.5397	<u>0.4058</u>	0.2566
II _	$p_{\rm B}^* = p_{\rm H}^* \sigma_{\rm BX} \frac{*10^5 \text{,H/M}^2}{}$	<u>1.00</u>	<u>1.8355</u>	<u>1.1098</u>	<u>0.8467</u>	<u>0.6367</u>	<u>0.4025</u>
	PB PH BX TO ALM	<u>1.50</u>	3.5773	<u>2.1629</u>	<u>1.6501</u>	1.2408	0.7845
ļļ .		2.00	<u>7.2146</u>	4.3621	<u>3.3279</u>	<u>2.5024</u>	<u>1.5821</u>
		2.50	14.5948	8.8243	6.7322	5.0622	3.2005
	Режим работы двигателя:	0.00	1.0000	1.0000	1.0000	1.0000	0.9500
	<u>B=1.00 – взлётный</u>	0.50	1.0000	1.0000	1.0000	1.0000	1.0000
o	<u>B=0.950.97 – номинальный</u>	1.00	1.0000	1.0000	1.0000	1.0000	1.0000
8	<u>В=0.780.85 – крейсерский</u>	1.50	1.0000	1.0000	1.0000	1.0000	1.0000
]		2.00	1.0000	1.0000	1.0000	1.0000	1.0000
	C	2.50	1.0000	1.0000	1.0000	1.0000	1.0000
	Степень повышения давления	0.00	3.873 2.660	4.321	4.597	4.918 4.624	<u>5.145</u>
	воздуха в компрессоре НД	0.50	3.669	4.080	4.332		5.162
9	* $(1 - 336.511R) \frac{K}{m-1}$	1.00 1.50	3.195 2.683	3.519 2.918	3.717 3.061	3.946 3.226	<u>4.365</u> 3.524
	$\pi_{\text{KH},\Pi}^* = (1 + \frac{336.511B}{\pi^*})^{\frac{\kappa}{\kappa - 1}}$						<u>2.851</u>
	$T_{\mathbf{B}}$	2.00 2.50	2.260 1.948	2.427 2.068	2.528 2.139	2.643 2.221	2.367
<u> </u>	Температура воздуха на выходе	0.00	442.89	417.20	404.38	391.57	364.42
	из КНД	0.50	457.15	430.15	416.67	403.20	383.04
	$n_1 = 1$	1.00	499.99	469.06	453.61	438.18	415.06
10	<u>"1 1 </u>	1.50	571.56	534.08	515.36	496.66	468.63
	$T_{X}^{*} = T_{B}^{*} \pi_{KHJ}^{*}$	2.00	671.95	625.34	602.05	578.77	543.87
	$I_X = I_B n_{KHД}$	2.50	801.23	742.89	713.73	684.58	640.87
	Степень повышения давления	0.00	3.873	4.147	4.303	4.474	4.893
	воздуха в компрессоре ВД	0.50	3.739	4.003	4.154	4.318	4.596
11		1.00	3.399	3.636	3.771	3.920	4.173
	$\pi_{KB,\Pi}^* = (1 + \frac{209.2}{T_X^*})^{\frac{K}{K-1}}$	1.50	2.979	3.180	3.295	3.422	3.639
	$n_{\text{KBA}} = (1 + \frac{1}{T^*})$	2.00	2.582	2.746	2.840	2.945	3.124
	X	2.50	2.252	2.383	2.459	2.543	2.688
	Температура воздуха на выходе	0.00	680.74	655.34	642.68	630.04	603.28
	из КВД	0.50	694.85	668.14	654.81	641.52	621.63
<u>12</u>	n_2-1	1.00	737.28	706.63	691.34	676.07	653.23
	<u>-</u> * * * * * * * * * * * * * * * * * * *	1.50	808.29	771.09	<u>752.52</u>	733.98	706.20
	$T_{\mathrm{K}}^* = T_{\mathrm{X}}^* \pi_{\mathrm{KB},}^{*n_2}$	<u>2.00</u>	908.10	<u>861.74</u>	838.59	<u>815.46</u>	<u>780.81</u>
		<u>2.50</u>	<u>1036.8</u>	<u>978.71</u>	949.67	920.66	<u>877.18</u>
	Относительная плотность тока	0.00	0.6500	0.7404	0.7964	0.8620	0.9440
	на входе в компрессор НД	0.50	0.6095	<u>0.6917</u>	<u>0.7426</u>	0.8020	<u>0.9121</u>
	* * ###################################	<u>1.00</u>	<u>0.5161</u>	<u>0.5797</u>	<u>0.6190</u>	0.6648	<u>0.7492</u>
<u>13</u>	$q(\lambda_{\rm B}) = \frac{\pi_{\rm KHZ} \pi_{\rm KBZ}}{9.0624 \sqrt{\pi_{\rm KHZ}^*} \frac{n_1 - 1}{n_1} - 1}$	<u>1.50</u>	<u>0.4181</u>	0.4628	0.4903	0.5222	0.5808
	n_1-1	<u>2.00</u>	<u>0.3406</u>	0.3708	0.3893	<u>0.4107</u>	0.4499
		1 2 50	0.20//	0.2060	1 0 2102	0.2227	0.3598
	$9.0624\sqrt{\pi_{\text{кн}\pi}^*} n_1 -1$	<u>2.50</u>	0.2866	0.3069	0.3193	0.3337	0.3398

 1
 2
 3
 4
 5
 6
 7
 8

 Приведенная скорость на вхо 0.00
 0.449
 0.529
 0.585
 0.660
 0.784

	де в компрессор НД $\lambda_{\scriptscriptstyle B}$ из таблиц	0.50	0.416	0.484	0.531	0.591	0.729
14	<u>газодинамических функций по</u>	1.00	0.344	0.392	0.423	0.461	0.729
	$\frac{1}{3}$ значению $\frac{q}{\lambda_B}$	1.50	0.273	0.305	0.325	0.348	0.393
	значению $q(\Lambda_{\rm B})$	2.00	0.220	0.241	0.254	0.268	0.296
							
	Chapaga paganya na pyana p	<u>2.50</u> 0.00	0.184 139.3	0.198 156.7	0.206 168.9	0.216 185.5	<u>0.233</u> 211.2
	<u>Скорость воздуха на входе в</u> КНД			l			
		0.50 1.00	132.3 117.0	147.1 127.3	157.1 133.9	170.1 142.0	201.3 158.5
<u>15</u>	$2\kappa RT_{\rm p}^*$					117.9	
	$c_{\rm B} = \lambda_{\rm B} \sqrt{\frac{2\kappa R T_{\rm B}^*}{\kappa + 1}}, \text{m/c}$	1.50 2.00	102.3 91.8	108.8 95.7	113.0 98.2	101.2	127.5 106.9
		2.50	85.9	87.9	89.2	90.9	94.3
	Cuana ami na näma DC	0.00	0.00	0.00	0.00	0.00	0.00
	Скорость полёта ВС		170.13	162.27	158.20	154.02	
	$V = M_H \sqrt{kRT_H} \cdot M/c$	0.50					<u>147.52</u>
16		1.00	<u>340.26</u>	<u>324.55</u>	<u>316.40</u>	<u>308.03</u>	<u>295.04</u>
10		1.50	510.39	486.82	474.60	462.05	442.56
		2.00	680.53	649.10	632.80	616.07	<u>590.08</u>
	0	2.50	850.66 0.582	811.37	791.00	770.09	737.61
	Относительная плотность тока	0.00	0.583	0.606	0.619	0.633	0.667
	на входе в компрессор ВД	0.50	0.572	0.594	<u>0.606</u>	0.620	0.643
17		1.00	0.544	0.564	0.575	0.587	0.608
<u>17</u>	$q(\lambda_{\rm X}) = \frac{RBA}{\sqrt{1 + (1 + 1)^2 + (1 + 1)^2}}$	1.50	0.511	0.527	0.536	0.546	0.564
	$q(\lambda_{X}) = \frac{\pi_{KBJ}}{31.491\sqrt{\pi_{KBJ}^{*} \frac{n_{2}-1}{n_{2}} - 1}}$	2.00	0.481	0.493	0.500	0.508	0.522
	$31.491\sqrt{\pi_{KBJ}} n_2 -1$	<u>2.50</u>	<u>0.458</u>	<u>0.467</u>	<u>0.472</u>	<u>0.478</u>	<u>0.488</u>
	Приведенная скорость на вхо-	0.00	0.3949	0.4126	0.4230	0.4343	0.4631
	де в компрессор ВД λ_x из таблиц	0.50	0.3862	0.4033	0.4131	0.4240	0.4426
18	газодинамических функций по	1.00	0.3650	0.3798	0.3883	0.3979	0.4143
	значению $q(\lambda_x)$	1.50	0.3400	0.3518	0.3588	0.3665	0.3800
		2.00	0.3179	0.3268	0.3320	0.3379	0.3484
		2.50	0.3019	0.3079	0.3116	0.3159	0.3236
	Скорость на входе в компрес-	0.00	152.0	154.2	155.6	157.2	161.8
	сор ВД	0.50	151.1	153.0	154.3	155.8	158.5
<u>19</u>	2 P.T.*	1.00	149.3	150.5	151.3	152.4	154.4
	$c_{X} = \lambda_{X} \sqrt{\frac{2\kappa R T_{X}^{*}}{\kappa + 1}} \text{m/c}$	1.50	148.7	148.8	149.0	149.4	150.5
	$c_{X} - \lambda c_{X} \sqrt{\frac{\kappa+1}{\kappa+1}}$ M/C	2.00	150.8	149.5	149.1	148.7	148.6
		2.50	156.3	153.5	152.3	151.2	149.9
	Удельная работа сжатия воздуха	0.00	155440	155749	155925	156118	148435
	<u>в КНД</u>	0.50	155289	<u>155587</u>	<u>155756</u>	<u>155942</u>	<u>156257</u>
		1.00	<u>154907</u>	<u>155173</u>	<u>155326</u>	<u>155493</u>	<u>155777</u>
<u>20</u>	$L_{\text{KHZ}} = c_{\text{pB}} (T_{\text{X}}^* - T_{\text{B}}^*), \frac{\text{Дж}}{\text{KL}}$	1.50	154431	<u>154659</u>	<u>154790</u>	<u>154933</u>	<u>155177</u>
		2.00	<u>153974</u>	<u>154164</u>	<u>154272</u>	<u>154392</u>	<u>154596</u>
		2.50	153584	<u>153740</u>	<u>153830</u>	<u>153928</u>	<u>154097</u>
	Полное давление на выходе	0.00	3.8851	2.6211	2.1273	1.7112	1.1318
	из КНД	0.50	4.2940	2.8868	2.3383	1.9770	1.3246
	$p_{X}^{*} = p_{B}^{*} \pi_{KHJ}^{*} * 10^{5}, H/M^{2}$	1.00	5.8652	3.9062	3.1477	<u>2.5127</u>	<u>1.7570</u>
<u>21</u>		1.50	9.5980	6.3134	5.0525	4.0033	2.7652
		2.00	16.3089	10.5907	8.4150	6.6160	4.5114
		2.50	28.4359	18.2509	14.4065	11.2461	7.5776

 1
 2
 3
 4
 5
 6
 7
 8

 Полное давление на выходе
 0.00
 15.0468
 10.8711
 9.1545
 7.6551
 5.5382

	т.			1	1	1	1
	из КВД	<u>0.50</u>	<u>16.0554</u>	11.5569	<u>9.7128</u>	<u>8.1053</u>	6.0879
	$p_{\rm K}^* = p_{\rm X}^* \pi_{\rm KBJ}^* *10^5 \text{,H/M}^2$	<u>1.00</u>	<u>19.9338</u>	14.2021	<u>11.8708</u>	<u>9.8497</u>	<u>7.3312</u>
22	$p_{\rm K} - p_{\rm X} n_{\rm KBA} - 10$, H/M	<u>1.50</u>	28.5948	20.0760	16.6489	13.7006	10.0637
		2.00	42.1139	29.0796	23.8995	19.4813	14.0930
		2.50	64.0462	43.4938	35.4232	28.5978	20.3674
	Удельная работа сжатия в	0.00	238915	239211	239371	239541	239934
	компрессоре ВД	0.50	238764	239058	239218	239387	239659
		1.00	238357	238644	238801	238967	239237
23	$L{KBJ} = c_{pB}(T_K^* - T_B^*), \frac{J_K}{K\Gamma}$	1.50	237801	238075	238226	238386	239648
	квд рв к в кг	2.00	237207	237461	237601	237752	
							238000
	0	2.50	236647	236878	<u>237006</u>	237144	237373
	Относительное изменение	0.00	1.0000	1.0012	1.0019	1.0026	1.0043
24	работы сжатия в КВД	0.50	0.9994	1.0006	1.0013	<u>1.0020</u>	1.0031
24	$\overline{L}_{\text{KBД}} = \frac{L_{\text{KBД}}}{L_{\text{KBД pacч}}}$	1.00	0.9977	0.9989	0.9995	1.0002	1.0013
	$L_{\text{KBД}} - \frac{L_{\text{KB}}}{L_{\text{KB}}}$	<u>1.50</u>	0.9953	<u>0.9965</u>	0.9971	0.9978	0.9989
	тьд раст	2.00	0.9928	0.9939	0.9945	0.9951	0.9962
		<u>2.50</u>	0.9905	0.9915	0.9920	<u>0.9926</u>	0.9935
	Температура газа перед тур-	0.00	<u>1370</u>	<u>1371.70</u>	<u>1372.62</u>	<u>1373.59</u>	<u>1375.84</u>
	<u>биной</u>	<u>0.50</u>	<u>1369.13</u>	<u>1370.82</u>	<u>1371.73</u>	<u>1372.70</u>	<u>1374.27</u>
	$T_{\Gamma}^* = T_{\Gamma}^* \operatorname{pacy} \overline{L}_{KBJ}$	1.00	<u>1366.80</u>	1368.44	1369.34	<u>1370.30</u>	<u>1371.85</u>
<u>25</u>	$I_{\Gamma} - I_{\Gamma}$ расч L квд	1.50	1363.61	<u>1365.18</u>	1366.04	1366.97	1368.47
		2.00	1360.20	1361.66	1362.47	1363.33	1364.75
		2.50	1357.00	1358.31	1359.05	1359.84	1361.15
	Расход воздуха через двига-	0.00	123.48	89.16	75.06	62.74	45.35
	тель	0.50	131.80	94.81	79.66	66.45	49.88
	*	1.00	163.78	116.62	97.44	80.82	60.12
<u>26</u>	$p_{\rm K}$	1.50	235.22	165.05	136.83	112.56	82.64
	$G_{\rm B} = G_{\rm B \ pacq} \frac{p_{\rm K}}{*}$	2.00	346.86	239.38	196.68	160.27	115.88
	$p_{\rm K}$ расч	2.50	528.12	358.47	291.87	235.57	167.69
		2.30	320.12	338.47	291.07	<u> 233.31</u>	107.09
	T nacy rep						
	$\frac{1}{2} \frac{\frac{1}{2} \frac{\text{pac I}}{2}}{\frac{1}{2} \frac{\text{KI}}{2}}$						
	$\sqrt{\frac{T_{\Gamma \text{ pacy}}^*}{T_{\Gamma}^*}}, \frac{\kappa\Gamma}{c}$						
		0.55	0.00::	0.045	0.04:5	0.04:=	0.00:=
	Относительная плотность тока	0.00	0.3244	0.3181	0.3149	0.3117	0.3047
	на выходе из компрессора	<u>0.50</u>	0.3278	0.3213	<u>0.3180</u>	<u>0.3146</u>	<u>0.3095</u>
	$G_{-}\sqrt{T^*}$	<u>1.00</u>	0.3380	<u>0.3307</u>	<u>0.3270</u>	<u>0.3233</u>	<u>0.3176</u>
<u>27</u>	$q(\lambda_{\rm K}) = \frac{G_{\rm B} \sqrt{T_{\rm K}^*}}{0.0404 \cdot p_{\rm K}^* F_{\rm K}}$	<u>1.50</u>	0.3543	0.3459	<u>0.3416</u>	0.3372	0.3306
	$0.0404 \cdot p_{\nu}^* F_{\nu}$	<u>2.00</u>	0.3760	<u>0.3661</u>	<u>0.3610</u>	<u>0.3559</u>	<u>0.3481</u>
	F K K	<u>2.50</u>	<u>0.4023</u>	<u>0.3906</u>	<u>0.3847</u>	<u>0.3787</u>	<u>0.3694</u>
	Приведенная скорость на выхо	0.00	0.209	0.205	0.203	0.201	<u>0.196</u>
	де из компрессора λ _к из таб-лиц	0.50	0.212	0.207	0.205	0.203	0.199
	газодинамических функ-ций по	1.00	0.219	0.214	0.211	0.209	0.205
<u>28</u>	значению $q(\lambda_{\kappa})$	1.50	0.230	0.224	0.221	0.218	0.214
		2.00	0.244	0.238	0.234	0.231	0.225
		2.50	0.262	0.254	0.250	0.246	0.240
	Скорость на выходе из комп-	0.00	100.00	96.12	94.22	92.28	88.22
	рессора	0.50	102.15	98.09	96.08	94.02	90.99
		1.00	108.62	103.91	<u>101.60</u>	<u>99.31</u>	<u>95.79</u>
29	$c_{\kappa} = \lambda_{\kappa} \sqrt{\frac{2\kappa R T_{\kappa}^{*}}{\kappa + 1}} \underline{\text{M/c}}$		119.45				
<u> </u>	$c_K = \lambda_K \sqrt{\frac{\kappa}{\kappa+1}} \underline{M/c}$	<u>1.50</u>		113.75	110.90 124.06	108.08	103.87
	γ Λ I'I	2.00	134.75	127.66	124.06	120.70	115.28
<u> </u>		<u>2.50</u>	<u>154.63</u>	<u>145.62</u>	<u>141.18</u>	<u>136.70</u>	<u>129.99</u>
					<u>Продол</u>	жение та	<u>бл.1.6</u>
1	2	_3	4	5	<u>6</u>	7	_8
				•			

	Сронцая условияя тапноём	0.00	1 2/21	1 2200	1.2388	1 2277	1.2355
	Средняя условная теплоём-	0.00	1.2421	1.2399		1.2377	
20	кость процесса подвода тепла	0.50	1.2433	1.2410	1.2398	1.2387	1.2370
<u>30</u>	в камере сгорания	1.00	1.2471	1.2444	1.2430	1.2417	1.2397
	$c_{\Pi} = 0.9 + 10^{-4} (2T_{\Gamma}^* + T_{K}^*),$	<u>1.50</u>	1.2536	1.2501	1.2485	1.2468	1.2443
		2.00	<u>1.2629</u>	1.2585	1.2564	1.2542	<u>1.2510</u>
	кДж	<u>2.50</u>	<u>1.2751</u>	<u>1.2695</u>	<u>1.2668</u>	<u>1.2640</u>	<u>1.2599</u>
	$\overline{\mathbf{K} \mathbf{\Gamma} \cdot \mathbf{K}}$						
	Удельное количество тепла,	0.00	856.113	888.190	904.242	920.307	954.499
	подведенное к воздуху в	0.50	838.347	872.015	888.859	905.715	931.026
	основной камере сгорания	1.00	785.059	823.526	842.758	861.995	890.869
31	T^* T^* кДж	1.50	696.119	742.697	765.958	789.206	824.065
	$q_{KC} = c_{\Pi}(T_{\Gamma}^* - T_{K}^*), \frac{\kappa \Delta K}{\kappa \Gamma}$	2.00	570.941	629.152	658.174	687.148	730.533
		2.50	408.247	481.926	518.589	555.142	609.783
	Отношение расходов топлива	0.00	0.02006	0.02082	0.02119	0.02157	0.02237
	и воздуха в камере сгорания	0.50	0.01965	0.02044	0.02083	0.02123	0.02182
		1.00	0.01840	0.01930	0.01975	0.02020	0.02088
<u>32</u>	$g_{\rm T} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}}$	1.50	0.01631	0.01741	0.01795	0.01850	0.01931
		2.00	0.01338	0.01474	0.01543	0.01610	0.01712
		2.50	0.00957	0.01129	0.01215	0.01301	0.01429
	Удельная работа расширения	0.00	247089	<u>247266</u>	247369	247484	247768
	газа в турбине ВД	0.50	247006	<u>247172</u>	247270	247379	<u>247567</u>
	$L_{\scriptscriptstyle m KPR}$ $\Pi_{ m W}$	1.00	246815	246945	<u>247026</u>	247119	<u>247282</u>
<u>33</u>	$L_{\mathrm{TBД}} = \frac{L_{\mathrm{KBД}}}{\mathrm{g}_{\Gamma} \eta_{\mathrm{MeX}}} \frac{\mathrm{Дж}}{\mathrm{\kappa} \Gamma}, $ где	1.50	246647	<u>246715</u>	246765	246827	246947
	$g_{\Gamma}\eta_{\text{Mex}}$ KI	2.00	<u>246641</u>	<u>246617</u>	<u>246621</u>	246639	<u>246693</u>
	$g_{\Gamma} = (1 + g_{\rm T})(1 - g_{\rm OTO} -$	<u>2.50</u>	246893	<u>246750</u>	<u>246695</u>	246654	<u>246620</u>
	-g _{охл})						
	Полное давление газа на входе	0.00	14.4449	10.4363	8.7883	7.3489	5.3167
	в турбину ВД	0.50	15.4132	11.0946	9.3243	7.7811	5.8444
	* * * * * * * * * * * * * * * * * * *	1.00	19.1364	13.6341	11.3960	9.4557	7.0380
<u>34</u>	$p_{\Gamma} = p_{K} \sigma_{KC} \frac{*10^{5} \text{ ,H/m}^{2}}{}$	1.50	27.4510	19.2730	15.9829	13.1525	9.6612
		2.00	40.4293	27.9165	22.9435	18.7020	13.5293
		<u>2.50</u>	61.4844	41.7541	<u>34.0062</u>	27.4539	<u>19.5527</u>
	Степень расширения газа	0.00	<u>2.120</u>	<u>2.119</u>	<u>2.119</u>	<u>2.118</u>	<u>2.117</u>
	в турбине ВД	<u>0.50</u>	<u>2.121</u>	<u>2.120</u>	<u>2.119</u>	<u>2.119</u>	<u>2.118</u>
	$-\kappa_{\Gamma}$	1.00	<u>2.123</u>	<u>2.121</u>	<u>2.121</u>	<u>2.120</u>	<u>2.119</u>
<u>35</u>	$\pi_{\text{ТВД}}^* = \left(1 - \frac{L_{\text{ТВД}}}{c_{\text{рг}} T_{\Gamma} \eta_{\text{ТВД}}}\right)^{\frac{-\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}}$	1.50	<u>2.126</u>	<u>2.124</u>	<u>2.123</u>	<u>2.123</u>	<u>2.121</u>
	$\pi_{\text{TB},\perp} = (1 - \frac{1}{2\pi^* + 1})^{-1}$	<u>2.00</u>	<u>2.131</u>	<u>2.128</u>	<u>2.127</u>	<u>2.126</u>	<u>2.125</u>
	$c_{\mathbf{p}_{\Gamma}}I_{\Gamma}\eta_{\mathbf{T}\mathbf{B}\mathcal{A}}$	<u>2.50</u>	<u>2.137</u>	<u>2.134</u>	<u>2.133</u>	<u>2.131</u>	<u>2.129</u>
	Температура газа за турбиной	0.00	1156.7	1158.3	1159.1	1160.0	1162.0
	ВД без учёта охлаждения ло-	0.50	1155.9	1157.5	1158.3	1159.2	1160.6
<u>36</u>	Паток	1.00	1153.7	1155.3	1156.1	1157.0	1158.4
		1.50	1150.7	1152.2	1153.0	1153.9	1155.3
	$T_{\mathbf{V}} = T_{\Gamma} - \frac{\Sigma_{\mathbf{TBA}}}{\Gamma_{\mathbf{V}}}$	2.00	1147.2	1148.7	1149.5	1150.4	1151.8
	$T_{\mathbf{y}}^* = T_{\Gamma}^* - \frac{L_{\text{твд}}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma}}$	2.50	1143.7	1145.2	1146.0	1146.8	1148.2
	$\kappa_{\Gamma} - 1^{-1}$						
	,					1	

				Γ	Іродолже	ние табл	.1.6
1	2	3	4	5	6	7	8

	Температура газа за турбиной	0.00	<u>1144.9</u>	<u>1145.7</u>	<u>1146.2</u>	<u>1146.7</u>	<u>1148.0</u>
	ВД при смешении охлаждаю-	<u>0.50</u>	<u>1144.4</u>	<u>1145.3</u>	<u>1145.7</u>	<u>1146.3</u>	<u>1147.1</u>
	щего воздуха с потоком газа	<u>1.00</u>	<u>1143.4</u>	<u>1144.1</u>	<u>1144.5</u>	<u>1145.0</u>	<u>1145.8</u>
<u>37</u>	$C = G T^* + C = G T^*$	<u>1.50</u>	<u>1142.1</u>	<u>1142.7</u>	<u>1143.0</u>	<u>1143.4</u>	<u>1144.1</u>
	$T_{-}^{*'} = \frac{c_{\text{P}\Gamma}g_{\Gamma}^{T}y^{+}c_{\text{P}B}g_{\text{OX}}^{T}K}{c_{\text{P}}g_{\text{OX}}^{T}K}$	2.00	1141.2	1141.5	1141.7	1142.0	1142.5
	$T_{y}^{*'} = \frac{c_{pr}g_{r}T_{y}^{*} + c_{pB}g_{OXI}T_{K}^{*}}{c_{p cM}(g_{r} + g_{OXI})}$	2.50	1141.0	1141.0	1141.0	1141.1	1141.4
	Полное давление газа на вы-	0.00	<u>6.8127</u>	<u>4.9245</u>	<u>4.1478</u>	<u>3.4693</u>	<u>2.5111</u>
	ходе из турбины ВД	0.50	<u>7.2674</u>	5.2339	4.3998	<u>3.6725</u>	<u>2.7594</u>
	*	1.00	9.0152	6.4270	<u>5.3736</u>	4.4600	<u>3.3211</u>
<u>38</u>	$p_{y}^{*} = \frac{p_{\Gamma}}{2} * 10^{5} \cdot H/M^{2}$	1.50	12.9126	9.0731	7.5272	6.1966	4.5543
	π_{TBI}^*	2.00	18.9746	13.1159	10.7851	8.7958	6.3678
		2.50	28.7673	19.5635	15.9444	12.8811	9.1832
	Удельная работа расширения	0.00	155578	155776	155896	156034	148243
	газа в турбине НД	0.50	155488	155669	155781	155908	156136
	І. Пы	1.00	155289	155424	155509	155610	155795
<u>39</u>	$L_{\text{TH}, \Pi} = \frac{L_{\text{KH}, \Pi}}{g_{\Gamma} + g_{\text{OX}, \Pi}}, \frac{\Pi \mathcal{K}}{\kappa \Gamma}$	1.50	155121	155188	155238	155302	155426
	$g_{\Gamma} + g_{OXJI}$ K	2.00	155097	155085	155093	155112	155167
		2.50	155272	155172	155134	155105	155085
	Степень расширения газа	0.00	1.727	1.727	1.728	1.728	1.678
	в турбине НД	0.50	1.727	1.727	1.728	1.728	1.729
			1.727	1.727	1.727	1.727	1.728
40	$\pi{\text{TH},\perp}^* = \left(1 - \frac{L_{\text{TB},\perp}}{c_{\text{pr}}T_y^{*'}\eta_{\text{TH},\perp}}\right)^{\frac{-\kappa_{\Gamma}}{\kappa_{\Gamma}-1}}$	1.50	1.727	1.727	1.727	1.727	1.727
	$\pi_{\text{TH}\Pi} = (1 - \frac{18\pi}{***})^{\kappa_{\Gamma} - 1}$	2.00	1.728	1.727	1.727	1.727	1.727
	$c_{D\Gamma}T_{V}\eta_{THJ}$	2.50	1.729	1.729	1.728	1.728	1.727
	Тамиаратура газа за турбича	0.00	1010.6	1011.3	1011.7	1012.1	1020.1
	Температура газа за турбиной НЛ	0.50	1010.6	1011.3	1011.7	1012.1	1012.4
		1.00	1010.2	1010.9	1011.3	1011.7	1012.4
41	$T_{\mathrm{T}}^* = T_{\mathrm{y}}^{*"} - \frac{L_{\mathrm{TH}\mathcal{A}}}{c_{\mathrm{D}\Gamma}}$	1.50	1009.3	1010.0	1010.3	1010.7	
-71	$c_{p\Gamma}$	2.00	1008.2				1010.0 1008.6
	<u>r</u>			1007.6	1007.8	1008.1	1008.6
 	Подуме доржение	2.50	1006.9 3.9446	<u>1006.9</u>	1007.0	<u>1007.2</u>	1 4060
	Полное давление газа на вы-	0.00		<u>2.8505</u>	2.4005	2.0074	1.4969
42	ходе из турбины НД	0.50	<u>4.2083</u>	<u>3.0301</u>	2.5468	<u>2.1254</u>	1.5964
<u> 42</u>	$* p_{V}^{\tilde{r}}$	1.00	<u>5.2211</u>	<u>3.7219</u>	3.1116	<u>2.5823</u>	1.9224
	$p_{\rm T}^* = \frac{p_{\rm Y}}{*} = \frac{10^5 \text{H/m}^2}{}$	1.50	7.4774	<u>5.2546</u>	4.3593	<u>3.5887</u>	2.6374
	$\pi_{ ext{TH} extsf{J}}$	2.00	10.9821	7.5933	6.2447	<u>5.0934</u>	3.6878
<u> </u>		2.50	<u>16.6340</u>	11.3173	9.2256	7.4547	<u>5.3160</u>
	Средняя теплоёмкость процесса	0.00	1.341	1.307	1.307	1.307	1.308
	подвода тепла в форсаж-	0.50	1.341	1.307	1.307	1.307	1.307
43	ной камере сгорания	1.00	1.341	1.307	1.307	1.307	1.307
45	$c_{\Pi\Phi} = 0.9 + 10^{-4} (2T_{\Phi}^* + T_{T}^*),$	<u>1.50</u>	1.341	1.307	1.307	1.307	1.307
	T	2.00	1.341	1.307	1.307	1.307	1.307
	кДж	<u>2.50</u>	<u>1.341</u>	<u>1.307</u>	1.307	<u>1.307</u>	<u>1.307</u>
	кг∙К						
	I .	1		1	1	1	

	Продолжение табл. 1.6						
1	2	_3	<u>4</u>	5	<u>6</u>		<u>8</u>

	Удельное количество тепла,	0.00	<u>924.54</u>	<u>678.02</u>	<u>677.53</u>	<u>677.02</u>	666.98
	подведенное к воздуху в	0.50	924.99	678.48	678.00	677.49	676.66
	форсажной камере сгорания	1.00	926.16	679.69	679.24	678.75	677.94
44	_* _* кЛж	1.50	927.60	681.25	680.85	680.42	679.68
	$q_{\kappa \dot{\Phi}} = c_{\Pi \dot{\Phi}} (T_{\dot{\Phi}}^* - T_{\mathrm{T}}^*), \frac{\kappa \Delta x}{\kappa \Gamma}$	2.00	928.78	682.64	682.36	682.03	681.43
		2.50	929.28	683.47	683.35	683.17	682.81
	Отношение расходов топлива	0.00	0.0219	0.0161	0.0160	0.0160	0.0158
	и воздуха в форсажной камере	0.50	0.0219	0.0161	0.0161	0.0160	0.0160
	сгорания	1.00	0.0219	0.0161	0.0161	0.0161	0.0161
45		1.50	0.0220	0.0161	0.0161	0.0161	0.0161
	$\sigma_{-1} = \frac{q_{K\Phi}}{q_{K\Phi}}$	2.00	0.0220	0.0162	0.0162	0.0161	0.0161
	$g_{\mathrm{T}\Phi} = \frac{q_{\mathrm{K}\Phi}}{H_u \eta_{\mathrm{K}\Phi}}$	2.50	0.0220	0.0160	0.0162	0.0162	0.0162
-	1						
	Полное давление газа на выходе	0.00	3.7474	2.7080	2.2805	1.9070	<u>1.4220</u>
	<u>из форсажной камеры</u> * *	0.50	3.9978	<u>2.8786</u>	<u>2.4195</u>	<u>2.0192</u>	1.5165
16	$p_{\oplus}^* = p_{\mathrm{T}}^* \sigma_{\mathrm{K} \oplus} *10^5, \mathrm{H/M}^2$	1.00	4.9600	3.5358	<u>2.9560</u>	2.4532	1.8262
<u>46</u>	<i>Γ</i> Ψ <i>Γ</i> Γ <i>κ</i> Ψ	1.50	7.1036	<u>4.9918</u>	<u>4.1414</u>	3.4093	<u>2.5055</u>
		2.00	10.4330	7.2137	5.9324	4.8387	3.5034
		2.50	<u>15.8023</u>	10.7514	<u>8.7644</u>	<u>7.0819</u>	<u>5.0502</u>
	Скорость истечения газа из РС	0.00	<u>1051.0</u>	<u>1053.6</u>	<u>1073.0</u>	<u>1113.1</u>	<u>1157.2</u>
	20 P T*	0.50	<u>1073.3</u>	<u>1071.9</u>	<u>1099.9</u>	<u>1128.7</u>	<u>1173.5</u>
	$2c_{\mathbf{p}\Gamma}R_{\Gamma}T_{\mathbf{\Phi}}^{*}$.	<u>1.00</u>	<u>1142.7</u>	<u>1129.8</u>	<u>1154.0</u>	<u>1179.0</u>	<u>1218.3</u>
<u>47</u>		<u>1.50</u>	<u>1244.0</u>	<u>1216.1</u>	<u>1235.4</u>	<u>1255.5</u>	<u>1287.5</u>
	$c_{c\phi} = \varphi_{c}$ $1 - \left(\frac{p_{H}}{p_{\phi}}\right)^{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}}$	<u>2.00</u>	<u>1337.0</u>	<u>1296.1</u>	<u>1311.2</u>	<u>1327.1</u>	<u>1352.7</u>
	$c_{c\phi} = \varphi_c \mid \rho_H \mid \kappa_\Gamma \mid$	<u>2.50</u>	1423.6	<u>1371.7</u>	<u>1383.4</u>	<u>1395.8</u>	<u>1415.9</u>
		0.00	1700	1520	1520	1.520	1520
	Температура газа в форсажной	0.00	<u>1700</u>	<u>1530</u>	<u>1530</u>	1530 1530	<u>1530</u>
40	камере $TP \underline{\Pi} \Phi$	0.50	<u>1700</u>	<u>1530</u>	<u>1530</u>	1530 1530	<u>1530</u>
<u>48</u>	T_{Φ}	1.00	<u>1700</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>
		1.50	<u>1700</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>
		2.00	<u>1700</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>
		2.50	<u>1700</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>	<u>1530</u>
	<u>Удельная тяга ТРДФ</u>	0.00	1073.0	<u>1070.3</u>	<u>1100.6</u>	<u>1131.6</u>	<u>1177.0</u>
	$P_{\rm yd\phi} = (g_{\rm \Gamma} + g_{\rm OXJ}) \cdot$	0.50	<u>925.3</u>	<u>926.3</u>	<u>959.2</u>	993.0	1045.7
40	**	1.00	824.6	821.6	<u>854.8</u>	889.0	942.7
<u>49</u>	$\cdot (1 + g_{T\phi})c_{c\phi} - V, \frac{H \cdot c}{\kappa \Gamma}$	1.50	<u>755.3</u>	<u>744.7</u>	<u>777.1</u>	<u>810.7</u>	<u>863.6</u>
	- Тү үү КГ	2.00	<u>676.0</u>	<u>660.2</u>	<u>692.6</u>	<u>726.2</u>	<u>779.4</u>
		2.50	<u>588.5</u>	<u>569.7</u>	<u>602.9</u>	<u>637.5</u>	<u>692.0</u>
	Удельный расход топлива ТРДФ	0.00	<u>0.1375</u>	<u>0.1207</u>	<u>0.1185</u>	<u>0.1164</u>	<u>0.1135</u>
	$G = 2600 \text{ g}_{\text{T}} \Sigma \text{ K} \Gamma$	<u>0.50</u>	<u>0.1579</u>	<u>0.1381</u>	<u>0.1347</u>	<u>0.1314</u>	<u>0.1267</u>
	$C_{\rm yd\phi} = 3600 \frac{g_{\rm T}\Sigma}{P_{\rm yd\phi}} \frac{{\rm K}\Gamma}{{\rm H}\cdot{\rm H}},$	<u>1.00</u>	<u>0.1720</u>	<u>0.1510</u>	0.1469	<u>0.1430</u>	<u>0.1372</u>
<u>50</u>	удф 11.4	<u>1.50</u>	<u>0.1783</u>	<u>0.1579</u>	<u>0.1537</u>	<u>0.1496</u>	<u>0.1437</u>
	где	2.00	<u>0.1842</u>	<u>0.1643</u>	<u>0.1600</u>	<u>0.1558</u>	<u>0.1496</u>
		<u>2.50</u>	<u>0.1890</u>	<u>0.1694</u>	<u>0.1650</u>	<u>0.1607</u>	<u>0.1545</u>
	$g_{\text{T}\Sigma} = g_{\text{T}}(1 - g_{\text{OXJI}} - g_{\text{OTO}})$	1					
	$+g_{\mathrm{T}\Phi}(g_{\Gamma}+g_{\mathrm{OXJI}})$						
1.1	1	1	l	1	1	I	1

1 2 3 4 5 6 7 8					I	Іродолж е	ение табл	<u>.1.6</u>
	1	2	<u>3</u>	4	5	<u>6</u>		_8

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>Тяга ТРДФ при полном</u>	0.00		<u>95432</u>	<u>82604</u>		<u>53380</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>0.50</u>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{cb} = G_{B}P_{v\partial cb}, H$	<u>1.00</u>	<u>135059</u>			<u>71855</u>	<u>56677</u>
	<u>51</u>	<u> </u>						
$ \frac{52}{G_{T\varphi}} = C_{yZ\varphi} P_{\varphi} \text{, kr/ч} \\ $								<u>90312</u>
			<u>2.50</u>		<u>204207</u>	<u>175981</u>	<u>150170</u>	<u>116037</u>
								
		$G_{\text{Trh}} = C_{\text{Vлh}} P_{\text{th}} \text{ кг/ч}$	<u>0.50</u>					<u>6610</u>
		<u> </u>	<u>1.00</u>	<u>23236</u>		<u>12236</u>	<u>10272</u>	<u>7778</u>
	<u>52</u>							
$ \frac{53}{56} = \frac{P \text{абота цикла ТРДФ}}{L_{\text{Ц ТРДФ}} = (1 - \eta_{\text{Mex}}) L_{\text{ТВД}} + \frac{0.00}{0.50} \frac{576919}{586721} \frac{574048}{580543} \frac{606859}{613010} \frac{641451}{647238} \frac{693854}{702235} \\ \frac{P_{\text{УДФ}}(P_{\text{УДФ}} + 2V)}{2} \frac{1}{\text{Дж}} \frac{1.00}{2} \frac{621832}{2.00} \frac{605422}{68702} \frac{637003}{637003} \frac{670267}{723671} \frac{723671}{723671} \\ \frac{1.50}{2.00} \frac{671983}{68977} \frac{641647}{647646} \frac{679305}{679305} \frac{712348}{712348} \frac{764835}{764835} \\ \frac{2.00}{68977} \frac{647646}{647646} \frac{679305}{679305} \frac{712348}{712348} \frac{764835}{764835} \\ \frac{2.50}{0.50} \frac{674986}{0.328} \frac{625699}{0.369} \frac{65919}{65919} \frac{695343}{695343} \frac{751046}{751046} \\ \frac{1.00}{0.50} \frac{0.319}{0.328} \frac{0.361}{0.369} \frac{0.378}{0.386} \frac{0.396}{0.403} \frac{0.422}{0.455} \\ \frac{1.00}{0.50} \frac{0.358}{0.358} \frac{0.397}{0.397} \frac{0.412}{0.412} \frac{0.429}{0.429} \frac{0.455}{0.512} \frac{0.455}{0.534} \\ \frac{1.00}{0.50} \frac{0.358}{0.528} \frac{0.397}{0.412} \frac{0.412}{0.429} \frac{0.496}{0.523} \frac{0.572}{0.534} \\ \frac{2.50}{0.496} \frac{0.455}{0.528} \frac{0.540}{0.549} \frac{0.553}{0.572} \frac{0.572}{0.566} \\ \frac{1.00}{0.574} \frac{0.440}{0.566} \frac{0.425}{0.549} \frac{0.236}{0.532} \frac{0.220}{0.505} \\ \frac{1.00}{0.00} \frac{0.451}{0.000} \frac{0.440}{0.425} \frac{0.425}{0.409} \frac{0.409}{0.384} \\ \frac{0.50}{0.574} \frac{0.566}{0.566} \frac{0.549}{0.592} \frac{0.532}{0.505} \frac{0.505}{0.000} \\ \frac{0.00}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \\ \frac{0.00}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \\ \frac{0.00}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \\ \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \\ \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \\ \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} 0$			<u>2.00</u>			<u>21792</u>	<u>18132</u>	<u>13514</u>
$ \frac{53}{L_{II}} \frac{T p д \varphi}{P y d \varphi} = (1 - \eta_{MeX}) L_{TBД} + \frac{0.50}{1.00} \frac{586721}{621832} \frac{580543}{605422} \frac{613010}{637003} \frac{647238}{670267} \frac{702235}{723671} $ $ \frac{P_{y d \varphi}(P_{y d \varphi} + 2V)}{2}, \frac{J_{JX}}{K\Gamma} \frac{1.50}{2.50} \frac{671983}{641047} \frac{641047}{671944} \frac{670944}{704385} \frac{702235}{756287} $ $ \frac{B_{HY TPEHHUЙ}(9 \varphi \varphi e K T UB H B B B B W T D A B B B W T D A B B B B W T D A B B B B B B B B B B B B B B B B B B$			<u>2.50</u>		<u>34595</u>	<u>29039</u>	<u>24137</u>	<u>17925</u>
$ \frac{53}{P} = \frac{P_{\text{удф}}(P_{\text{удф}} + 2V)}{2} \frac{\Pi_{\text{Ж}}}{\text{кг}} = \frac{1.00}{2.50} = \frac{621832}{605422} = \frac{637003}{637003} = \frac{670267}{723671} = \frac{723671}{723687} = \frac{1.50}{2.00} = \frac{671983}{641047} = \frac{6471944}{671944} = \frac{704385}{704855} = \frac{756287}{756287} = \frac{2.00}{2.50} = \frac{68977}{647646} = \frac{647646}{679305} = \frac{679305}{712348} = \frac{764835}{764835} = \frac{2.50}{2.50} = \frac{674986}{625699} = \frac{625699}{659919} = \frac{695343}{695343} = \frac{751046}{751046} = \frac{1.00}{1.00} = \frac{0.319}{0.328} = \frac{0.361}{0.328} = \frac{0.396}{0.386} = \frac{0.422}{0.433} = \frac{0.396}{0.433} = \frac{0.422}{0.433} = \frac{0.422}{0.433} = \frac{0.422}{0.442} = \frac{0.429}{0.422} = \frac{0.425}{0.496} = \frac{0.422}{0.496} = \frac{0.422}{0.496} = \frac{0.422}{0.496} = \frac{0.422}{0.440} = \frac{0.422}{0.442} = \frac{0.429}{0.422} = \frac{0.426}{0.449} = \frac{0.429}{0.553} = \frac{0.534}{0.572} = \frac{0.534}{0.566} = \frac{0.429}{0.592} = \frac{0.534}{0.592} = \frac{0.532}{0.592} = \frac{0.645}{0.692} = \frac{0.622}{0.692} = \frac{0.645}{0.692} = \frac{0.622}{0.692} = \frac{0.692}{0.692} = \frac{0.692}{0.992} = \frac{0.992}{0.992} = \frac{0.992}{0$								
$ \frac{53}{2} = \frac{P_{\text{удф}}(P_{\text{удф}} + 2V)}{2}, \underline{\text{Дж}} \\ \frac{2}{2}, \text{кг} = \frac{1.00}{2.00} \frac{621832}{671983} \frac{603422}{641047} \frac{6571944}{671944} \frac{704385}{704385} \frac{756287}{756287} \\ \frac{2.00}{68977} \frac{6876466}{647646} \frac{679305}{679305} \frac{712348}{712348} \frac{764835}{756287} \\ \frac{2.50}{2.50} \frac{674986}{674986} \frac{625699}{625699} \frac{659919}{695343} \frac{0.396}{751046} \\ \frac{0.378}{1000} \frac{0.3996}{0.386} \frac{0.422}{0.403} \\ \frac{0.50}{0.328} \frac{0.328}{0.369} \frac{0.386}{0.386} \frac{0.403}{0.431} \\ \frac{0.50}{2.50} \frac{0.328}{0.328} \frac{0.397}{0.329} \frac{0.412}{0.429} \frac{0.429}{0.455} \\ \frac{0.50}{1.50} \frac{0.407}{0.44} \frac{0.488}{0.499} \frac{0.472}{0.512} \frac{0.496}{0.534} \\ \frac{2.50}{0.496} \frac{0.452}{0.528} \frac{0.486}{0.540} \frac{0.499}{0.553} \frac{0.572}{0.572} \\ \frac{1.50}{1.50} \frac{0.268}{0.574} \frac{0.259}{0.566} \frac{0.220}{0.549} \frac{0.236}{0.532} \frac{0.220}{0.505} \\ \frac{0.50}{2.50} \frac{0.574}{0.566} \frac{0.549}{0.562} \frac{0.532}{0.505} \frac{0.505}{0.595} \\ \frac{2.00}{0.677} \frac{0.662}{0.662} \frac{0.645}{0.628} \frac{0.628}{0.628} \frac{0.601}{0.680} \\ \frac{0.50}{0.50} \frac{0.234}{0.234} \frac{0.251}{0.251} \frac{0.251}{0.251} \frac{0.250}{0.250} \\ \frac{1.00}{0.161} \frac{0.175}{0.175} \frac{0.175}{0.175} \frac{0.175}{0.175} \\ \frac{1.50}{0.200} \frac{0.302}{0.3022} \frac{0.322}{0.322} \frac{0.322}{0.322} \frac{0.321}{0.321} \\ \frac{1.50}{0.251} \frac{0.250}{0.251} \frac{0.250}{0.252} \\ \frac{1.50}{0.302} \frac{0.302}{0.3022} \frac{0.322}{0.322} \frac{0.322}{0.322} \frac{0.321}{0.321} \\ \frac{1.50}{0.302} \frac{0.234}{0.302} \frac{0.251}{0.322} \frac{0.251}{0.322} \frac{0.251}{0.321} \\ \frac{1.50}{0.302} \frac{0.302}{0.3022} \frac{0.322}{0.322} \frac{0.322}{0.322} \frac{0.321}{0.321} \\ \frac{1.50}{0.302} \frac{0.302}{0.302} \frac{0.322}{0.322} \frac{0.322}{0.322} \frac{0.321}{0.321} \\ \frac{1.50}{0.302} \frac{0.251}{0.302} \frac{0.251}{0.322} \frac{0.251}{0.322} \frac{0.251}{0.322} \\ \frac{1.50}{0.322} \frac{0.251}{0.322} \frac{0.251}{0.322} \frac{0.251}{0.322} \\ \frac{1.50}{0.322} \frac{0.251}{0.322} \frac{0.251}{0.3222} \\ \frac{1.50}{0.322} \frac{0.251}{0.32$		$L_{\rm II}$ Thuch = $(1 - \eta_{\rm Mex})L_{\rm TBH}$ +				<u>613010</u>	<u>647238</u>	<u>702235</u>
		. 1 1	<u>1.00</u>	<u>621832</u>	<u>605422</u>	<u>637003</u>	<u>670267</u>	<u>723671</u>
	<u>53</u>	$P_{\text{V}\pi\text{d}}(P_{\text{V}\pi\text{d}}+2V)$ $\Pi_{\mathcal{K}}$	<u>1.50</u>		<u>641047</u>	<u>671944</u>	<u>704385</u>	<u>756287</u>
		7,777		<u>68977</u>	<u>647646</u>		<u>712348</u>	<u>764835</u>
$ \frac{1}{100} = \frac{1}{100} $ $ \eta_{BH} \tau p p \phi = \frac{1}{q_{KC}} + \frac{q_{K} \phi}{\eta_{KC}} + \frac{q_{K} \phi}{\eta_{K} \phi} $ $ \frac{1.00}{\eta_{KC}} + \frac{0.358}{\eta_{K} \phi} = \frac{0.369}{0.397} + \frac{0.412}{0.412} + \frac{0.429}{0.429} + \frac{0.455}{0.496} $ $ \frac{1.00}{0.358} + \frac{0.397}{0.444} + \frac{0.458}{0.458} + \frac{0.472}{0.429} + \frac{0.496}{0.496} $ $ \frac{1.50}{2.00} + \frac{0.452}{0.496} + \frac{0.486}{0.528} + \frac{0.499}{0.540} + \frac{0.512}{0.534} + \frac{0.534}{0.523} + \frac{0.572}{0.572} $ $ \frac{1}{100} + $		<u>Z KI</u>	<u>2.50</u>	<u>674986</u>	<u>625699</u>	<u>659919</u>	695343	<u>751046</u>
$ \frac{1}{100} = \frac{1}{100} $ $ \eta_{BH} \tau p p \phi = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} $		Внутренний (эффективный) КПД	0.00	0.319	0.361	0.378	0.396	0.422
$ \frac{54}{1.50} \eta_{\text{BH ТРД} \varphi} = \frac{I_{\text{I}} \Gamma \rho_{\text{J}} \varphi}{\eta_{\text{KC}}} + \frac{q_{\text{K} \varphi}}{\eta_{\text{K} \varphi}} $ $ \frac{1.50}{\eta_{\text{KC}}} = \frac{0.407}{\eta_{\text{K} \varphi}} = \frac{0.44}{0.458} = \frac{0.472}{0.499} = \frac{0.496}{0.512} = \frac{0.534}{0.534} $ $ \frac{2.00}{0.496} = \frac{0.452}{0.528} = \frac{0.486}{0.540} = \frac{0.499}{0.553} = \frac{0.532}{0.572} $ $ \frac{1}{\eta_{\text{ТЯГ ТРД} \varphi}} = \frac{P_{\text{УД} \varphi} V}{L_{\text{II ТРД} \varphi}} = \frac{0.00}{0.00} = \frac{0.000}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.384} = \frac{0.259}{0.592} = \frac{0.248}{0.236} = \frac{0.236}{0.220} = \frac{0.220}{0.384} = \frac{0.59}{0.592} = \frac{0.59}{0.992} = \frac{0.59}{0.992} = \frac{0.59}{0.992} = \frac{0.992}{0.992} = \frac{0.992}{0.9$			0.50	0.328	0.369	0.386	0.403	0.431
$ \frac{\eta_{\text{КС}} \eta_{\text{Кф}}}{\eta_{\text{ТЯГ ТРД$} \Phi} = \frac{P_{\text{УД$} \Phi}V}{L_{\text{Ц} \ \text{ТРД$} \Phi}} $ $ \frac{D_{\text{О}} 0.258}{D_{\text{О}} 0.000} = \frac{0.528}{0.000} = \frac{0.540}{0.000} = \frac{0.553}{0.000} = \frac{0.572}{0.000} $ $ \frac{0.500}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.384} = \frac{0.250}{1.00} = \frac{0.248}{0.236} = \frac{0.220}{0.236} = \frac{0.220}{0.236} = \frac{0.220}{0.236} = \frac{0.248}{0.236} = \frac{0.236}{0.236} = \frac{0.220}{0.384} = \frac{0.566}{0.549} = \frac{0.549}{0.532} = \frac{0.532}{0.505} = \frac{0.505}{0.000} = \frac{0.000}{0.000} = 0.0$		Lurnad	1.00	0.358	0.397	0.412	0.429	0.455
$ \frac{\eta_{\text{КС}} \eta_{\text{Кф}}}{\eta_{\text{ТЯГ ТРД$} \Phi} = \frac{P_{\text{УД$} \Phi}V}{L_{\text{Ц} \ \text{ТРД$} \Phi}} $ $ \frac{D_{\text{О}} 0.258}{D_{\text{О}} 0.000} = \frac{0.528}{0.000} = \frac{0.540}{0.000} = \frac{0.553}{0.000} = \frac{0.572}{0.000} $ $ \frac{0.500}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.384} = \frac{0.250}{1.00} = \frac{0.248}{0.236} = \frac{0.220}{0.236} = \frac{0.220}{0.236} = \frac{0.220}{0.236} = \frac{0.248}{0.236} = \frac{0.236}{0.236} = \frac{0.220}{0.384} = \frac{0.566}{0.549} = \frac{0.549}{0.532} = \frac{0.532}{0.505} = \frac{0.505}{0.000} = \frac{0.000}{0.000} = 0.0$	_54	$\eta_{\rm BH\ TD} = \frac{\Pi \ TP}{\Pi}$	1.50	0.407	0.44	0.458	0.472	0.496
$ \frac{\eta_{\text{КС}} \eta_{\text{Кф}}}{\eta_{\text{ТЯГ ТРД$} \Phi} = \frac{P_{\text{УД$} \Phi}V}{L_{\text{Ц} \ \text{ТРД$} \Phi}} $ $ \frac{D_{\text{О}} 0.258}{D_{\text{О}} 0.000} = \frac{0.528}{0.000} = \frac{0.540}{0.000} = \frac{0.553}{0.000} = \frac{0.572}{0.000} $ $ \frac{0.500}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.384} = \frac{0.250}{1.00} = \frac{0.248}{0.236} = \frac{0.220}{0.236} = \frac{0.220}{0.236} = \frac{0.220}{0.236} = \frac{0.248}{0.236} = \frac{0.236}{0.236} = \frac{0.220}{0.384} = \frac{0.566}{0.549} = \frac{0.549}{0.532} = \frac{0.532}{0.505} = \frac{0.505}{0.000} = \frac{0.000}{0.000} = 0.0$		$\frac{q_{\rm KC}}{q_{\rm KC}} + \frac{q_{\rm K} \Phi}{q_{\rm K} \Phi}$	2.00	0.452	0.486	0.499	0.512	0.534
$ \frac{1}{56} = \frac{P_{\text{уд}} \Phi^{V}}{L_{\text{ц} \text{ трд}} \Phi} = \frac{P_{\text{уд}} \Phi^{V}}{L_{\text{ц} \text{ трд}} \Phi} = \frac{\frac{0.50}{1.00} \frac{0.268}{0.259} \frac{0.259}{0.248} \frac{0.236}{0.220} \frac{0.220}{0.384} }{\frac{1.00}{1.50} \frac{0.451}{0.574} \frac{0.440}{0.566} \frac{0.425}{0.549} \frac{0.384}{0.532} \frac{0.505}{0.505} }{\frac{2.00}{0.667} \frac{0.662}{0.662} \frac{0.645}{0.628} \frac{0.628}{0.601} \frac{0.601}{0.595} }{\frac{0.50}{0.595} \frac{0.742}{0.739} \frac{0.723}{0.739} \frac{0.706}{0.795} \frac{0.680}{0.095} }{\frac{0.95}{0.095} \frac{0.955}{0.095} } $		η_{KC} $\eta_{K\dot{\Phi}}$	2.50	0.496	0.528	0.540	0.553	0.572
$ \frac{1}{56} = \frac{P_{\text{уд}} \Phi^{V}}{L_{\text{Ц} \text{ трд}} \Phi} = \frac{P_{\text{уд}} \Phi^{V}}{L_{\text{Ц} \text{ трд}} \Phi} = \frac{0.50}{L_{\text{Ц} \text{ трд}} \Phi} = \frac{0.268}{1.00} = \frac{0.259}{0.440} = \frac{0.248}{0.425} = \frac{0.236}{0.409} = \frac{0.220}{0.384} = \frac{0.259}{0.409} = \frac{0.248}{0.322} = \frac{0.220}{0.322} = \frac{0.645}{0.532} = \frac{0.220}{0.505} = \frac{0.667}{0.662} = \frac{0.645}{0.645} = \frac{0.628}{0.628} = \frac{0.601}{0.680} = \frac{0.000}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.000} = \frac{0.000}{0.095} = \frac{0.095}{0.095} = \frac{0.095}{0.095} = \frac{0.075}{0.095} = \frac{0.000}{0.000} = \frac{0.000}{0.0$		Тяговый (полётный) КПД ТРДФ	0.00	0.000	0.000	0.000	0.000	0.000
$ \frac{1300}{2.00} \frac{0.374}{0.667} \frac{0.300}{0.662} \frac{0.342}{0.645} \frac{0.332}{0.628} \frac{0.303}{0.601} $ $ \frac{1100}{100} \frac{110}{100} \frac{110}{100} \frac{110}{100} \frac{0.00}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} $ $ \frac{0.50}{1.00} \frac{0.088}{0.096} \frac{0.095}{0.095} \frac{0.095}{0.095} \frac{0.095}{0.095} $ $ \frac{1.50}{2.00} \frac{0.234}{0.302} \frac{0.251}{0.322} \frac{0.251}{0.322} \frac{0.250}{0.322} $			0.50	0.268	0.259	0.248	0.236	0.220
$ \frac{1300}{2.00} \frac{0.374}{0.667} \frac{0.300}{0.662} \frac{0.342}{0.645} \frac{0.332}{0.628} \frac{0.303}{0.601} $ $ \frac{1100}{100} \frac{110}{100} \frac{110}{100} \frac{110}{100} \frac{0.00}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} \frac{0.000}{0.000} $ $ \frac{0.50}{1.00} \frac{0.088}{0.096} \frac{0.095}{0.095} \frac{0.095}{0.095} \frac{0.095}{0.095} $ $ \frac{1.50}{2.00} \frac{0.234}{0.302} \frac{0.251}{0.322} \frac{0.251}{0.322} \frac{0.250}{0.322} $		$\eta_{\text{TGE TDIR}} = \frac{-y \mu \psi}{r}$	1.00	0.451	0.440	0.425	0.409	0.384
$ \frac{2.00 0.667}{2.50 0.742} 0.662 0.645 0.628 0.601}{0.723 0.706 0.680} $ $ \frac{\Pi \text{ОЛНЫЙ (общий) КПД ТРДФ}}{\eta_{\Pi} \text{ трдф}} = \eta_{\text{BH ТРДФ}} \eta_{\text{ТЯГ ТРДФ}} $ $ \frac{0.00 0.000}{0.50 0.088} 0.096 0.095 0.095}{1.00 0.161 0.175 0.175} 0.175 0.175} $ $ \frac{1.50 0.234 0.251 0.251 0.251 0.250}{2.00 0.302 0.322 0.322} 0.321 $	<u>55</u>	$L_{\text{Ц трдф}}$	1.50	0.574	0.566	0.549	0.532	0.505
$ \underline{ \begin{array}{c cccccccccccccccccccccccccccccccccc$			2.00	0.667	0.662	0.645	0.628	0.601
$ \underline{ \begin{array}{c cccccccccccccccccccccccccccccccccc$			2.50	0.742	0.739	0.723		0.680
		Полный (общий) КПД ТРДФ		0.000	0.000	0.000	0.000	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.50	0.088	0.096	0.095	0.095	0.095
<u>2.00</u> <u>0.302</u> <u>0.322</u> <u>0.322</u> <u>0.322</u> <u>0.321</u>		ти трдф твн трдф тгяг трдф		0.161		0.175	0.175	0.175
	<u>56</u>		1.50	0.234	0.251	0.251	0.251	0.250
<u>2.50</u> <u>0.368</u> <u>0.390</u> <u>0.391</u> <u>0.390</u> <u>0.389</u>			2.00	0.302	0.322	0.322	0.322	0.321
			2.50	0.368	0.390	0.391	0.390	0.389

2. Турбовальные двигатели.

2.1. Турбовинтовой двигатель. Отформатировано Высотно-скоростными характеристиками турбовинтовых двигателей (ВСХ ТВД) (рис.2.1) называют зависимости эквивалентной мощности $N_{\text{экв}}$, мощности воздушного винта $N_{\rm B}$ и удельного расхода топлива $C_{_{2{\rm KB}}}$ от высоты и скорости полёта при при заданном законе управления двигателя. Отформатировано Отличительной особенностью большинства ТВД является поддержание постоянной винтовой мощности ($N_{\rm B}$ =const) до так называемой высоты $H_{\rm orp}$ =2...5 км <u>и скорости V_{огр}=50...100 м/с. Это требование объясняется тем, что в целях</u> уменьшения габаритных размеров редуктора расчёт на прочность его производится на мощность $N_{\rm B \ pacy}$, необходимую для безопасного взлёта воздушного судна (H=0, V=0), а не на максимальную мощность $N_{\rm B\ max}$, определяемую, например, в полёте у земли с крейсерской скоростью $V_{\rm крейс}$. Причём, чем больше $V_{\rm крейс}$, тем больше $N_{\rm B\ max}$ Отформатировано Укаазанное изменение винтовой мощности в диапазоне высот $H=0...H_{\text{orp}}$ обеспечивается соответствующим изменением температуры газа перед турбиной $T_{\Gamma}^* = T_{\Gamma}^*$ расч . . . T_{Γ}^* мах. Причём, чем больше $H_{\text{огр}}$, тем больше T_{Γ}^* мах. Отформатировано Рис. 2.1. Схема одновального турбовинтового двигателя: 1 – воздушный винт; 2 – редуктор; 3 – входное устройство; 4 – компрессор; 5 – камера сгорания; 6 – турбина; 7 – выходное устройство; $L_{\rm R}$ – удельная работа винта, Дж/кг; $L_{\rm e}$ – удельная работа на выводном валу турбокомпрессора, Дж/кг; $G_{\rm T}$ – расход топлива, кг/с Отформатировано вх, в, к, г, т, с – обозначения контрольных сечений проточной части (газо-

Отформатировано

воздушного тракта двигателя)

Таким образом, в диапазоне $H=0...H_{\text{огр}}$ закон управления ТВД представляется в виде: $n=n_{max}=const, \ T^*_{\ _{\Gamma}}=var,$ а при $H>H_{\text{огр}}: n=n_{max}=const, \ T^*_{\ _{\Gamma}}=T^*_{\ _{\Gamma} max}=const.$ Для расчёта ВСХ ТВД обычно рекомендуют определять $T^*_{\ _{\Gamma} max}$ при заданных

значениях $H_{\text{огр}}$ и $V_{\text{огр}}$, а затем, задаваясь различными значениями высоты H и скорости V, найти $N_{\text{экв}}$, $N_{\text{в}}$ и $C_{\text{экв}}$ при T^*_{-max} . Задача определения T^*_{-max} решается

методом последовательных приближений и требует (при ручном счёте) большого объёма вычислительной работы. Отформатировано Для сокращения объёма этой работы рекомендуется задаться величиной $T^*_{\Gamma \ max} = T^*_{\Gamma \ pacu} + 50...60$, причём, чем меньше $T^*_{\Gamma \ pacu}$, тем больше $T^*_{\Gamma \ max}$ (лимитируется возможностями системы охлаждения турбинных лопаток). Далее производится расчёт ВСХ ТВД при $T^*_{r max}$, а затем уточняются H_{orp} и V_{orp} (путём наложения на построенные высотно-скоростные характеристики ТВД ограничения $N_{\rm B} = N_{\rm B \ pacy} = const$). Отформатировано Для расчёта ВСХ ТВД задаёмся характеристиками отдельных элементов а) входное устройство $\sigma_{\text{вх}} = \sigma_{\text{вх}}(M_{\text{H}})$; б) компрессор $L_{\text{к ал}}^* = const$; $\eta_{\text{к}}^* = const$; Отформатировано в) камера сгорания $\eta_{KC} = const; \sigma_{KC} = const;$ <u>г) турбина</u> $\frac{G_{\Gamma}\sqrt{T_{\Gamma}^{*}}}{T_{\Gamma}^{*}} = const;$ $\eta_{T}^{*} = const;$ <u>д) выходное сопло $\phi = const;$ </u> е) воздушный винт. Изменение КПД винта определяется по графику на рис.2.2. Принимается также, что адиабатический КПД расширения газа в системе «турбина + выходное сопло» остаётся неизменным:

$$\eta_{\text{AJ, T+c}} = \frac{1 - \frac{I_{\text{c}}}{T_{\Gamma}^*}}{1 - \left(\frac{p_{\text{H}}}{*}\right)^{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}}} = \underbrace{const.}$$

Исходными данными для расчёта высотно-скоростных характеристик ТВД являются результаты газодинамического расчёта на H=0, V=0 [2]: эквивалентная мощность $N_{3\kappa B}$ =1800 кВт; степень повышения давления в компрессоре π^*_{κ} =8; <u>температура газа перед турбиной $T_{\underline{r}}^*$ =1200 К; высота и скорость ограничения</u> винтовой мощности H_{orp} =3.5 км, V_{orp} =100 м/с; прототип двигателя ТВД АИ-24. Основные данные элементов проектируемого двигателя:

а) входное устройство

 $p_{\rm B}^*=1.01325*10^5 {\rm H/m^2}; G_{\rm B}=10.2 {\rm kr/c}; \sigma_{\rm BX}=1.0; T_{\rm B}^*=288.15 {\rm K};$

 $\underline{\pi_{\mathrm{K}}^* = 8; \ \underline{\eta_{\mathrm{K}}^* = 0.86; \ L_{\mathrm{K}}} = 273138 \ \underline{\text{Дж/кг}}; \ \underline{T_{\mathrm{K}}^* = 560.0 \ \mathrm{K}}; \ \underline{p_{\mathrm{K}}^* = 8.1060*10^5 \ \mathrm{H/m^2}}; \ \underline{G_{\mathrm{B}}} = 10.2 \ \mathrm{kr/c};$

в) камера сгорания

Рис.2.2. Изменение относительного КПД воздушного винта от числа $M_{\rm H}$ полёта:

а) перспективные винтовентиляторы

$$\eta_{\rm BB} = 836.0 M_H^{\,7} - 2556 M_H^{\,6} + 3189 M_H^{\,5} - 2095 M_H^{\,4} + 780.2 M_H^{\,3} - 165.6 M_H^{\,2} + 19.1 M_H - 0.0431;$$

$$\frac{\text{б) современные винтовентиляторы}}{\eta_{\text{BB}} = 5535 M_H^7 - 20874 M_H^6 + 32674 M_H^5 - 27453 M_H^4 + 13336 M_H^3 - 3735 M_H^2 + 557.8 M_H - 33.4;}$$

$$\eta_{BB} = -1.948M_H^2 + 2.223M_H + 0.275$$

Отформатировано

 L_{T} =450756 Дж/кг; $g_{\text{охл}}$ =0.04; $g_{\text{от6}}$ =0.02; π_{T} =7.6; η_{T} =0.82; T_{T}^* =810.9 K; g_{T} =0.9570; N_{T} =4398 кВт; T_{TT}^* =801.3 K; p_{T}^* =1.2993*10⁵ H/м²; p_{T} =1.01325x10⁵ H/м²; λ_{T} =0.65;

д) выходное сопло

 $c_c = 326.72 \text{ m/c}; \varphi_c = 0.99; \lambda_c = 0.6371; \gamma(\lambda_c) = 1.0738; F_c = 0.0666 \text{ m}^2;$

Отформатировано Отформатировано

$D_{\rm c}$ =0.291 м; $T_{\rm c}$ =755.3 K; e) удельные показатели двигателя

 \underline{L}_{e} =156093 Дж/кг; \underline{L}_{B} =153752 Дж/кг; \underline{L}_{3KB} =176554 Дж/кг; N_{B} =1568 кВт; $\underline{\eta}_{a\pi, T+c}$ =0.9372;

Отформатировано

 $C_{\text{экв}} = 0.347 \text{ кг/(кВт.ч)}$

При ручном счёте принимается значение $T^*_{_{\Gamma} max} = 1331.6$ К. Порядок и результаты расчёта высотно-скоростных характеристик ТВД приведены в таблице 2.1.

Таблица 2.1

	Высотно-скорс	стные ха	арактерис	стик ТВД			
<u>No</u>	Наименование параметра,	$\underline{M}_{\scriptscriptstyle \mathrm{H}}$	Выс	сота полёта.	<u>KM</u>		
Π/Π	расчётная формула	_	0	2	3.5*)	6**)	8
1	2	<u>3</u>	<u>4</u>	5	<u>6</u>		8
	Температура наружного возду	0.05	<u>288.15</u>	275.15	<u>265.40</u>	249.20	242.60
	ха по ГОСТ 4401-81	0.10	288.15	275.15	265.40	249.20	242.60
		$0.306^{*)}$	<u>288.15</u>	<u>275.15</u>	<u>265.40</u>	249.20	242.60
1	$T{\rm H} = 288.15 - 6.5 \cdot H$	0.395**)	288.15	275.15	265.40	249.20	242.60
		0.495	288.15	<u>275.15</u>	265.40	249.20	<u>242.60</u>
		0.645	<u>288.15</u>	275.15	<u>265.40</u>	249.20	242.60
	Давление наружного воздуха	0.05	1.0132	0.7926	0.6541	0.4674	0.4061
	по ГОСТ 4401-81	0.10	1.0132	0.7926	0.6541	0.4674	<u>0.4061</u>
		$0.306^{*)}$	1.0132	0.7926	0.6541	0.4674	0.4061
_2	$p_H = 1.01325 \cdot (1 - 1.01325)$	0.395^{**}	1.0132	0.7926	0.6541	0.4674	0.4061
		0.495	1.0132	0.7926	0.6541	0.4674	0.4061
	$\left(-\frac{H}{44368}\right)^{5.2532} \cdot 10^5$, Πa	0.645	1.0132	<u>0.7926</u>	<u>0.6541</u>	0.4674	0.4061
	$-\frac{10}{44.368}$						
	1 110 0 0						
	Температура торможения на	0.05	288.3	275.3	265.5	249.3	242.8
	входе в двигатель	0.10	288.7	275.7	265.9	249.6	243.1
		$0.306^{*)}$	293.6	280.3	270.4	253.8	247.2
<u>3</u>	$T_{\rm H}^* = T_{\rm H} (1 + \frac{\kappa - 1}{2} M_{\rm H}^2)$	0.395**)	297.1	283.7	273.7	256.9	250.2
	$I_{\rm H} = I_{\rm H} (1 + \frac{1}{2} M_{\rm H})$	0.495	302.3	288.6	278.4	261.4	254.5
		0.645	312.1	298.0	287.5	269.9	262.8
	Полное давление на входе в	0.05	1.0150	0.7940	0.6553	0.4682	0.4068
	<u>двигатель</u>	0.10	1.0204	0.7981	0.6587	0.4707	0.4089
	К	$0.306^{*)}$	1.0813	0.8458	0.6981	0.4988	0.4333
<u>4</u>	$(\tau^*)^{\frac{\kappa}{\kappa-1}}$	0.395**)	1.1283	0.8826	0.7284	0.5205	0.4522
	$p_{\rm H}^* = p_{\rm H} \left(\frac{T_{\rm H}^*}{T_{\rm H}}\right)^{\frac{\kappa}{\kappa - 1}}$	0.495	1.1980	0.9371	0.7734	0.5526	0.4801
	$ PH PH T_{H} $	0.645	1.3404	1.0485	0.8653	0.6183	0.5372
	(")						
	105 H						
	$\cdot 10^5, \frac{H}{v^2}$						
	M						
	Коэффициент восстановления	<u>0.05</u>	0.9984	0.9984	<u>0.9984</u>	<u>0.9984</u>	<u>0.9984</u>
	полного давления во входном	<u>0.10</u>	<u>0.9967</u>	<u>0.9967</u>	<u>0.9967</u>	<u>0.9967</u>	<u>0.9967</u>
	<u>устройстве</u>	0.306*)	0.9899	0.9899	<u>0.9899</u>	<u>0.9899</u>	<u>0.9899</u>
5	$\sigma{\rm BX} = \sigma_{\rm BX \ pacy} -$	0.395**)	<u>0.9870</u>	<u>0.9870</u>	<u>0.9870</u>	<u>0.9870</u>	<u>0.9870</u>
	_	<u>0.495</u>	<u>0.9837</u>	<u>0.9837</u>	<u>0.9837</u>	<u>0.9837</u>	<u>0.9837</u>
	$-0.033 \cdot M_{\rm H}$	0.645	0.9787	<u>0.9787</u>	<u>0.9787</u>	<u>0.9787</u>	<u>0.9787</u>
L	Н Н		1				

Отформатировано

Отформатировано

Отформатировано

Отформатировано

Отформатировано

Отформатировано

^{*)} Высота $H_{\text{огр}}$ и число $M_{\text{огр}}$, до которых винтовая мощность $N_{\text{в}}$ поддерживается постоянной;

постоянной; **) Параметры крейсерского полёта $H_{\text{крейс}}$ и $M_{\text{крейс}}$

				J	Продолже	ение табл	.2.1
1	2	3	4	5	6	7	8
	Температура воздуха на входе в	0.05	288.3	275.3	265.5	249.3	242.8
	компрессор	0.10	288.7	275.7	265.9	249.6	243.1
		0.306*)	293.6	280.3	270.4	253.8	247.2
<u>6</u>	$T_{\rm B}^* = T_{\rm H}^*$	0.395**)	297.1	283.7	273.7	256.9	250.2
		0.495	302.3	288.6	278.4	261.4	254.5
		0.645	312.1	298.0	287.5	269.9	262.8
	Полное давление на входе в	0.05	1.0133	0.7926	0.6542	0.4674	0.4061
	компрессор	0.10	1.0170	0.7955	0.6566	0.4691	0.4076
	* * 105 H	$0.306^{*)}$	1.0704	0.8373	<u>6910</u>	0.4937	0.4290
<u>7</u>	$p_{\rm B}^* = p_{\rm H}^* \sigma_{\rm BX} \cdot 10^5, \frac{\rm H}{\rm M}^2$	0.395**)	<u>1.1136</u>	0.8711	0.7189	0.5137	0.4463
	M ²	0.495	1.1784	0.9218	0.7608	0.5436	0.4723
		0.645	<u>1.3119</u>	1.0261	0.8469	<u>0.6051</u>	0.5257
	Степень повышения давления в	<u>0.05</u>	<u>7.99</u>	<u>8.60</u>	<u>9.12</u>	<u>10.13</u>	<u>10.60</u>
	компрессоре	<u>0.10</u>	<u>7.97</u>	<u>8.58</u>	<u>9.10</u>	<u>10.11</u>	<u>10.57</u>
	<i>ι</i> * κ	<u>0.306*)</u>	<u>7.77</u>	<u>8.36</u>	<u>8.86</u>	<u>9.83</u>	10.28
<u>8</u>	$\pi_{K}^{*} = (1 + \frac{L_{K \text{ ad}}^{*}}{\pi^{*}})^{\frac{K}{K-1}}$	0.395**)	<u>7.63</u>	<u>8.20</u>	<u>8.68</u>	<u>9.63</u>	10.07
	$n_{\rm K} = (1 + \frac{1}{2})^{1/2}$	<u>0.495</u>	<u>7.43</u>	<u>7.98</u>	<u>8.45</u>	<u>9.36</u>	<u>9.78</u>
	$c_{\mathbf{p}_{\mathbf{B}}}T_{\mathbf{B}}$	<u>0.645</u>	<u>7.08</u>	<u>7.59</u>	<u>8.03</u>	<u>8.88</u>	<u>9.27</u>
	Температура воздуха за	0.05	<u>560.2</u>	<u>547.6</u>	<u>538.2</u>	<u>522.5</u>	<u>516.3</u>
	компрессором	<u>0.10</u>	<u>560.6</u>	<u>548.0</u>	<u>538.6</u>	<u>522.9</u>	<u>516.6</u>
	r^* r^* L_{κ}	$0.306^{*)}$	<u>565.3</u>	<u>552.5</u>	<u>542.9</u>	<u>526.9</u>	<u>520.5</u>
9	$T_{\mathrm{K}}^* = T_{\mathrm{B}}^* + \frac{L_{\mathrm{K}}}{c_{\mathrm{pB}}}$	0.395**)	<u>568.8</u>	<u>555.8</u>	<u>546.1</u>	<u>529.9</u>	<u>523.4</u>
	Срв	<u>0.495</u>	<u>573.8</u>	<u>560.5</u>	<u>550.6</u>	<u>534.2</u>	<u>527.6</u>
		<u>0.645</u>	<u>583.4</u>	<u>569.7</u>	<u>559.4</u>	<u>542.4</u>	<u>535.6</u>
	Давление воздуха за	<u>0.05</u>	<u>8.1004</u>	<u>6.8180</u>	<u>5.9665</u>	<u>4.7364</u>	<u>4.3048</u>
	компрессором	<u>0.10</u>	<u>8.1105</u>	<u>6.8260</u>	<u>5.9733</u>	<u>4.7414</u>	4.3092
	$p_{\rm K}^* = p_{\rm B}^* \pi_{\rm K}^* \cdot 10^5 , \frac{\rm H}{2}$	0.306*)	<u>8.3186</u>	<u>6.9966</u>	<u>6.1193</u>	<u>4.8529</u>	<u>4.4088</u>
<u>10</u>	$p_{\rm K} - p_{\rm B}n_{\rm K}$ 10 , $\frac{2}{1.2}$	0.395**)	<u>8.4933</u>	<u>7.1400</u>	6.2424	<u>4.9472</u>	<u>4.4932</u>
	M	<u>0.495</u>	<u>8.7547</u>	<u>7.3547</u>	<u>6.4266</u>	<u>5.0884</u>	<u>4.6196</u>
		<u>0.645</u>	<u>9.2841</u>	<u>7.7895</u>	<u>6.7998</u>	5.3744	<u>4.8757</u>
	Полное давление газа перед	0.05	<u>7.6954</u>	6.4771	<u>5.6682</u>	<u>4.4996</u>	<u>4.0896</u>
	<u>турбиной</u>	0.10	<u>7.7050</u>	6.4847	<u>5.6746</u>	4.5044	4.0937
1.1	$p_{\Gamma}^* = p_{K}^* \sigma_{KC} \cdot 10^5 , \frac{H}{M^2}$	0.306*)	<u>7.9027</u>	6.6467	<u>5.8133</u>	4.6103	4.1884
<u>11</u>	$p_{\Gamma} - p_{K} \circ_{KC} = 0$,	0.395**)	8.0687	6.7830	<u>5.9303</u>	4.6998	4.2686
		0.495	8.3169	6.9869	6.1053	4.8340	4.3887
	T 0	0.645	<u>8.8199</u>	7.4000	6.4598	<u>5.1057</u>	4.6319
	<u>Действительная температура</u>	0.05	838.3	824.7	814.0	<u>795.2</u>	<u>787.2</u>
	газа в обрезе выходного сопла	0.10	838.0	824.5	813.8	<u>795.0</u>	<u>787.1</u>
12	$T_{\mathbf{c}} = T_{\Gamma max}^* \{1 -$	0.306*)	833.3	<u>819.9</u>	809.4	<u>790.9</u>	<u>783.1</u>
<u>12</u>		0.395**)	829.5	816.2	805.8	787.5	779.8
	$\kappa_{r}-1$	0.495	<u>823.9</u>	<u>810.9</u>	800.7	<u>782.6</u>	775.0
	n	0.645	<u>813.2</u>	800.6	<u>790.7</u>	<u>773.2</u>	<u>765.8</u>
	$-\eta_{\text{AJ T+c}}[1-(\frac{p_{\text{H}}}{*})^{\frac{\kappa_{\Gamma}-1}{\kappa_{\Gamma}}}]\}$						
	p_{Γ}						

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						Продоля	кение таб	<u>л.2.1</u>
	1	2					<u>7</u>	8
$ c_{\Pi} = 0.9 + 10^{-4} \cdot \\ c_{\Pi} = 0.95 \cdot \\ c_{\Pi} = 0.95 \cdot \\ c_{\Pi} = 0.95 \cdot \\ c_{\Pi} = 0.9 + 10^{-4} \cdot \\ c_{\Pi} = 0.95 \cdot \\ c_{\Pi} $		Средняя условная теплоёмкость в	<u>0.05</u>	<u>1.2223</u>	<u>1.2211</u>	<u>1.2201</u>	<u>1.2186</u>	<u>1.2180</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		камере сгорания	<u>0.10</u>	<u>1.2224</u>	<u>1.2211</u>	<u>1.2202</u>		<u>1.2180</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$a = 0.0 \pm 10^{-4}$	0.306*)	<u>1.2229</u>	<u>1.2216</u>	<u>1.2206</u>	<u>1.2190</u>	<u>1.2184</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>13</u>	$c_{\Pi} = 0.9 \pm 10$	0.395**)	<u>1.2232</u>	<u>1.2219</u>	<u>1.2209</u>	<u>1.2193</u>	<u>1.2187</u>
14 Неговария 14 Неговария 15 Неговария 15 Неговария 15 Неговария 15 Неговария 16 Неговария 16 Неговария 17		с• «* —* кЛж	<u>0.495</u>	<u>1.2237</u>	<u>1.2224</u>	<u>1.2214</u>	<u>1.2197</u>	<u>1.2191</u>
		$(2T_{\Gamma max} + T_{K}), \frac{\kappa \kappa \kappa \kappa}{\kappa \Gamma \cdot K}$	0.645	1.2247	1.2233	1.2223	1.2206	<u>1.2199</u>
$ \frac{14}{q_{\rm KC}} = c_{\rm II} (T_{\rm I}^* max - T_{\rm K}^*), \\ \frac{\kappa J \times}{\kappa \Gamma} \\ \frac{\kappa J \times}{\kappa \Gamma} \\ \frac{\kappa J \times}{\kappa \Gamma} \\ \frac{g_{\rm T}}{g_{\rm T}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm T}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm T}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm T}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm K}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm K}}{g_{\rm K}} = \frac{q_{\rm K}}{g_{\rm K}} \\ \frac{g_{\rm K}}{g_{\rm K}} = \frac{g_{\rm K}}{g_{\rm K}} \\ \frac{g_{\rm K}}{g_{$		Удельное количество теплоты,	0.05	942.968	957.379	968.141	985.984	993.086
$ \frac{14}{q_{\rm KC}} = c_{\rm II} (T_{\rm I}^* max - T_{\rm K}^*), \\ \frac{\kappa J \times}{\kappa \Gamma} \\ \frac{\kappa J \times}{\kappa \Gamma} \\ \frac{\kappa J \times}{\kappa \Gamma} \\ \frac{g_{\rm T}}{g_{\rm T}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm T}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm T}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm T}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm K}}{g_{\rm K}} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} \\ \frac{g_{\rm K}}{g_{\rm K}} = \frac{q_{\rm K}}{g_{\rm K}} \\ \frac{g_{\rm K}}{g_{\rm K}} = \frac{g_{\rm K}}{g_{\rm K}} \\ \frac{g_{\rm K}}{g_{$		подводимое к воздуху в камере	0.10	942.488	956.923	967.703	985.575	992.689
$ \frac{q_{\rm KC}}{\kappa \Pi} = C_{\Pi} (I_{\Gamma} max - I_{\rm K}), \\ \frac{\kappa \Pi \kappa}{\kappa \Gamma} = \frac{Q_{\rm KC}}{U_{\rm H} u \eta_{\rm KC}} = \frac{Q_{\rm KC}}{H_{\rm H} u \eta_{\rm KC}} = \frac{Q_{\rm KC}}{U_{\rm H} u \eta_{\rm KC}} = Q_$		сгорания	$0.306^{*)}$	937.121	951.822	962.801		988.251
$\frac{\text{к/Дж}}{\text{кг}} = \frac{Q_{\text{КС}}}{H_{u}\eta_{\text{кс}}} = \frac{Q_{\text{кс}}}{H_{u}\eta_{\text{кc}}} = \frac{Q_{\text{кc}}}{H_{u}\eta_{\text{kc}}} = \frac{Q_{\text{kc}}}{Q_{\text{so}}^{2}} = \frac{Q_{\text{kc}}}{Q_{\text{so}}^{2}} = \frac{Q_{\text{kc}}}{H_{u}\eta_{\text{kc}}} = \frac{Q_{\text{kc}}}{Q_{\text{so}}^{2}} = \frac{Q_{\text{kc}}}{H_{u}\eta_{\text{kc}}} = \frac{Q_{\text{kc}}}{Q_{\text{so}}^{2}} = Q_{\text{k$	<u>14</u>	* * * * * * * * * * * * * * * * * * * *	0.395**)	933.123	948.023	959.150	977.600	984.944
		$q_{\rm KC} = c_{\rm II} (I_{\rm \Gamma max} - I_{\rm K}),$	0.495	927.403	942.587	953.926	972.729	980.214
		77	0.645	916.387	932.116	943.864	963.344	971.100
		кДж						
$ I_{15} = \frac{q_{\rm KC}}{H_u \eta_{\rm KC}} = \frac{q_{\rm KC}}{\frac{0.306^{*}}{1.02219}} = \frac{0.02231}{0.02219} = \frac{0.02253}{0.02253} = \frac{0.02279}{0.02232} = \frac{0.02323}{0.02} = \frac{0.02}{0.02315} = \frac{0.02}{0.02} = \frac{0.0495}{0.0495} = \frac{0.02170}{0.02107} = \frac{0.02207}{0.02235} = \frac{0.02315}{0.02281} = \frac{0.02}{0.02} = \frac{0.02232}{0.02258} = \frac{0.02303}{0.02} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02232}{0.02258} = \frac{0.02303}{0.02} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02232}{0.02258} = \frac{0.02232}{0.02258} = \frac{0.02231}{0.02281} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02232}{0.02258} = \frac{0.02232}{0.02235} = \frac{0.02281}{0.02231} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02232}{0.02258} = \frac{0.02232}{0.02235} = \frac{0.02281}{0.02235} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02}{0.02} = \frac{0.02232}{0.02232} = 0.0223$		КГ						
$ g_{\mathrm{T}} = \frac{q_{\mathrm{KC}}}{H_u \eta_{\mathrm{KC}}} $ $ \frac{0.306^{*}}{0.395^{**}} \frac{0.02219}{0.02209} \frac{0.02244}{0.02271} \frac{0.02323}{0.02215} \frac{0.02}{0.02315} \frac{0.02}{0.02} $ $ \frac{0.02}{0.02315} \frac{0.02}{0.02} $ $ \frac{0.02219}{0.02232} \frac{0.02258}{0.02258} \frac{0.02303}{0.02235} \frac{0.02}{0.0233} \frac{0.02}{0.02} $ $ \frac{0.02}{0.0235} \frac{0.02281}{0.02235} \frac{0.02}{0.02235} \frac{0.02281}{0.02235} \frac{0.02281}{0.022$		Отношение расходов топлива и	0.05	0.02233	0.02267	0.02292	0.02334	0.02351
$G_{\rm B} = G_{\rm B} {\rm pacu} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{16}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{1}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{1}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{1}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{p_{\rm K}}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm$		воздуха в камере сгорания	0.10	0.02231	0.02266	0.02291	0.02333	0.02350
$G_{\rm B} = G_{\rm B} {\rm pacu} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{16}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{1}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{1}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{1}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \\ \frac{p_{\rm K}}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm$		q_{rc}	$0.306^{*)}$	0.02219	0.02253	0.02279	0.02323	0.02340
$G_{\rm B} = G_{\rm B} {\rm pacu} \frac{p_{\rm K}}{p_{\rm K}} \cdot \frac{p_{\rm K}}{p_{\rm K}} \frac{p_{\rm K}}{p_{\rm K}} \cdot \frac{p_{\rm K}}{p_{\rm K}} p_{\rm K$	<u>15</u>	$g_{\rm T} = \frac{q_{\rm KC}}{H_{\rm col}}$	0.395**)	0.02209	0.02244	0.02271	0.02315	0.02332
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$n_u\eta_{KC}$	0.495	0.02196	0.02232	0.02258	0.02303	0.02321
$G_{\rm B} = G_{\rm B}$ расч $\frac{p_{\rm K}}{p_{\rm K}}$ говара $\frac{p_{\rm K}}{p_{\rm K$			0.645	0.02170	0.02207	0.02235	0.02281	0.02299
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Расход воздуха через компрессор	0.05	9.63	8.10	7.09	5.63	<u>5.11</u>
$P_{\rm K}$ расч $\frac{0.495}{0.495}$ $\frac{10.41}{10.41}$ $\frac{8.75}{8.75}$ $\frac{7.64}{7.64}$ $\frac{6.05}{6.39}$ $\frac{5.49}{5.79}$ $\frac{7}{10.645}$ $\frac{11.05}{10.41}$ $\frac{9.26}{0.645}$ $\frac{8.08}{0.39}$ $\frac{6.39}{5.79}$ $\frac{5.79}{0.001}$ $\frac{11.05}{0.001}$ $\frac{0.05}{0.001}$ $\frac{0.4204}{0.3342}$ $\frac{0.2795}{0.3343}$ $\frac{0.2044}{0.2795}$ $\frac{0.17}{0.2044}$ $\frac{0.17}{0.395}$ $\frac{0.306^{\circ}}{0.495}$ $\frac{0.4229}{0.4248}$ $\frac{0.3377}{0.3399}$ $\frac{0.2810}{0.2841}$ $\frac{0.2055}{0.2077}$ $\frac{0.18}{0.495}$ $\frac{0.495}{0.495}$ $\frac{0.4277}{0.495}$ $\frac{0.3443}{0.495}$ $\frac{0.2877}{0.2823}$ $\frac{0.2102}{0.2102}$ $\frac{0.18}{0.18}$		*	0.10	9.64	<u>8.11</u>	<u>7.10</u>	5.63	<u>5.12</u>
$P_{\rm K}$ расч $\frac{0.495}{0.495}$ $\frac{10.41}{10.41}$ $\frac{8.75}{8.75}$ $\frac{7.64}{7.64}$ $\frac{6.05}{6.39}$ $\frac{5.49}{5.79}$ $\frac{7}{4}$		$G = G \longrightarrow \frac{p_{K}}{M}$		9.89	<u>8.32</u>	<u>7.27</u>	<u>5.77</u>	<u>5.24</u>
$ \frac{T_{\Gamma}^* \text{ расч}}{T_{\Gamma}^* \text{ max}}, \frac{\text{K}\Gamma}{\text{C}} $ $ \frac{\frac{0.05}{0.645} - \frac{11.05}{11.05} - \frac{9.26}{9.26} - \frac{8.08}{8.08} - \frac{6.39}{6.39} - \frac{5.79}{5.79} $ $ \frac{\frac{11.07}{1.00}}{\frac{1.00}{0.10}} - \frac{0.05}{0.10} - \frac{0.4204}{0.10} - \frac{0.3342}{0.3343} - \frac{0.2795}{0.295} - \frac{0.2044}{0.17} - \frac{0.17}{0.395} - \frac{0.306^*}{0.4229} - \frac{0.3362}{0.3362} - \frac{0.2810}{0.2810} - \frac{0.2055}{0.2055} - \frac{0.18}{0.495} - \frac{0.4248}{0.4277} - \frac{0.3399}{0.399} - \frac{0.2841}{0.2877} - \frac{0.2077}{0.2102} - \frac{0.18}{0.18} $	<u>16</u>			<u>10.10</u>	<u>8.49</u>	<u>7.42</u>	<u>5.88</u>	<u>5.34</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Pк расч	<u>0.495</u>	<u>10.41</u>	<u>8.75</u>	<u>7.64</u>	<u>6.05</u>	<u>5.49</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.645	<u>11.05</u>	9.26	8.08	6.39	<u>5.79</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T^*						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{1}{\Gamma}$ pacy $\frac{K\Gamma}{K}$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\sqrt{\frac{1}{x^*}}, \frac{1}{c}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$V_{\Gamma} max$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Плотность газа на выхоле из	0.05	0.4204	0.3342	0.2795	0.2044	0.1794
$ \frac{17}{R_{\Gamma}T_{C}}, \frac{R\Gamma}{M^{3}} $ $ \frac{0.306^{*})}{0.395^{**}}, \frac{0.4229}{0.4248}, \frac{0.3362}{0.3377}, \frac{0.2810}{0.2823}, \frac{0.2064}{0.2064}, \frac{0.18}{0.18} $ $ \frac{0.495}{0.645}, \frac{0.4277}{0.4334}, \frac{0.3443}{0.3443}, \frac{0.2877}{0.2827}, \frac{0.2102}{0.2102}, \frac{0.18}{0.18} $								0.1794
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								0.1803
<u>0.645</u> <u>0.4334</u> <u>0.3443</u> <u>0.2877</u> <u>0.2102</u> <u>0.18</u>	<u>17</u>	$\rho_{\rm C} = \frac{P_{\rm H}}{P_{\rm c}T}, \frac{K\Gamma}{2}$					L	0.1811
<u>0.645</u> <u>0.4334</u> <u>0.3443</u> <u>0.2877</u> <u>0.2102</u> <u>0.18</u>		$K_{\Gamma}I_{\mathbf{C}} \times M^{3}$					· — — —	0.1822
		·						0.1844
Скорость истечения газа из 0.05 344.1 364.2 381.2 413.7 428.		Скорость истечения газа из	0.05	344.1	364.2	381.2	413.7	428.5
								428.8
			$0.306^{*)}$					436.5
II to lo SBSI M	<u>18</u>	$c_{\rm c} = \frac{\sigma_{\rm BSI}}{2E}, \frac{M}{2}$		356.9				443.0
$\rho_{c} P_{c} c$ 0.495 0.49		$\rho_{c} F_{c} c$	0.495	365.4	386.3	403.8	437.4	452.7
$g_{\Gamma} = (1 + g_{T})(1 - g_{OXJI} - \frac{0.645}{0.645} \frac{382.5}{382.5} \frac{403.9}{0.645} \frac{422.0}{0.645} \frac{456.5}{0.645}$		$g_{\Gamma} = (1 + g_{\mathrm{T}})(1 - g_{\mathrm{OXJI}} -$	0.645	382.5	403.9	422.0	456.5	<u>472.1</u>
$-g_{\text{OTG}}$)		$-g_{\text{OTO}}$)						

					<u>Продолж</u>	ение таб.	п.2.1
1	2	3	4	5	<u>6</u>	7	8
	Температура газа за турбиной	0.05	902.1	<u>894.8</u>	<u>889.7</u>	882.3	<u>879.9</u>
	2	<u>0.10</u>	901.9	<u>894.7</u>	<u>889.6</u>	<u>882.2</u>	<u>879.8</u>
	$T^* - T^* - T + \frac{c_c}{c}$	0.306*)	899.0	892.2	887.4	880.7	878.6
<u>19</u>	$T_{\rm T}^* = T_{\rm c}^* = T_{\rm c} + \frac{c_{\rm c}^2}{2c_{\rm pr}}$	0.395^{**}	896.7	890.2	885.7	879.5	877.6
		0.495	893.7	<u>887.5</u>	883.4	<u>877.9</u>	876.4
		0.645	887.7	882.7	879.5	875.5	874.6
	Удельная работа расширения	<u>0.05</u>	<u>497813</u>	<u>506243</u>	<u>512154</u>	<u>520755</u>	<u>523568</u>
	газа на валу турбины	0.10	<u>497990</u>	<u>506393</u>	<u>512284</u>	<u>520847</u>	<u>523645</u>
20	$L_{\mathrm{T}} = c_{\mathrm{pr}} (T_{\mathrm{r}max}^* - T_{\mathrm{T}}^*)$	0.306*)	<u>501388</u>	<u>509308</u>	<u>514807</u>	<u>522645</u>	<u>525124</u>
<u>20</u>	$L_{\rm T} = c_{\rm pr} (r_{\rm r} max - r_{\rm T})$	0.395**)	<u>504061</u>	<u>511589</u>	<u>516767</u>	<u>524009</u>	<u>526223</u>
	Дж	<u>0.495</u>	<u>507787</u>	<u>514741</u>	<u>519448</u>	<u>525811</u>	<u>527634</u>
		0.645	<u>514421</u>	<u>520243</u>	<u>524019</u>	<u>528639</u>	<u>529683</u>
	КГ						
	Удельная работа на валу	<u>0.05</u>	202865	<u>210677</u>	<u>216123</u>	223958	<u>226475</u>
	турбокомпрессора (на входе в	<u>0.10</u>	203043	210829	<u>216255</u>	224056	226558
	редуктор)	$0.306^{*)}$	<u>206376</u>	213709	<u>218766</u>	<u>225884</u>	<u>228085</u>
<u>21</u>	, дж	0.395**)	<u>208991</u>	<u>215955</u>	<u>220710</u>	<u>227266</u>	<u>229217</u>
	$L_{e} = L_{T} g_{\Gamma} \eta_{\text{MeX}} - L_{K}, \frac{\mu_{K}}{\kappa_{\Gamma}}$	<u>0.495</u>	<u>212635</u>	<u>219058</u>	<u>223369</u>	<u>229094</u>	<u>230676</u>
	KI	<u>0.645</u>	<u>219119</u>	<u>224476</u>	<u>227909</u>	<u>231988</u>	<u>232834</u>
	Удельная работа на валу винта	0.05	199822	207516	212881	220599	223078
	дж.	0.10	199997	207666	213012	220695	223160
	$L_{\rm B} = L_{\rm e} \eta_{\rm peg}, \frac{\mathcal{I}_{\rm KF}}{\kappa_{\rm F}}$	$0.306^{*)}$	203280	210503	215495	222496	224664
<u>22</u>		0.395**)	205856	212716	217400	223857	225779
		0.495	209446	215772	220019	225658	227216
		0.645	215832	221109	224490	228508	229341
	Мощность винтовая	0.05	1925	1682	1509	1241	1141
		0.10	1929	1685	1512	1243	1142
	$N_{\rm B} = L_{\rm B}G_{\rm B} \cdot 10^{-3}, \text{kBT}$	$0.306^{*)}$	2011	1751	1567***)	1283	1177
<u>23</u>		0.395**)	2079	1806	1613	1316	1205
		0.495	2181	1887	1681	1364	1247
		0.645	2384	2048	1815	1460	1329
	Коэффициент полезного	0.05	0.194	0.194	0.194	0.194	0.194
	действия винта	0.10	0.363	0.363	0.363	0.363	0.363
	$\eta_{\rm B} = aM_{\rm H}^2 + eM_{\rm H} + c$	0.306*)	0.779	0.779	0.779	0.779	0.779
<u>24</u>	$\eta_{\rm B} = aM_{\rm H} + eM_{\rm H} + c$	0.395**)	0.820****	0.820	0.820	0.820	0.820
		0.495	0.767	0.767	0.767	0.767	0.767
		0.645	0.492	0.492	0.492	0.492	0.492

***) Значение винтовой мощности $N_{_{\rm B\, HOM}}$ =1568 кВт на высоте $H_{\rm orp}$ и скорости $V_{\rm orp}$ ограничения.

Если значение $N_{\rm B}$ окажется меньше $N_{\rm B \, Hom}$, то необходимо увеличить $T^*_{\rm \Gamma \, max}$, если наоборот — уменьшить $T^*_{\rm \Gamma \, max}$.

Если значение $T^*_{\rm \Gamma \, max}$ задаётся, то необходимо откорректировать высоту $H_{\rm orp}$ и

скорость $V_{\text{огр.}}$ ****) Расчётное значение КПД винта

					Продол	жение таб	<u>5л.2.1</u>
1	2	_ 3	4	5	6	7	8
	Скорость полёта	0.05	61	60	59	57	56
	L 2 CM LDT KM	0.10	122	120	118	114	112
	$V = 3.6 M_{\rm H} \sqrt{kRT_{\rm H}}, \frac{\rm KM}{\rm H}$	0.306*)	375	367	360	349	344
<u>25</u>		0.395**)	484	473	464	450	444
		0.495	606	593	582	564	<u>556</u>
		0.645	<u>790</u>	<u>772</u>	<u>758</u>	735	<u>725</u>
	Эквивалентная работа ТВД	0.05	228440	237238	<u>243521</u>	<u>252975</u>	<u>256232</u>
	<u>при <i>V</i>≠0 (м/с)</u>	<u>0.10</u>	<u>229123</u>	<u>238048</u>	<u>244431</u>	<u>254066</u>	<u>257400</u>
	$V(c_C-V)$ Лж	0.306*)	<u>236343</u>	<u>245787</u>	<u>252573</u>	<u>262907</u>	<u>265533</u>
<u>26</u>	$L_{3KB} = L_{\rm B} + \frac{V(c_{\rm C} - V)}{\eta_{\rm B}}, \frac{Дж}{\kappa \Gamma}$	0.395**)	<u>242335</u>	<u>252148</u>	<u>259218</u>	<u>270040</u>	<u>273866</u>
	IIB KI	<u>0.495</u>	<u>252685</u>	<u>263323</u>	<u>271033</u>	<u>282969</u>	<u>287260</u>
	<u>при <i>V</i>=0</u>	<u>0.645</u>	<u>288609</u>	<u>303763</u>	<u>315030</u>	<u>333271</u>	<u>340235</u>
	$L_{\text{ЭKB}} = L_{\text{B}} + 70c_{\text{C}}$						
	Мощность эквивалентная	0.05	2200	1923	1727	1423	1310
		0.10	2210	1931	1735	1431	1317
	$N_{\rm 3KB} = L_{\rm 3KB} G_{\rm B} \cdot 10^{-3}$	0.306*)	2338	2044	1837	<u>1516</u>	1396
<u>27</u>	r ₄ D _m	0.395**)	2448	2140	1923	1587	1462
	кВт	0.495	<u>2631</u>	2303	2071	<u>1711</u>	<u>1577</u>
		0.645	<u>3188</u>	<u>2814</u>	<u>2547</u>	<u>2129</u>	<u>1971</u>
	Удельный эквивалентный расход	<u>0.05</u>	<u>0.3307</u>	0.3233	<u>0.3185</u>	<u>0.3123</u>	<u>0.3105</u>
	<u>топлива</u>	<u>0.10</u>	<u>0.3296</u>	0.3221	<u>0.3172</u>	<u>0.3108</u>	<u>0.3090</u>
	$C_{3KB} =$	0.306*)	<u>0.3177</u>	<u>0.3103</u>	<u>0.3054</u>	<u>0.2989</u>	<u>0.2971</u>
<u>28</u>		0.395**)	<u>0.3085</u>	<u>0.3012</u>	<u>0.2954</u>	<u>0.2900</u>	<u>0.2881</u>
	$\frac{3600g_{\rm T}(1-g_{\rm OXJ}-g_{\rm OTO})}{}$	0.495	0.2940	0.2868	0.2820	0.2754	0.2734
	$= \frac{3600g_{\rm T}(1 - g_{\rm OXJI} - g_{\rm OTO})}{L_{\rm DKB} \cdot 10^{-3}}$	<u>0.645</u>	0.2544	0.2458	0.2400	0.2316	0.2287
	КГ						
	кВт∙ч						
	Часовой расход топлива	0.05	728	622	550	444	407
	_	0.10	728	622	550	445	407
	$G_{\text{TY}} = C_{\text{3KB}} N_{\text{3KB}}, \frac{\text{K}\Gamma}{\text{u}}$	0.306*)	743	634	561	453	415
<u>29</u>		0.395**)	<u>755</u>	645	570	460	421
		0.495	<u>774</u>	660	<u>584</u>	<u>471</u>	431
		0.645	<u>811</u>	<u>692</u>	<u>611</u>	<u>493</u>	<u>451</u>
	<u>Тяга ТВД при <i>V</i>≠0</u>	<u>0.05</u>	<u>25148</u>	<u>22488</u>	<u>20564</u>	<u>17496</u>	<u>16319</u>
	$N_{2KR}n_{R}$	0.10	<u>23549</u>	<u>21066</u>	<u>19269</u>	<u>16402</u>	<u>15302</u>
	$P_{\text{ТВД}} = \frac{N_{\text{ЭКВ}}\eta_{\text{B}}}{V} \cdot 10^3, H$	0.306*)	<u>17472</u>	<u>15635</u>	<u>14305</u>	<u>12183</u>	<u>11369</u>
<u>30</u>		0.395**)	<u>14935</u>	<u>13365</u>	<u>12228</u>	<u>10417</u>	<u>9721</u>
	$\frac{\text{при } V=0}{P}$	0.495	<u>11990</u>	<u>10740</u>	9833	8387	<u>7832</u>
	$P_{me\partial} = \beta N_{\rm B} + G_{\rm B}(c_{\rm C} -$	<u>0.645</u>	<u>7142</u>	<u>6453</u>	<u>5948</u>	<u>5132</u>	<u>4816</u>
	$-V) \beta = 15 \frac{H}{\text{kBt}}$						
	Удельный расход топлива	0.05	0.0289	0.0276	0.0267	0.0254	0.0249
		<u>0.10</u>	0.0309	0.0295	0.0286	0.0271	0.0266
		0.306*)	0.0425	0.0406	0.0392	0.0372	0.0365
<u>31</u>		0.395**)	0.0506	0.0482	<u>0.0466</u>	0.0442	0.0433

	G	0.495	0.0645	0.0615	0.0594	0.0562	0.0550
	$C_{yA} = \frac{G_{TY}}{P_{TBA}}, \frac{K\Gamma}{H \cdot Y}$	0.645	0.1135	0.1072	0.1028	0.0961	0.0936
	$P_{\text{ТВД}} \cdot \text{H} \cdot \text{ч}$						
					Продолз	жение таб	5π 2 1
1	2	3	4	5	6	7	8
	Работа цикла ТВД	0.05	260964	275666	287214	307527	316048
		0.10	260816	275520	287069	307383	315904
	$L_{\text{II}} = L_{\text{e}} + \frac{c_{\text{c}}^2 - V^2}{2}, \frac{\Pi \times \Pi}{K \Gamma}$	$0.306^{*)}$	261579	276257	287781	308044	316540
<u>32</u>	$L_{\text{II}} - L_{\text{e}} + \frac{1}{2}$, $K_{\text{K}\Gamma}$	0.395**)	262526	277180	288682	308898	317373
		0.495	263958	278579	<u>290051</u>	<u>310203</u>	318648
		<u>0.645</u>	<u>266651</u>	<u>281222</u>	<u>292643</u>	<u>312688</u>	<u>321080</u>
	Внутренний (эффективный)	<u>0.05</u>	0.271	0.282	0.291	<u>0.306</u>	<u>0.312</u>
	<u>КПД ТВД</u>	0.10	0.271	0.282	0.291	<u>0.306</u>	<u>0.312</u>
	$\eta_{\rm BH} = \frac{L_{\rm II} \eta_{\rm KC}}{q_{\rm KC}}$	0.306*)	<u>0.274</u>	0.284	<u>0.293</u>	0.308	<u>0.314</u>
<u>33</u>	$\eta_{\rm BH} = \frac{1}{g_{\rm res}}$	0.395**)	0.276	0.287	0.295	0.310	<u>0.316</u>
	<u> </u>	0.495	0.279	0.290	0.298	0.313	0.319
	H W (5 W) KHH HD H	0.645	0.285	0.296	0.304	0.318	0.324
	Полный (общий) КПД ТВД	0.05	0.053	0.055	0.057	0.059	0.061
	$\eta_{\Pi} = \eta_{BH} \eta_{B}$	0.10	0.098	0.102	0.105	0.111	0.113
<u>34</u>		0.306*) 0.395**)	0.213 0.226	0.221 0.235	0.228 0.242	0.240	0.244
<u> </u>		0.393	0.226	0.233	0.242	0.254 0.240	0.259 0.244
		0.645	0.140	0.145	0.149	0.156	0.159
	Относительная плотность тока на	0.05	0.6164	0.6479	0.6745	0.7258	0.7492
	входе в компрессор	0.10	0.6154	0.6468	0.6734	0.7245	0.7478
		0.306*)	0.6047	0.6352	0.6609	0.7105	0.7330
<u>35</u>	$G_{\rm B}\sqrt{T_{\rm B}}$	0.395**)	0.5972	0.6269	0.6521	0.7005	0.7225
	$q(\lambda_{\rm B}) = \frac{G_{\rm B}\sqrt{T_{\rm B}^*}}{0.0404p_{\rm B}^*F_{\rm B}}$	0.495	0.5868	0.6156	0.6399	0.6868	0.7081
	$0.0404 p_{\rm B} F_{\rm B}$	0.645	0.5681	0.5953	0.6182	0.6623	0.6823
	Приведенная скорость на входе в	0.05	0.4211	0.4470	0.4695	0.5151	0.5372
	компрессор λ_{R} из таблиц	0.10	0.4204	0.4460	0.4685	0.5140	0.5359
	газодинамических функций по	0.306*)	0.4119	0.4365	0.4580	<u>0.5012</u>	<u>0.5220</u>
<u>36</u>	значению $q(\lambda_{\rm B})$	0.395**)	<u>0.4059</u>	<u>0.4297</u>	<u>0.4504</u>	<u>0.4922</u>	<u>0.5122</u>
<u> </u>		<u>0.495</u>	0.3977	<u>0.4205</u>	<u>0.4404</u>	<u>0.4802</u>	<u>0.4990</u>
		0.645	0.3832	0.4043	0.4226	<u>0.4591</u>	<u>0.4763</u>
	Относительная плотность тока на	0.05	0.4002	0.3955	0.3920	0.3861	0.3837
	выходе из компрессора	0.10	0.4004	0.3957	0.3922	0.3863	0.3839
<u>37</u>	G_{-3}/T_{-}^*	0.306*)	0.4021	0.3973	0.3938	0.3878	0.3854
<u>37</u>	$q(\lambda_{\kappa}) = \frac{\sigma_{\rm B} \sqrt{\kappa}}{\kappa}$	0.395**)	0.4033	0.3986	0.3950	0.3889	0.3865
	$q(\lambda_{\mathbf{K}}) = \frac{G_{\mathbf{B}} \sqrt{T_{\mathbf{K}}}}{0.0404 p_{\mathbf{K}} F_{\mathbf{K}}}$	0.495 0.645	0.4052 0.4086	0.4003 0.4037	0.3967 0.3999	0.3905 0.3936	0.3880 0.3911
	T K K						
	Приведенная скорость на выходе	0.05	0.2610	0.2578	0.2554	0.2513	0.2498
	<u>из компрессора λ_к из таблиц</u> газодинамических функций по	0.10 0.306*)	0.2611 0.2623	0.2579 0.2590	0.2555 0.2566	0.2515 0.2524	0.2498 0.2509
38		0.306 7	0.2632	0.2590	0.2574		
<u> </u>	значению $q(\lambda_{\kappa})$	0.395	0.2632	0.2599	0.2574	0.2533 0.2544	0.2516 0.2527
!		0.645	0.2668	0.2634	0.2609	0.2565	0.2548
		<u>U.U-13</u>	0.2000	0.2034	0.4003	0.4303	0.2340

По результатам расчётов высотно-скоростных характеристик ТВД вычерчиваются на бумаге зависимости эквивалентной мощности $N_{3 \text{KB}}$, мощности винта N_{B} и удельного эквивалентного расхода топлива $C_{3 \text{KB}}$ от скорости полёта V (на разных высотах) и от высоты полёта H (на разных скоростях), на которые наносятся ограничения по винтовой мощности и по устойчивой работе компрессра $\pi^*_{\text{K} max} = (1.15...1.2) \pi^*_{\text{K} pacq}$

Отформатировано

2.2. Вертолётный ГТД.

2.2.1. Особенности рабочего процесса вертолётных ГТД.

Силовая установка современных вертолётов, как правило, состоит из двух газотурбинных турбовальных двигателей со свободной турбиной и обслуживающих их систем (топливной, масляной, автоматического управления, противообледенительной и др.) (рис.2.3). Передача крутящего момента (мощности) от двигателей к несущему винту (НВ) осуществляется с помощью главного редуктора, а к рулевому винту (РВ) — с помощью промежуточного и хвостового редукторов, валов и муфт хвостовой трансмиссии.

Рис.2.3. Вертолётный ГТД и схема его управления:

- 1 входное устройство; 2 компрессор; 3 камера сгорания;
- 4 турбина компрессора; 5 силовая турбина; 6 главный редуктор;
- 7 автомат перекоса; 8 лопасть несущего винта; 9 рычаг «шаг-газ»;
- 10 насос-регулятор; 11 гидроусилитель

Для обеспечения необходимых лётных характеристик вертолёта во всём эксплуатационном диапазоне высот и скоростей полёта, а также температур

```
наружного воздуха двигатели, как правило, переразмерены по мощности в
стандартных атмосферных условиях у земли. При этом, чтобы не перегружать
трансмиссию, в первую очередь главный редуктор, мощность двигателей при
помощи топливорегулирующей аппаратуры ограничивается значением, потребным
для заданного режима полёта вертолёта в конкретных атмосферных условиях.
Размерность двигателей, как правило, определяется мощностью, потребной для
обеспечения полёта вертолета на максимальной высоте (практическом потолке).
   Для создания необходимой мощности в различных полётных условиях вертолёта
двигатели могут работать на следующих основных режимах:
   малого газа, на котором обеспечивается устойчивая работа двигателя с
минимальной частотой вращения турбокомпрессора n_{\text{тк мг}} для прогрева после
запуска и при полёте вертолёта на режиме самовращения НВ без выключения
двигателей. Для ограничения температурных и выбрационных напряжений деталей
двигателей время непрерывной работы на этом режиме не должно превышать
≈ 20 мин;
                                                                                      Отформатировано
крейсерском, на котором создаётся мощность (N_{\text{крейс}}=(0.7...0.8)N_{\text{взд}}) при
непрерывной надёжной работе двигателей в течение установленного ресурса )срока
службы). Так как время работы на этом режиме не ограничивается, он обычно
используется при выполнении маршрутных полётов на дальность или на
максимальную продолжительность полёта;
   номинальном, (N_{\text{ном}} = (0.85...0.90)N_{\text{взд}}) который используется при взлёте и
висении у земли, наборе высоты, полёте с максимальной скоростью и нормальной
полётной массой в благоприятных атмосферных условиях. Время непрерывной
работы двигателей ограничивается ≈ 1 час;
                                                                                      Отформатировано
   взлётном, на котором двигатели развивают максимальную мощность при
максимально допустимых значениях частоты вращения турбокомпрессора и
температуры газа перед турбиной. По условиям прочности деталей двигателей
время непрерывной работы на этом режиме ограничено ≈ 6 мин, а допустимое время
общей наработки за ресурс ≈ 5%. Взлётный режим используется при взлёте, висении
и наборе высоты вертолёта с полётной массой, больше нормальной, в условиях
повышенной температуры наружного воздуха или барометрической высоты
взлётной площадки, а также при полёте на одном двигателе.
                                                                                      Отформатировано
   Передача эффективной мощности от силовой турбины к НВ сопровождается
неизбежными механическими и гидравлическими потерями на:
   привод РВ на режиме висения ~ 8...10 %, на режимах горизонтального полёта
~ 2...4 %;
   привод агрегатов двигателей и вертолёта ~ 1 %;
   трение в трансмиссии ~ 3 %;
   привод вентилятора охлаждения агрегатов ~ 1.5 %;
   при включении противообледенительной системы ~ 4 %;
   при установке пылезащитного устройства при включении его ~ 5 %, при
выключении \sim 2.5 \%.
   Таким образом, коэффициент использования эффективной мощности двигателей
```

составляет $\xi_N = 0.82...0.84$ на режиме висения и $\xi_N = 0.86...0.88$ на режимах

крейсерского полёта. Располагаемая мощность, подводимая к валу НВ на заданном режиме полёта, равна:

$$N_{\text{pac}\Pi} = N_{\text{e}} \xi_N$$
,

Отформатировано

<u>где N_e – эффективная мощность, снимаемая с вала свободной турбины.</u>

Отформатировано

Управление мощностью обоих двигателей синхронизировано с управлением общим шагом НВ и осуществляется от рычага «шаг-газ», который кинематически связан с ползуном автомата перекоса* и одновременно с рычагами топливных насосов — регуляторов двигателей. При перемещении рычага «шаг-газ» вверх увеличивается угол установки и общий шаг** лопастей НВ и, соответственно, возрастает тяга НВ с одновременным увеличением мощности двигателей. На переходных режимах полёта управление двигателями осуществляется агрегатами системы автоматического управления (САУ), расположенными непосредственно на двигателях.

Основным регулирующим фактором автоматического управления силовой установкой является расход топлива $G_{\rm T}$ в камеры сгорания двигателей. Соответственно закон управления и программу регулирования (дросселирования) формирует один регулируемый параметр, определяющий в конечном счёте режим работы силовой установки.

Отформатировано

На крейсерском и номинальном режимах работы двигателя таким регулируемым параметром является частота вращения ротора свободной турбины $n_{\rm cr}$ (а значит частота вращения НВ $n_{\rm hb}$). При этом во всём эксплуатационном диапазоне высот и скоростей полёта САУ обеспечивает закон управления $n_{\rm cr}$ соля. На режимах «Малый газ» и «Взлётный» в качестве регулируемого параметра используется, как правило, частота вращения ротора турбокомпрессора $n_{\rm tk}$ и, соответственно, закон управления $n_{\rm tk}$ = const.

Отформатировано

- *) Автомат перекоса является универсальным и уникальным изобретением Б.Н. Юрьева в 1911 году. При управлении вертолётом он осуществляет:
- одновременное изменение на одинаковое значение угла установки всех лопастей (управление общим шагом), что вызывает соответствующее изменение тяги НВ и движение вертолёта вверх вниз по вертикали;
- отклонение тарелки автомата перекоса в продольной плоскости симметрии вертолёта, что вызывает циклическое изменение углов установки лопастей НВ при их вращении и соответствующее отклонение аэродинамической силы НВ в продольной плоскости и создание управляющего момента тангажа на кабрирование или пикирование;
- отклонение тарелки автоматиа перекоса в поперечной плоскости, что вызывает соответствующее отклонение аэродинамической ислы НВ и создаёт управляющий момент на правый или левый крен.
- **) Общий шаг это компонент угла установки лопастей несущего винта или рулевого винта, не зависящий от азимутального ***) положения лопастей (при фиксированном управлении). Изменение общего шага используется для управления тягой винта. Причем, чем больше полётная масса вертолета, высота полета и температура наружного воздуха, тем больше общий шаг лопастей НВ. ***) Угол азимутального положения фл измеряется по направлению вращения НВ между продольной осью лопасти и проекцией вектора скорости набегающего потока на плоскость НВ. При полёте вертолёта бес скольжения угол фл отсчитывают от пложения лопасти вдоль хвостовой

<u>балки. Лопасть называется опережающей (наступающей), если $0 < \phi_n < 180^\circ$, и отстающей (отступающей), если $180^\circ < \phi_n < 360^\circ$.</u>

Например, для выполнения набора высоты пилот отклоняет рычаг «шаг-газ» вверх, с помощью соответствующего гидроусилителя увеличивается общий шаг лопастей и мощность HB, которая сразу же становится больше располагаемой мощности двигателей. В результате частота вращения HB $n_{\rm HB}$ и соответственно $n_{\rm TC}$ начинает уменьшаться (HB «затяжеляется»).

Как только начнется уменьшение частоты вращения $n_{\text{те}}$, регулятор частоты вращения свободной турбины увеличит подачу топлива в двигатель. Вместе с тем при отклонении вверх рычага «шаг-газ» происходит механическая перестройка регулятора частоты вращения турбокомпрессора на повышенный режим работы. В результате частота вращения турбокомпрессора и соответственно мощность двигателя (синхронно двух двигателей) увеличиваются до равновесного значения потребной мощности НВ на новом режиме полёта вертолёта, а частота вращения НВ восстанавливается до своего прежнего стабилизированного значения.

Таким образом, дозирование топлива в двигателе для поддержания $n_{\text{нв}} \approx const$ осуществляется регулятором частоты вращения свободной турбины.

Рассмотрим режим висения вертолёта. Этот режим характерен тем, что воздух подсасывается к НВ со всех сторон. При этом вращающийся НВ, лопасти которого установлены под некоторым углом ф к плоскости вращения, отбрасывает воздух, придавая его частицам определенные скорости. На место отброшенного воздуха из окружающего воздушного пространства подсасывается новый. Таким образом, перед винтом образуется зона подсасывания, за винтом — зона отбрасывания и устанавливается воздушный поток (струя) через винт (рис.2.4).

Рис.2.4. Схема обтекания HB на режиме висения и изменение параметров воздушной струи

Скорость движения воздуха, создаваемая винтом и измеряемая в плоскости его вращения, называется **индуктивной скоростью** *v*. Она полагается постоянной по всему ометаемому винтом диску. Отбрасывая воздух, НВ изменяет его количество движения и кинетическую энергию, а сила реакции воздушной струи на это изменение и представляет собой тягу винта *T*. Из анализа уравнений количества движения и сохранения энергии, написанных для сечений 0-0 и 2-2 (см. рис.3.4), получается следующей выражение для индуктивной скорости;

Отформатировано

$$v = \sqrt{\frac{p_0}{2\rho_{_{
m H}}}}, \, \underline{\text{где}} \, p_0 = \frac{T}{F_{
m HB}} \, \underline{\quad }$$
- удельная нагрузка на ометаемую винтом площадь;

$$F_{\rm HB} = \frac{\pi D_{\rm HB}^2}{4}$$
; $D_{\rm HB}$ — наружный диаметр лопасти НВ, м; $\rho_{\rm H}$ — плотность наружного

Отформатировано

У рассматриваемого нами идеального винта вся полученная от двигателей мощность превращается в работу по отбрасыванию воздуха и созданию тяги. Реальный НВ имеет определенные потери мощности на преодоление сопротивления вращению лопастей, закручивание струи, неравномерность распределения индуктивных скоростей и тяги по ометаемой винтом площади. Кроме того, в создании тяги участвует не вся ометаемая винтом площадь, так как корневые части лопастей не имеют несущей поверхности, а через концы лопастей воздух перетекает из области повышенного давления под винтом в область пониженного давления над ним. Приближенный учет потерь реального НВ осуществляется с помощью двух коэффициентов: полезного действия и использования ометаемой площади.

Коэффициент полезного действия винта η_{o} представляет собой отношение мощности, непосредственно затрачиваемой на создание тяги работающего на месте НВ к мощности N_{p} , подводимой к винту от двигателей:

$$\eta_o = \frac{Tv}{N_p} = \frac{Tv}{N_e \xi_N}$$

Отформатировано

Коэффициент использования ометаемой площади винта χ - это отношение эффективной ометаемой площади, непосредственно участвующей в создании тяги, ко всей ометаемой площади. Приближенно принимаем χ =0.95.

Отформатировано

В работе [3] получена формула для определения силы тяги несущего винта на режиме висения вертолёта:

$$T = (N_{\rm e}\xi_N\eta_{\rm o}\sqrt{2\rho_{\rm H}F_{\rm HB}\chi})^{2/3}$$

с помощью которой можно оценить для заданной мощности двигателей взлётную массу вертолета, так как $T = m_0 g$.

Из написанных формул следует, что с увеличением высоты взлётной площадки (уменьшении $\rho_{\rm H}$) для обеспечения той же тяги НВ на режиме висения необходимо

lΠ	ературу газа п	еред т	гурбин	ой T^{r}	(в пред	целах в	озможь	<u>юго). (</u>	Этсюда	значение	
	_{их} определяет с										
	цадки H_{max}).				-					· -	Отформатировано
	В таблице 2.2 п	педст	авлень	основ	вные по	 оказате	ли вер	голёто	в Моск	ОВСКОГО	
	да им. М.Л. М	•									
	.60.7. Для в								Dimire	<u> </u>	
<u> </u>	.оо.т. дли в	повы	aspaoa	I DIDCINI	DIA DIII	<u>пов цо</u>	0.75	<u>. 0.0.</u>			Отформатировано
								Тобт	ща 2.2		отформатировано
	Вертолёть	і Москої	BCKOLO 331	вола им. М	Л П Мип	a		Таоли	ща 2.2		
	Наименование	Обоз	Pa3-	Вода им. 1	VI.JI. IVIPIJI	<u> </u>					
I	показателя	наче	мер-			ка вертолё				•	
		ние	ность	<u>Ми-2</u>	<u>Ми-6</u>	<u>Ми-8</u>	<u>Ми-10</u>	<u>Ми-8</u> МТ	Ми-26	V	Удалено: ¶
	2	3	4	5	6	7	8	9	10		
	<u>Число, тип и</u>		 	<u>2ГТД</u>	2ГТД	<u>2ГТД</u>	2ГТД	2ГТД	2ГТД		
	марка			<u>ГТД</u>	<u>Д-25</u>	<u>TB2-</u>	<u>Д-25В</u>	TB3-	<u>Д-136</u>		
	<u>двигателей</u> Мощность	<u>N_e</u>	кВт	350 294	<u>B</u> 4050	117 1100	<u>4050</u>	117M 1400	7350		
	двигателя	<u>1 Ye</u>	KDI	274	1030	1100		1700	1330		
	Параметры										
	несущего винта:	D		14.5	25.0	21.20	<u>35.0</u>	21.20	22.0		
	<u>- диаметр;</u>- число лопастей	$\underline{D}_{\scriptscriptstyle{ ext{HB}}}$	<u>M</u> <u>IIIT</u>	<u>14.5</u> <u>3</u>	35.0 5	<u>21.29</u> 5	<u>55.0</u>	<u>21.29</u> 5	32.0 8		
	- ометаемая	$\underline{F}_{\scriptscriptstyle{ ext{HB}}}$	$\underline{\mathbf{M}^2}$	165.0	961.6	<u>355.8</u>	961.6	<u>355.8</u>	803.8		
	площадь;		H/M^2	220.0	449.0	331.0	446.0	358.0	683.0		
	- удельная нагрузка на	<u>p</u> _o	H/M _		449.0	<u>331.0</u> _	440.0	_ <u>338.0</u> _	083.0		Отформатировано
	ометаемую										
	площадь.										
	<u>Параметры</u> рудевого винта:	-				-	 				Отформатировано
	<u>- диаметр;</u>	$\underline{D}_{\mathtt{pB}}$	<u>M</u>	<u>2.7</u> <u>2</u>	<u>6.3</u>	3.9 3	<u>6.3</u>	3.9 3	<u>7.6</u> <u>5</u>		
	<u>- число лопастей</u>		<u>IIIT</u>	2	<u>4</u>	<u>3</u>	<u>4</u>	<u>3</u>	<u>5</u>		
	Взлётная масса: - нормальная;	<u>т</u> о н	<u>T</u>	3.55	40.5	11.1	43.7	11.1	49.5		
	- максимальная.	<u>т</u> он	<u>T</u>	$\frac{3.70}{3.70}$	44.0	12.0	43.7	13.0	56.0		
	<u>Индуктивная</u>	<u>v</u>	<u>m/c</u>	<u>9.4</u>	<u>13.4</u>	<u>11.5</u>	<u>13.3</u>	<u>12.0</u>	<u>16.5</u>		
	скорость на режиме висения										
	вертолёта при										
	САУ										
				J	L			L	J	L< <u></u>	Отформатировано
											Отформатировано

TT		~ ~ ~ ~ ~
TINOπ	опжение	табл.2.2
трод	OJIJICITITE	14031.2.2

Вертолёты	Московского завода им.	<u>М.Л. Миля</u>

	Продолжение табл.2.2										
	Вертолёты Московского завода им. М.Л. Миля										
<u>№</u> п/п	<u>Наименование</u> показа-теля	<u>Обоз</u> <u>наче</u>	<u>Раз-</u> мер-		Марк	а вертолё	та				
		ние	ность	Ми-2	<u>Ми-6</u>	Ми-8	Ми-10	<u>Ми-8</u> <u>MT</u>	Ми-26		
1	2	<u>3</u>	<u>4</u>	_5	<u>6</u>	_7	_8	9	<u>10</u>		

<u>7.</u>	Коэффициент	no	Ξ	0.58	0.714	0.615	0.704	0.546	0.616
	полезного	<u> </u>	_						
	действия НВ на								1
	режиме висения								1
8.	Масса пустого		m	2.41	28.15	7.07	27.25	7.05	28.15
<u>0.</u>		$\underline{m}_{\text{пуст}}$	<u>T</u>	2.41	<u> 20.13</u>	7.07	<u>21.23</u>	7.03	<u> 20.13</u>
_	вертолёта								1
<u>9.</u>	Скорость полёта:								1
	- максимальная;	\underline{V}_{max}	<u>км/ч</u>	<u>210</u>	<u>300</u>	<u>250</u>	<u>235</u>	<u>250</u>	<u>295</u>
	- крейсерская.	$V_{\text{крейс}}$	KM/H	<u>190</u>	<u>250</u>	<u>220</u>	<u>220</u>	<u>240</u>	<u>255</u>
<u>10.</u>	Максималь-ный	<u> жрене</u>							
	перевози-мый								1
	груз:								1
	<u>груз.</u> - внутри кабины;		T	0.7	12.0	4.0	3.0	4.0	20.0
		<u>т</u> руз	<u>T</u>	<u>0.7</u>	12.0	4.0	<u>3.0</u>	4.0	20.0
	- на внешней			0.0	0.0	2.0	0.0	2.0	20.0
	подвеске.	<u>т</u> внеш	<u>T</u>	0.8	8.0	3.0	<u>8.0</u>	<u>3.0</u>	<u>20.0</u>
<u>11.</u>	<u>Статический</u>		<u>M</u>	<u>1700</u>	<u>1500</u>	<u>1900</u>	Ξ	<u>2800</u>	<u>2900</u>
	потолок с учётом								1
	влияния земли								1
	при нормальной								1
	взлётной массе								1
<u>12.</u>	Динамичес-кий		M	4000	<u>4500</u>	4500	3000	5000	4600
12.	потолок		101	1000	1500	1500	<u>5000</u>	2000	1000
13.	<u>Практическая</u>			270	600	465	250	495	480
<u>13.</u>			<u>KM</u>	270	000	403	<u>230</u>	493	480
	дальность полёта								1
	<u>на <i>H</i>= 500 м при</u>								1
	<u>m_{o нор} с 5 % - ным</u>								1
	остат. Топлива								1
<u>14.</u>	<u>Габариты</u>								1
	грузовой								1
	кабины:								1
	- длина;		<u>M</u>	2.8	11.7	<u>5.34</u>	15.945	5.34	12.0
	- высота;		<u>M</u>	<u>1.55</u>	2.7	1.8	1.66	1.8	3.16
			_	1.55	2.66			2.24	3.34
1.5	- ширина		<u>M</u>			2.34	3 6	2.34	3.3 4
<u>15.</u>	<u>Экипаж</u>	*	<u>чел</u>	1	<u>5</u>	3	<u>5.6</u>	2.34 3 9	4-5
<u>16.</u>	<u>Степень</u>	$\underline{\pi}_{\underline{\kappa}}^*$		<u>6</u>	<u>5.6</u>	<u>6.2</u>		9	<u>18.4</u>
	повышения								
	давления								
<u>17.</u>	<u>Температура</u>	\underline{T}^*_{Γ}	<u>K</u>	<u>1200</u>	<u>1240</u>	<u>1090</u>	<u>1240</u>	<u>1190</u>	<u>1516</u>
	газа перед	<u>-</u>							
	турбиной								
<u>18.</u>	Расход воздуха	$\underline{G}_{\scriptscriptstyle \mathrm{B}}$	кг/с	2.2	26.2	8.4	26.2	9.0	35.55
10.	через двигатель	<u>U</u> B	11/0	<u></u>	20.2	<u>5.7</u>	20.2	<u> 2.0</u>	30.00
19.	Удельный		ICE/						
19.		_	<u>KГ/</u>	0.502	0.402	0.260	0.402	0.200	0.260
20	расход топлива	<u>C</u> e	<u>кВт/ч</u>	0.503	0.402	0.360	0.402	0.299	0.269
<u>20.</u>	Масса двигателя	$\underline{m}_{\text{\tiny JIPA}}$	<u>ΚΓ</u>	<u>135</u>	<u>1200</u>	338	<u>1200</u>	<u>285</u>	<u>1050</u>
<u>21.</u>	Компрессор			<u>7oc+1</u>	<u>9oc</u>	<u>9oc</u>	<u>9oc</u>	<u>90c</u>	<u>13oc</u>
				<u>цб</u>					
<u>22.</u>	Турбина			1oc+2	2oc+1	2oc+2	<u>2oc+</u>	<u>2oc+</u>	<u>1oc+</u>
II				oc	oc	oc	1oc	2oc	1oc+
				l —	l —				30c

Отформатировано

Все двигатели, представленные в таблице 2.2, являются высотными, то есть взлётная мощность двигателей поддерживается постоянной ($N_{\rm e\ pacy}=const$),

2.2.2. Расчёт высотно-скоростных характеристик вертолётных ГТД,

Отформатировано Отформатировано

Исходными данными для расчёта высотно-скоростных характеристик вертолётного ГТД являются результаты газодинамического расчёта на H=0, V=0 [2]:

```
мощность N_e=1875 кВт; степень повышения давления в компрессоре \pi_{\kappa}^*=16;
<u>температура газа перед турбиной T_{\underline{r}}^* = 1500 \ \mathrm{K}; прототип двигателя \overline{\mathrm{TB}} \overline{\mathrm{J}} \, \overline{\mathrm{TB7}} - 117.</u>
      Основные данные элементов проектируемого двигателя:
    а) входное устройство
p_{B}^{*}=1.01325*10^{5} \text{ H/m}^{2}; G_{B}=5.83 \text{ kg/c}; \sigma_{BX}=0.98; T_{B}^{*}=288.15 \text{ K}; p_{B}^{*}=0.993*10^{5} \text{ H/m}^{2};
                                                                                                                                                                   Отформатировано
π_{K}^{*} = 16; π_{K}^{*} = 0.835; L_{K} = 418938 \ \text{Дж/k} \Gamma; T_{K}^{*} = 705.2 \ \text{K}; p_{K}^{*} = 15.8878*10^{5} \ \text{H/m}^{2};
N_{\text{K}} = 2443 \text{ kBt}; c_{\text{B}} = 140 \text{ m/c}; \lambda_{\text{B}} = 0.4507; q(\lambda_{\text{B}}) = 0.6523; F_{\text{B}} = 0.03782 \text{ m}^2;
\underline{c}_{\kappa}=110 M/c; \lambda_{\kappa}=0.2264; \underline{q}(\lambda_{\rm B})=0.3495; F_{\kappa}=0.0069 M<sup>2</sup>;
     1. Параметры осевых ступеней.
\pi_{\text{oc}}^*=6.72; L_{\text{oc all}}^*=209395 Дж/кг; L_{\text{oc}}=247830 Дж/кг; T_{\text{x}}^*=534.8 К; p_{\text{x}}^*=6.6730*10^5 Н/м<sup>2</sup>;
\underline{\mathbf{n}}_{\text{oc}}^* = 0.845; c_x = 120 \text{ m/c}; \lambda_x = 0.2836; q(\lambda_x) = 0.4325; F_x = 0.01157 \text{ m}^2;
  2. Параметры центробежной ступени.
                                                                                                                                                                   Отформатировано
\underline{\pi}_{\text{пб}}^*=2.38; \underline{u}_2=420 \text{ м/c}; \underline{\mu}_{\kappa}=0.91; \underline{\alpha}_{\text{тр}}=0.06; \underline{L}_{\text{пб}}=171108 \text{ Дж/кг}; \underline{\eta}_{\text{пб}}^*=0.82;
L_{\text{пб ал}}^* = 140309 \, \text{Дж/кг};
                                                                                                                                                                   Отформатировано
    в) камера сгорания
\frac{T_{_{\rm T}}^{*}=1500~{\rm K;}~c_{_{\rm T}}=1.2705~\frac{{\rm K} Дж}{{\rm K} \Gamma \cdot {\rm K}};~q_{_{\rm BH}}=1009.796~{\rm K} Дж/{\rm K} \Gamma;~g_{_{\rm T}}=0.02391;~\sigma_{_{\rm KC}}=0.95;}{\underline{R_{_{\rm F}}}=287.58~\frac{{\rm Дж}}{{\rm K} \Gamma \cdot {\rm K}};~p_{_{\rm T}}^{*}=15.0934*10^{5}~{\rm H/m}^{2};~G_{_{\rm T}q}=463~{\rm K} \Gamma/{\rm H};~\alpha_{_{\rm S}}=2.8;}
                                                                                                                                                                   Отформатировано
      г) турбина компрессора
L_{\text{тк}} = 445652 \text{ Дж/кг}; g_{\text{охл}} = 0.0573; g_{\text{отб}} = 0.02; g_{\text{г}} = 0.9448; \pi^*_{\text{тк}} = 3.794; \eta^*_{\text{тк}} = 0.91;
T_{v}^{*}=1115.4 \text{ K}; N_{TK}=2308 \text{ kBT}; T_{vv}^{*}=1093.8 \text{ K}; p_{v}^{*}=3.9781 \times 10^{5} \text{ H/m}^{2};
\underline{c}_{pr}=1.2346 кДж/(кг.К); \underline{c}_{pr}=1.1116 кДж/(кг.К);
      д) силовая турбина
L_{\text{тc}}=321557 \text{ Дж/кг}; \pi^*_{\text{тc}}=3.669; \eta^*_{\text{тc}}=0.92;
T_{T}^{*}=816.3 \text{ K}; N_{TC}=1875 \text{ kBt}; p_{T}^{*}=1.0842*10^{5} \text{ H/m}^{2}; c_{T}=181.2 \text{ m/c}; \lambda_{T}=0.35; q(\lambda_{T})=0.5273;
                                                                                                                                                                   Отформатировано
F_{\rm T}=0.07375~{\rm m}^2;
                                                                                                                                                                   Отформатировано
      е) выходное сопло
c_c = 173.9 \text{ m/c}; \varphi_c = 0.98; F_c = 0.07659 \text{ m}^2; D_c = 0.3124 \text{ m};
   ж) удельные показатели двигателя
L_e=321557 Дж/кг; N_e=1875 кВт; \eta_{\text{ад тc+pc}}=0.9229;
C_{\rm e}=0.247 кг/(кВт.ч).
      Для расчёта высотно-скоростных характеристик вертолётного ГТД принимаются
следующие характеристики отдельных элементов двигателя:
     а) входное устройство \sigma_{\text{вх}} = \sigma_{\text{вх}}(M_{\text{H}}); б) компрессор L_{\text{к ал}}^* = const, \eta_{\text{к}}^* = const;
      в) камера сгорания \eta_r = const, \sigma_{KC} = const;
```

д) силовая турбина $\eta^*_{TC} = const;$ е) выходное сопло $\phi_c = const.$

<u>Принимается также, что адиабатический КПД системы расширения "Силовая турбина +выходное сопло" не меняется по режимам полёта:</u>

$$\eta_{\text{ад TC+pc}} = \frac{1 - \frac{T_{\text{c}}}{T_{\text{yy}}^*}}{1 - (\frac{p_{\text{H}}}{*})^{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}}} = const$$

Порядок и результаты расчёта высотно-скоростных характеристик вертолётного ГТД приведены в таблице 2.3. В расчётах задаётся максимальная температура газа перед турбиной $T^*_{\Gamma max} = T^*_{\Gamma pacv} + 50...60 \text{ K}$

Отформатировано

Таблица 2.3

		Высотно-скоростные характеристики вертолетного 1 1Д										
ĺ	<u>No</u>	Наименование параметра,	<u>V,</u>	Высо	ота полёта,	KM						
	Π/Π	расчётная формула	км/ч	0	_1	2		Отформатировано				
ĺ	1	2	3	4	5	6	7	8				

	Температура наружного	0	288.15	281.7	275.1	268.6	262.1
	воздуха по ГОСТ 4401-81	50	288.15	281.7	275.1	268.6	262.1
	<u> </u>	100	288.15	281.7	275.1	268.6	262.1
<u>1</u>	$T_{\rm H} = 288.15 - 6.5 \cdot H$	150	288.15	281.7	275.1	268.6	262.1
	$\frac{T_{\rm H} = 200.13 - 0.3 \cdot 11}{1}$	200	288.15	281.7	275.1	268.6	262.1
		250	288.15	281.7	275.1	268.6	262.1
:	Давление наружного воздуха	0	1.0132	0.8974	0.7926	0.6979	0.6126
	по ГОСТ 4401-81	50	1.0132	0.8974	0.7926	0.6979	0.6126
	$p_{H} = 1.01325 \cdot (1 -$	100	1.0132	0.8974	0.7926	0.6979	0.6126
_2	- **	150	1.0132	0.8974	0.7926	0.6979	0.6126
	$-\frac{H}{44.368}$) ^{5.2532} ·10 ⁵ , $\frac{H}{M^2}$	200	1.0132	0.8974	0.7926	0.6979	0.6126
	$-\frac{11}{44368}$) · · · · · · · · · · · · · · · · · · ·	<u>250</u>	1.0132	0.8974	0.7926	0.6979	0.6126
	44.300 M ²						
	<u>Температура торможения на</u>	<u>0</u>	<u>288.1</u>	<u>281.7</u>	<u>275.1</u>	<u>268.6</u>	<u>262.1</u>
	входе в двигатель	<u>50</u>	<u>288.2</u>	<u>281.7</u>	<u>275.2</u>	<u>268.7</u>	<u>262.2</u>
		<u>100</u>	<u>288.5</u>	<u>282.0</u>	<u>275.5</u>	<u>269.0</u>	<u>262.5</u>
3	$T{\rm H}^* = T_{\rm H} (1 + \frac{\kappa - 1}{2} M_{\rm H}^2)$	<u>150</u>	<u>289.0</u>	<u>282.5</u>	<u>276.0</u>	<u>269.5</u>	<u>263.0</u>
	$\frac{1 \text{ H} - 1 \text{ H}(1 + 2 \text{ MH})}{2}$	<u>200</u>	<u>289.7</u>	<u>283.2</u>	<u>276.7</u>	<u>270.2</u>	<u>263.7</u>
		<u>250</u>	<u>290.6</u>	<u>284.1</u>	<u>277.6</u>	<u>271.1</u>	<u>264.6</u>
	Полное давление на входе в	<u>0</u>	<u>1.0132</u>	<u>0.8974</u>	<u>0.7926</u>	<u>0.6979</u>	<u>0.6126</u>
	<u>двигатель</u>	<u>50</u>	<u>1.0144</u>	<u>0.8985</u>	<u>0.7935</u>	<u>0.6988</u>	<u>0.6134</u>
	<u> </u>	<u>100</u>	<u>1.0180</u>	0.9017	0.7964	0.7014	<u>0.6158</u>
<u>4</u>	$(T^*)\overline{\kappa-1}$	<u>150</u>	1.0239	0.9071	0.8013	0.7058	<u>0.6197</u>
	$p_{\rm H}^* = p_{\rm H} \left \frac{T_{\rm H}}{T_{\rm H}} \right $	<u>200</u>	1.0323	<u>0.9147</u>	<u>0.8082</u>	<u>0.7120</u>	<u>0.6253</u>
	$p_{\rm H}^* = p_{\rm H} \left(\frac{T_{\rm H}^*}{T_{\rm H}}\right)^{\frac{\kappa}{\kappa-1}}$	<u>250</u>	1.0431	0.9245	0.8170	0.7200	0.6325
	105 H						
	$\cdot 10^5, \frac{H}{M^2}$						
	Μ ²						
	<u>Число Маха</u>	<u>0</u>	0.000	0.000	<u>0.000</u>	0.000	<u>0.000</u>
	M = V	<u>50</u>	<u>0.041</u>	<u>0.041</u>	<u>0.042</u>	<u>0.042</u>	<u>0.043</u>
_	$M_{\rm H} = \frac{V}{3.6\sqrt{kRT_{\rm H}}}$	<u>100</u>	<u>0.082</u>	0.083	<u>0.084</u>	<u>0.085</u>	<u>0.086</u>
_5	J.O.V. MILI H	<u>150</u>	<u>0.122</u>	<u>0.124</u>	<u>0.125</u>	<u>0.127</u>	<u>0.128</u>
		<u>200</u>	<u>0.163</u>	<u>0.165</u>	<u>0.167</u>	0.169	<u>0.171</u>
		<u>250</u>	0.204	0.206	0.209	<u>0.211</u>	0.214
	Коэффициент восстановления	<u>0</u>	<u>0.9800</u>	<u>0.9800</u>	<u>0.9800</u>	0.9800	<u>0.9800</u>
	полного давления во входном	<u>50</u>	<u>0.9787</u>	<u>0.9786</u>	<u>0.9786</u>	<u>0.9786</u>	<u>0.9786</u>
	<u>устройстве</u>	<u>100</u>	<u>0.9773</u>	<u>0.9773</u>	<u>0.9772</u>	<u>0.9772</u>	<u>0.9772</u>
<u>6</u>	$\sigma_{\rm BX} = \sigma_{\rm BX \ pacq} -$	<u>150</u>	<u>0.9760</u>	<u>0.9759</u>	<u>0.9759</u>	<u>0.9758</u>	<u>0.9758</u>
	_	<u>200</u>	<u>0.9746</u>	<u>0.9746</u>	<u>0.9745</u>	<u>0.9744</u>	<u>0.9744</u>
	$-0.033 \cdot M_{\rm H}$	<u>250</u>	<u>0.9733</u>	0.9732	<u>0.9731</u>	<u>0.9730</u>	<u>0.9729</u>
	н						

Продолжение табл.2.312345678Температура воздуха на входе в компрессор0288.1281.7275.1268.6262.150288.2281.7275.2268.7262.2100288.5282.0275.5269.0262.5

-							
7	T* T*	<u>150</u>	289.0	<u>282.5</u>	<u>276.0</u>	<u>269.5</u>	<u>263.0</u>
	$T_{\rm B}^* = T_{\rm H}^*$	200	289.7	283.2	276.7	270.2	263.7
		250	290.6	284.1	277.6	271.1	264.6
	Полное давление на входе в	0	0.9930	0.8795	0.7767	0.6839	0.6004
	компрессор	50	0.9928	0.8793	0.7766	0.6838	0.6003
		100	0.9949	0.8812	0.7783	0.6854	0.6017
8	$p_{\rm B}^* = p_{\rm H}^* \sigma_{\rm BX} \cdot 10^5, \frac{\rm H}{\rm M}^2$	150	0.9993	0.8852	0.7820	0.6887	0.6047
-	M ²	200	1.0061	0.8914	0.7875	0.6938	0.6092
<u> </u>		250	1.0152	0.8997	0.7951	0.7005	0.6154
	Степень повышения давления в	0	16.00	16.72	17.50	18.34	19.25
	·	50	15.99	16.72	17.48	18.32	19.23
	компрессоре	100	15.96		17.45	18.28	19.19
Q	$\pi_{K}^{*} = (1 + \frac{L_{K \text{ ad}}}{\pi^{*}})^{\frac{K}{K-1}}$			16.67		18.22	
2	$\pi_{\kappa} = (1 + \frac{\kappa a \mu}{m})^{\kappa - 1}$	<u>150</u>	<u>15.91</u>	<u>16.62</u>	17.39		<u>19.12</u>
	$c_{\mathbf{p}\mathbf{B}}T_{\mathbf{B}}^{*}$	<u>200</u>	<u>15.84</u>	<u>16.54</u>	<u>17.31</u>	<u>18.13</u>	<u>19.03</u>
		<u>250</u>	<u>15.75</u>	<u>16.45</u>	<u>17.20</u>	<u>18.02</u>	<u>18.90</u>
	Температура воздуха за	<u>0</u>	<u>708.9</u>	<u>702.8</u>	<u>696.8</u>	<u>690.8</u>	<u>684.8</u>
	компрессором	<u>50</u>	709.0	702.9	696.9	690.9	684.9
	_* _**	100	709.2	703.2	697.2	691.2	685.2
<u>10</u>	$T_{\rm K}^* = T_{\rm B}^* + \frac{L_{\rm K}}{c_{\rm pB}}$	150	709.7	703.6	697.6	691.6	685.6
	$c_{\rm ps}$	200	710.3	704.3	698.2	692.2	686.2
		250	711.1	705.1	699.0	693.0	687.0
i	Давление воздуха за	0	15.8878	14.7032	13.5887	12.5412	11.5576
	компрессором	50	15.8743	14.6906	13.5769	12.5301	11.5473
		100	15.8776	14.6936	13.5797	12.5327	11.5497
<u>11</u>	$p_{\rm K}^* = p_{\rm B}^* \pi_{\rm K}^* \cdot 10^5 , \frac{\rm H}{2}$	150	15.8976	14.7123	13.5971	12.5490	11.5648
1	M ²	200	15.9343	14.7466	13.6292	12.5788	11.5925
<u> </u>		250 250	15.9879	14.7967	13.6759	12.6223	11.6331
	Средняя условная теплоёмкость в	0	1.2809	1.2803	1.2797	1.2791	1.2785
	-	50	1.2809	1.2803	1.2797	1.2791	1.2785
	камере сгорания	100	1.2809	1.2803	1.2797	1.2791	1.2785
12	$c_{\Pi} = 0.9 + 10^{-4}$.	150	1.2810	1.2804	1.2798	1.2792	1.2786
12	_						
	$\cdot (2T_{\Gamma max}^* + T_{K}^*), \frac{\kappa \Delta x}{\kappa \Gamma K}$	<u>200</u>	1.2810	1.2804	1.2798	1.2792	1.2786
	$(2I_{\Gamma} max + I_{K}), \frac{1}{\kappa_{\Gamma} \cdot K}$	<u>250</u>	<u>1.2811</u>	<u>1.2805</u>	<u>1.2799</u>	1.2793	<u>1.2787</u>
	Удельное количество теплоты,	0	1077.39	1084.61	1091.81	1098.98	1106.11
	подводимое к воздуху в камере	50	1077.28	1084.51	1091.70	1098.87	1106.11
	сгорания	100	1076.96	1084.31	1091.70	1098.55	1105.69
<u>13</u>		150	1076.43		1091.38	1098.02	1105.16
12	$q_{KC} = c_{\Pi} (T_{\Gamma max}^* - T_{K}^*),$	200	1075.68	1083.65 1082.91	1090.83	1098.02	1103.16
	TRC II \ I max R \	250 250		1082.91	1089.15		
	кДж	<u>230</u>	<u>1074.71</u>	1081.93	1089.13	<u>1096.33</u>	<u>1103.48</u>
	· ———						
	КГ	0	0.00551	0.00560	0.00505	0.02602	0.02(10
	Отношение расходов топлива и	0	0.02551	0.02568	0.02585	0.02602	0.02619
	воздуха в камере сгорания	<u>50</u>	0.02551	0.02568	0.02585	0.02602	0.02619
14	$q_{\rm KC}$	<u>100</u>	0.02550	0.02567	0.02584	0.02601	0.02618
<u>14</u>	$g_{\mathrm{T}} = \frac{q_{\mathrm{KC}}}{H_{u} \eta_{\mathrm{KC}}}$	<u>150</u>	0.02548	0.02566	0.02583	0.02600	0.02617
	u·ikc	<u>200</u>	0.02547	0.02564	0.02581	0.02598	0.02615
<u> </u>		<u>250</u>	0.02544	0.02562	0.02579	0.02596	0.02613
					_		
					<u>Продол:</u>	жение таб	<u>5л.2.3</u>
1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	8
II	Воруал возличе новог компросов	0	5.70	5.26	4.05	1.57	4.21

	110000000000000000000000000000000000000									
<u>1</u>	2	3	4	5	<u>6</u>	7	8			
	Расход воздуха через компрессор	<u>0</u>	<u>5.79</u>	<u>5.36</u>	<u>4.95</u>	4.57	<u>4.21</u>			
		<u>50</u>	<u>5.79</u>	<u>5.35</u>	<u>4.95</u>	<u>4.57</u>	<u>4.21</u>			

Ц

	*	100	5.79	5.36	4.95	4.57	4.21
<u>15</u>	p_{κ}^{τ}	150	5.80	5.36	4.95	4.57	4.21
10	$G_{\rm B} = G_{\rm B \ pac \ w} - \frac{p_{\rm K}}{*}$	200	5.81	5.37	4.97	4.58	4.22
	$p_{\rm K}$ pacy	250	5.83	5.39	4.98	4.60	4.24
	1	250	<u>5.65</u>	<u>5.55</u>	1.50	1.00	1,21
	g_{Γ} pacy T_{Γ}^* pacy K_{Γ}						
	$\frac{g_{\Gamma} \operatorname{pacy}}{g_{\Gamma}} \sqrt{\frac{T_{\Gamma}^{*} \operatorname{pacy}}{T_{\Gamma}^{*} \max}}, \frac{\kappa_{\Gamma}}{c}$						
	Удельная работа расширения в	0	453888	454308	454748	455208	455690
	турбине компрессора	50	453882	454302	454741	455201	455683
	- <i>L</i> _{rc} Лж	100	453863	454283	454722	455181	455661
<u>16</u>	$L_{\text{TK}} = \frac{L_{\text{K}}}{g_{\text{F}} \eta_{\text{M}}}, \frac{\Pi_{\text{KF}}}{\kappa_{\text{F}}}$	150	453833	454251	454688	455146	455625
-	SrIIM KI.	200	453791	454207	454642	455098	455575
	$g_{\Gamma} = (1 + g_{\rm T})(1 - g_{\rm OXJI} -$	<u>250</u>	453737	454151	454583	455036	455510
	$-g_{\text{OT}\tilde{0}})$						
	Степень понижения давления в	0	3.708	3.714	3.719	3.725	3.731
	турбине компрессора	<u>50</u>	3.708	3.713	3.719	3.725	3.731
	*	100	3.708	3.713	3.719	3.724	3.731
<u>17</u>	$\pi_{TK} = (1 -$	<u>150</u>	3.708	3.713	3.718	3.724	3.730
	κ_{r}	<u>200</u>	3.707	3.712	3.718	3.723	3.729
	$-\frac{\kappa_{\Gamma}}{\Gamma}$	<u>250</u>	<u>3.706</u>	<u>3.712</u>	<u>3.717</u>	<u>3.723</u>	<u>3.729</u>
	$-\frac{L_{\text{TK}}}{\kappa_{\Gamma}-1}$						
	$-\frac{L_{\text{TK}}}{c_{\text{pr}}T_{\text{r}}^{*}\max_{\text{max}}\eta_{\text{TK}}})^{-\frac{\kappa_{\Gamma}}{\kappa_{\Gamma}-1}}$						
	Температура газа за турбиной	0	1158.4	1158.0	1157.7	1157.3	1156.9
	компрессора без учёта	50	1158.4	1158.0	1157.7	1157.3	1156.9
	охлаждения лопаток	100	1158.4	1158.1	1157.7	1157.3	1156.9
<u>18</u>		150	1158.4	1158.1	1157.7	1157.3	1156.9
	$T_{\rm V} = T_{\rm \Gamma max} - \frac{\Sigma_{\rm TK}}{1}$	200	1158.5	1158.1	1157.8	1157.4	1157.0
	$T_{y}^{*} = T_{\Gamma max}^{*} - \frac{L_{TK}}{\frac{\kappa_{\Gamma}}{\kappa_{-1}} R_{\Gamma}}$	<u>250</u>	1158.5	1158.2	1157.8	1157.4	1157.0
	$\kappa_{\Gamma}-1$						
	Температура газа за турбиной	<u>0</u>	<u>1130.6</u>	<u>1129.9</u>	<u>1129.2</u>	<u>1128.5</u>	<u>1127.8</u>
	компрессора с учётом	<u>50</u>	<u>1130.6</u>	<u>1129.9</u>	<u>1129.3</u>	<u>1128.6</u>	<u>1127.8</u>
	охлаждения лопаток	<u>100</u>	<u>1130.6</u>	<u>1130.0</u>	<u>1129.3</u>	<u>1128.6</u>	<u>1127.9</u>
<u>19</u>	a ~ T*	<u>150</u>	<u>1130.7</u>	<u>1130.0</u>	<u>1129.3</u>	<u>1128.6</u>	<u>1127.9</u>
	$T^* = \frac{c_{p_{\Gamma}}g_{\Gamma}I_{Y}^{+}}{T}$	<u>200</u>	<u>1130.8</u>	<u>1130.1</u>	<u>1129.4</u>	<u>1128.7</u>	<u>1128.0</u>
	$T_{yy}^* = \frac{c_{p\Gamma}g_{\Gamma}T_y^* + c_{pcM}(g_{\Gamma} + g_{OXJI})}$	<u>250</u>	<u>1130.8</u>	1130.2	<u>1129.5</u>	<u>1128.8</u>	<u>1128.1</u>
	$+c_{\rm pB}g_{\rm OXJ}T_{\rm K}^*$						
		•	1.	1.0862a		•	•

Примечание: В пункте 17: $c_{\rm pr} = \frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma}$; $R_{\Gamma} = R \frac{1 + 1.0862 g_{\rm T}}{1 + g_{\rm T}}$ В пункте 19: $c_{\rm pr} = 0.9 + 3 * 10^{-4} T_{\rm y}^*$, кДж/(кг.К); $c_{\rm pem} = 0.9 + 3 * 10^{-4} T_{\rm y}^*$, кДж/(кг.К); Продолжение табл.2.3

	Полное давление газа на входе в	<u>0</u>	15.0934	13.9680	12.9092	11.9141	10.9797
	турбину компрессора	50	15.0806	13.9560	12.8980	11.9036	10.9699
	* * 105 H	100	15.0837	13.9589	12.9007	11.9061	10.9722
<u>20</u>	$p_{\Gamma}^* = p_{K}^* \sigma_{KC} \cdot 10^5 , \frac{H}{2}$	150	15.1027	13.9767	12.9173	11.9215	10.9865
	M ²	200	15.1376	14.0093	12.9477	11.9499	11.0129
		250	15.1885	14.0568	12.9921	11.9912	11.0514
	Давление газа за турбиной	0	4.0701	3.7613	3.4711	3.1986	2.9429
	компрессора	50	4.0668	3.7582	3.4682	3.1958	2.9404
	*	100	4.0679	3.7592	3.4691	3.1967	2.9412
<u>21</u>	$p_{\Gamma}^* = p_{\Gamma} = 10^5 \text{ H}$	150	4.0734	3.7644	3.4739	3.2012	2.9454
_	$p_{y}^{*} = \frac{p_{\Gamma}}{*} \cdot 10^{5}, \frac{H}{M^{2}}$	200	4.0834	3.7737	3.4827	3.2093	2.9530
	$\pi_{ m TK}$ M $^-$	<u>250</u>	4.0979	3.7873	3.4953	3.2211	2.9639
	Действительная температура	0	826.1	817.9	809.5	800.9	792.1
	газа в обрезе выходного сопла	50	826.3	818.1	809.6	801.0	792.3
	_	100	826.3	818.0	809.6	801.0	792.2
<u>22</u>	$T_{c} = T_{yy}^{*} \{1 - \eta_{a \perp Tc + pc} \cdot$	150	826.1	817.8	809.4	800.8	792.0
_	ing it pe	200	825.7	817.4	809.0	800.4	791.6
	$\kappa_{\Gamma}-1$	250	825.1	816.8	808.4	799.8	791.0
	$p_{\rm H} \sim \frac{1}{\kappa_{-}}$	250	023.1	010.0	000.1	177.0	771.0
	$\cdot [1 - (\frac{p_{\mathrm{H}}}{*})^{\kappa_{\Gamma}}]$						
	$p_{ m V}$						
	Плотность газа в обрезе сопла	<u>0</u>	<u>0.4264</u>	<u>0.3815</u>	<u>0.3404</u>	<u>0.3030</u>	<u>0.2689</u>
	$p_{\rm H}$ κ_{Γ}	<u>50</u>	<u>0.4264</u>	<u>0.3814</u>	0.3403	<u>0.3029</u>	<u>0.2688</u>
	$\rho_{\rm c} = \frac{p_{\rm H}}{R_{\rm \Gamma} T_{\rm c}}, \frac{\kappa_{\rm \Gamma}}{M^3}$	<u>100</u>	<u>0.4264</u>	<u>0.3814</u>	<u>0.3404</u>	<u>0.3029</u>	<u>0.2688</u>
<u>23</u>	$\Gamma^{\Gamma} C M^{S}$	<u>150</u>	<u>0.4265</u>	<u>0.3815</u>	<u>0.3404</u>	<u>0.3030</u>	<u>0.2689</u>
		<u>200</u>	<u>0.4267</u>	<u>0.3817</u>	<u>0.3406</u>	<u>0.3031</u>	<u>0.2691</u>
		<u>250</u>	0.4270	<u>0.3820</u>	<u>0.3409</u>	<u>0.3034</u>	0.2693
	Скорость истечения газа из	<u>0</u>	<u>177.9</u>	<u>184.0</u>	<u>190.6</u>	<u>197.7</u>	<u>205.2</u>
	выходного сопла	<u>50</u>	<u>177.8</u>	<u>183.9</u>	<u>190.5</u>	<u>197.5</u>	<u>205.1</u>
	$G_{\rm R}(g_{\Gamma}+g_{\rm OXII})_{\rm M}$	<u>100</u>	<u>177.8</u>	<u>184.0</u>	<u>190.5</u>	<u>197.6</u>	<u>205.1</u>
<u>24</u>	$c_{\rm c} = \frac{G_{\rm B}(g_{\rm \Gamma} + g_{\rm OXJI})}{\rho_{\rm c} F_{\rm c}}, \frac{M}{\rm c}$	<u>150</u>	<u>178.0</u>	<u>184.1</u>	<u>190.7</u>	<u>197.8</u>	<u>205.3</u>
	PCT'C C	<u>200</u>	<u>178.3</u>	<u>184.5</u>	<u>191.1</u>	<u>198.1</u>	<u>205.7</u>
		<u>250</u>	<u>178.8</u>	<u>185.0</u>	<u>191.6</u>	<u>198.7</u>	<u>206.3</u>
	<u>Температура газа за турбиной</u>	0	839.8	832.5	<u>825.2</u>	<u>817.7</u>	810.3
	* * c ²	<u>50</u>	839.9	832.6	<u>825.3</u>	<u>817.9</u>	<u>810.4</u>
	$T_{\rm T}^* = T_{\rm c}^* = T_{\rm c} + \frac{c_{\rm c}^2}{2\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}R_{\Gamma}}$	<u>100</u>	<u>839.9</u>	<u>832.6</u>	<u>825.3</u>	<u>817.9</u>	<u>810.4</u>
<u>25</u>	$\begin{bmatrix} & 1 & -C & -C & \\ & & 2 & \kappa_{\Gamma} & D \end{bmatrix}$	<u>150</u>	<u>839.7</u>	832.4	<u>825.1</u>	<u>817.7</u>	<u>810.2</u>
	$\frac{2}{\kappa_{\Gamma}-1}R_{\Gamma}$	<u>200</u>	<u>939.4</u>	<u>832.1</u>	<u>824.7</u>	<u>817.3</u>	<u>809.9</u>
		<u>250</u>	838.9	<u>831.6</u>	<u>824.2</u>	<u>816.8</u>	<u>809.4</u>
	Удельная работа расширения	<u>0</u>	<u>337109</u>	<u>344775</u>	<u>352507</u>	<u>360295</u>	<u>368125</u>
	газа на валу силовой турбины	<u>50</u>	<u>336957</u>	<u>344625</u>	<u>352359</u>	<u>360150</u>	<u>367982</u>
	$I \qquad K_{\Gamma} D T^* T^*$	<u>100</u>	<u>337017</u>	<u>344685</u>	<u>352420</u>	<u>360210</u>	<u>368043</u>
<u>26</u>	$L_{\text{TC}} = \frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma} (T_{\text{yy}}^* - T_{\text{T}}^*)$	<u>150</u>	<u>337290</u>	<u>344956</u>	<u>352689</u>	<u>360477</u>	<u>368306</u>
	ΛΓ 1	<u>200</u>	<u>337773</u>	<u>345436</u>	<u>353165</u>	<u>360948</u>	<u>368772</u>
	Дж	<u>250</u>	338467	<u>346124</u>	<u>353847</u>	<u>361623</u>	369439
	KΓ						
	KI						

					Продолж	ение табл	л.2.3
1	2	3	<u>4</u>	5	<u>6</u>	7	8

1	Marriager average strengther	0	1959	1051	1750	1650	1556
	Мощность силовой турбины	<u>0</u> 50		1854	<u>1752</u>	<u>1652</u>	1556 1554
	$N_{\rm e} = G_{\rm B} L_{\rm TC} \cdot 10^{-3}, \text{ kBT}$	100	1956 1957	1851	1750 1750	1650 1651	1554
<u>27</u>				1852	<u>1750</u>	<u>1651</u>	
<u> 21</u>		<u>150</u>	<u>1961</u>	<u>1856</u>	<u>1754</u>	<u>1654</u>	<u>1558</u>
		<u>200</u>	<u>1968</u>	<u>1863</u>	<u>1760</u>	<u>1660</u>	<u>1563</u>
 		<u>250</u>	<u>1979</u>	<u>1873</u>	<u>1770</u>	<u>1669</u>	<u>1572</u>
	Часовой расход топлива	0	485.3	<u>452.0</u>	<u>420.5</u>	<u>390.5</u>	<u>362.2</u>
	$G_{\rm TH} = 3600g_{\rm T}(1-$	<u>50</u>	<u>484.8</u>	<u>451.6</u>	<u>420.1</u>	<u>390.2</u>	<u>361.8</u>
		<u>100</u>	<u>484.8</u>	<u>451.6</u>	<u>420.0</u>	<u>390.1</u>	<u>361.8</u>
<u>28</u>	$-g_{ m OXJI}-g_{ m OTar O})G_{ m B}$, кг/ч	<u>150</u>	<u>485.2</u>	<u>451.9</u>	<u>420.4</u>	<u>390.5</u>	<u>362.1</u>
		<u>200</u>	<u>485.9</u>	<u>452.7</u>	<u>421.1</u>	<u>391.1</u>	<u>362.7</u>
		<u>250</u>	<u>487.2</u>	<u>453.8</u>	<u>422.2</u>	<u>392.1</u>	<u>363.7</u>
	Удельный расход топлива	<u>0</u>	0.2478	0.2438	<u>0.2400</u>	<u>0.2363</u>	0.2328
	G G_{TH} K_{Γ}	<u>50</u>	0.2478	0.2439	0.2401	0.2364	0.2329
	$C_{\rm e} = \frac{G_{\rm TY}}{N_{\rm e}}, \frac{\kappa \Gamma}{\kappa B_{\rm T} \cdot Y}$	<u>100</u>	0.2477	0.2438	0.2400	0.2363	0.2327
<u>29</u>	Ne KBT·4	<u>150</u>	0.2474	0.2435	0.2397	0.2360	0.2325
		200	0.2469	0.2430	0.2392	0.2356	0.2320
		250	0.2462	0.2423	0.2385	0.2349	0.2314
	Давление газа за силовой	0	1.0855	0.9670	0.8596	0.7625	0.6750
	турбиной (10^5H/m^2)	50	1.0853	0.9669	0.8595	0.7624	0.6749
		100	1.0854	0.9669	0.8595	0.7625	0.6749
<u>30</u>	$p_{\rm T}^* = p_{\rm V}^* (1 -$	150	1.0855	0.9671	0.8597	0.7626	0.6750
		200	1.0859	0.9674	0.8600	0.7629	0.6753
	κ_{Γ}	250	1.0863	0.9679	0.8605	0.7634	0.6758
	$-\frac{L_{\text{TC}}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma}-1}R_{\Gamma}T_{\text{yy}}^{*}\eta_{\text{TC}}^{*}})^{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma}-1}}$			3.3.3.3		1	310,700
	- * * *						
	$R_{\Gamma}T_{VV}\eta_{TC}$						
	κ_{Γ} -1 1 yy 110						
}	Относительная плотность тока на	0	0.5303	0.5485	0.5677	0.5880	0.6094
	выходе из силовой турбины	50	0.5300	0.5482	0.5674	0.5876	0.6090
		100	0.5301	0.5483	0.5675	0.5877	0.6091
<u>31</u>	$G_{\mathbf{B}}(g_{\Gamma}+g_{\mathbf{OXII}})\sqrt{T_{\mathbf{T}}}$	150	0.5306	0.5488	0.5680	0.5883	0.6097
	$q(\Lambda_{\rm T}) = \frac{1}{2} \frac{1}{2}$	<u>200</u>	0.5316	0.5498	0.5690	0.5893	0.6108
	$q(\lambda_{\rm T}) = \frac{G_{\rm B}(g_{\rm T} + g_{\rm OXJI})\sqrt{T_{\rm T}^*}}{0.0396 p_{\rm T}^* F_{\rm T}}$	250	0.5329	0.5512	0.5705	0.5909	0.6123
			<u>0.002</u>	<u> </u>	0.0700	0.000	<u> </u>
	Привеленная скорості на вихоле	0	0.3523	0.3660	0.3806	0.3962	0.4132
	Приведенная скорость на выходе из силовой турбины $\lambda_{\rm T}$ из таблиц	50	0.3523	0.3657	0.3800	0.3962	0.4132
	из силовои туроины да из таолиц газодинамических функций в	100	0.3521	0.3657	0.3804	0.3960	0.4128
<u>32</u>	зависимости от		<u>0.3521</u> <u>0.3525</u>				
<u> 24</u>	-	150 200	0.3525	0.3662 0.3669	0.3807 0.3816	0.3965	0.4133 0.4143
	$\underline{g(\lambda_{\scriptscriptstyle extsf{T}})}$					0.3973	
	Cyanager page ve	<u>250</u>	0.3542	0.3679	0.3827	0.3984	0.4155
	Скорость газа на выходе из	<u>0</u>	185.0	<u>191.3</u>	<u>198.1</u>	<u>205.3</u>	<u>213.1</u>
	силовой турбины	<u>50</u>	<u>184.9</u>	<u>191.2</u>	<u>197.9</u>	<u>205.2</u>	<u>213.0</u>
22	$2 \kappa R T^*$	<u>100</u>	<u>184.9</u>	<u>191.2</u>	<u>198.0</u>	<u>205.2</u>	<u>213.0</u>
<u>33</u>	$c_{\rm T} = \lambda_{\rm T} \sqrt{\frac{2\kappa_{\rm \Gamma} R_{\rm \Gamma} T_{\rm T}^*}{\kappa_{\rm \Gamma} + 1}}, \frac{M}{c}$	<u>150</u>	<u>185.1</u>	<u>191.5</u>	<u>198.2</u>	<u>205.4</u>	<u>213.2</u>
	$\kappa_{\Gamma} + 1$ 'c	<u>200</u>	<u>185.5</u>	<u>191.8</u>	<u>198.6</u>	<u>205.8</u>	<u>213.7</u>
[]	·	<u>250</u>	<u>185.9</u>	<u>192.3</u>	<u>199.1</u>	<u>206.4</u>	<u>214.2</u>

1	2	3	4	5	6	7	8
	Относительная плотность тока на	0	0.6479	0.6692	0.6920	0.7166	0.7430
	входе в компрессор	50	0.6476	0.6689	0.6917	0.7162	0.7426
		100	0.6467	0.6679	0.6906	0.7151	0.7414
<u>34</u>	$G_{\mathbf{p}}\sqrt{T_{\mathbf{p}}}$	150	0.6452	0.6663	0.6889	0.7132	0.7394
<u> </u>	$q(\lambda_{\rm B}) = \frac{-B + B}{*}$	200	0.6431	0.6640	0.6865	0.7106	0.7366
	$q(\lambda_{\rm B}) = \frac{G_{\rm B}\sqrt{T_{\rm B}^*}}{0.0404p_{\rm B}^*F_{\rm B}}$	250	0.6404	0.6611	0.6834	0.7073	0.7330
-		0	0.4470	0.4650	0.4849	0.5068	0.5314
	Приведенная скорость на входе в		0.4468		0.4845		
	$\frac{\text{компрессор } \lambda_{\text{в}}}{\text{газодинамических функций по}}$	50 100	0.4460	0.4647	0.4836	0.5063 0.5054	0.5310 0.5298
<u>35</u>		150	0.4448	0.4625	0.4821	0.5034	0.5278
<u>55</u>	значению $q(\lambda_{\rm B})$	200	0.4430	0.4625	0.4821	0.5013	0.5253
		250 250	0.4408	0.4581	0.4773	0.4983	0.5233
	Croposti postivillioro notore us	0	138.9	142.8	147.2	152.0	157.4
	<u>Скорость воздушного потока на</u> входе в компрессор	50	138.8	142.7	147.1	151.9	157.4
		100	138.6	142.5	146.9	151.7	157.1
<u>36</u>	$2\kappa RT_{\rm p}^{*}$	150	138.4	142.3	146.5	151.7	156.6
20	$c_{\rm B} = \lambda_{\rm B} \sqrt{\frac{2\kappa R T_{\rm B}^*}{\kappa + 1}}, \frac{\rm M}{\rm c}$	200	138.0	141.8	146.1	150.8	156.1
	V X+1 C	250	137.5	141.3	145.5	150.1	155.4
	Относительная плотность тока на	0	0.3480	0.3465	0.3449	0.3434	0.3419
	выходе из компрессора	50	0.3481	0.3465	0.3450	0.3434	0.3419
		100	0.3481	0.3466	0.3450	0.3435	0.3419
<u>37</u>	$q(\lambda_{K}) = \frac{G_{B} \sqrt{T_{K}^{*}}}{0.0404 p_{K}^{*} F_{K}}$	150	0.3482	0.3467	0.3452	0.3436	0.3421
	$q(\Lambda_{\rm K}) = \frac{1}{2} \frac{1}{2} \frac{1}{2}$	200	0.3484	0.3469	0.3453	0.3438	0.3422
	$0.0404 p_{ m K} F_{ m K}$	250	0.3486	0.3471	0.3455	0.3440	0.3424
	Приведенная скорость на выходе	0	0.2253	0.2244	0.2233	0.2223	0.2212
	из компрессора λ_{κ} из таблиц	50	0.2253	0.2244	0.2233	0.2223	0.2212
	газодинамических функций в	100	0.2255	0.2244	0.2234	0.2223	0.2212
38	зависимости от	150	0.2255	0.2245	0.2234	0.2224	0.2213
	$g(\lambda_{\kappa})$	200	0.2256	0.2246	0.2235	0.2225	0.2214
		250	0.2257	0.2247	0.2236	0.2227	0.2216
	Скорость воздуха на выходе из	0	109.8	108.8	107.8	106.9	105.9
	компрессора	<u>50</u>	109.8	108.8	107.9	106.9	105.9
	*	100	109.9	108.9	107.9	106.9	105.9
<u>39</u>	$c_{\rm K} = \lambda_{\rm K} \sqrt{\frac{2\kappa R T_{\rm K}^*}{\kappa + 1}}, \frac{\rm M}{\rm c}$	150	109.9	109.0	108.0	107.0	106.0
	$c_{\rm K} - \kappa_{\rm K} \sqrt{\frac{\kappa+1}{\kappa}}, \frac{\kappa}{c}$	200	110.0	109.1	108.1	107.1	106.1
	 	<u>250</u>	110.1	109.2	108.2	107.3	106.3
	Работа цикла вертолётного ГТД	0	<u>355256</u>	<u>364040</u>	<u>373012</u>	382179	<u>391547</u>
	$L_{\rm II} = (1 - \eta_{\rm M}) L_{\rm TK} + L_{\rm TC} +$	<u>50</u>	<u>354986</u>	<u>363771</u>	<u>372743</u>	<u>381910</u>	<u>391278</u>
	<u>-ц</u> (- ім/2-тк і 2-тс і	<u>100</u>	<u>354763</u>	<u>363548</u>	<u>372521</u>	<u>381688</u>	<u>391056</u>
<u>40</u>	2 2 2 2	<u>150</u>	<u>354584</u>	<u>363370</u>	<u>372344</u>	<u>381512</u>	<u>390881</u>
	$+\frac{c_{\rm c}^2-V^2}{2}, \underline{\mathcal{I}}_{\rm w}$	<u>200</u>	<u>354450</u>	<u>363238</u>	<u>372213</u>	<u>381382</u>	<u>390752</u>
	т , _{кг}	<u>250</u>	<u>354360</u>	<u>363149</u>	<u>372125</u>	<u>381296</u>	<u>390667</u>
	Внутренний (эффективный) КПД	<u>0</u>	0.323	0.329	0.335	0.341	0.347
	вертолётного двигателя	<u>50</u>	0.323	0.329	0.335	0.341	0.347
	$_{\rm n}$ $_{-}$ $L_{\rm II}\eta_{\rm KC}$	<u>100</u>	<u>0.323</u>	0.329	<u>0.335</u>	<u>0.341</u>	0.347
<u>41</u>	$\Pi_{\alpha} = \overline{}$	<u>150</u>	0.323	0.329	0.335	0.341	<u>0.347</u>
	$q_{\rm KC}$	<u>200</u>	0.323	0.329	0.335	0.341	0.347
		<u>250</u>	0.323	<u>0.329</u>	<u>0.335</u>	<u>0.341</u>	<u>0.347</u>

Если в формуле:

$$T = (N_{\rm e}\xi_N\eta_{\rm o}\sqrt{2\rho_{\rm H}F_{\rm HB}\chi})^{2/3}$$

принять, что на режиме взлёта вертолёта сохраняются постоянными параметры несущего винта $F_{\text{нв}}$ =const, χ =const, η_{o} =const и коэффициент передаваемой мощности ξ_{N} =const, то при постоянной взлётной массе вертолёта (T=const) получаем связь между мощностью силовой турбины N_{e} и плотностью наружного воздуха ρ_{h} : $N_{\text{e}}\sqrt{\rho_{\text{h}}}$ = const₁.

Имея в виду уравнение состояния $\rho_{\rm H} = \frac{p_{\rm H}}{RT_{\rm H}}$, находим значение *const*₁ на

расчётном режиме (*H*=0, *V*=0, MCA):
$$const_1$$
=1875 $\sqrt{\frac{101325}{287 \cdot 288.15}}$ = 2075.

Из расчёта лётных характеристик (см. табл. 3.7) получаем значение максимальной мощности силовой турбины в условиях взлёта $N_{\rm e\,\it max}$ =1959 кВт. Подставляя это значение в написанную выше формулу получаем величину $\rho_{\rm H}$:

$$\rho_{\rm H} = (\frac{2075}{1959})^2 = 1.1219 \frac{\kappa \Gamma}{M^3}$$

<u>что даёт возможность определить высоту статического потолка вертолёта из ГОСТ 4401-81 (Международная стандартная атмосфера) или из формулы:</u>

$$\frac{4401-81}{4401-81}$$
 (Международная стандартная атмосфера) или из формулы: $-\rho_{\rm H} \approx \rho_{\rm O} \, \frac{20-H}{20+H}$; $1.1219 \approx 1.225 \, \frac{20-H_{\rm CTAT.\PiOT.}}{20+H_{\rm CTAT.\PiOT.}}$

 $H_{\text{стат. пот.}} = 0.895 \text{ км.}$

Параметры рабочего процесса и показателей двигателя на $H_{\text{стат. пот.}}$: $\pi_{\text{к}}^*=16.64; T_{\text{гмах}}^*=1550 \text{ K}; T_{\text{H}}=282.33 \text{ K}; p_{\text{H}}=0.9091*10^5 \text{ H/M}^2; T_{\text{H}}^*=282.33 \text{ K}; \sigma_{\text{Bx}}=0.98; p_{\text{H}}^*=0.9091*10^5 \text{ H/M}^2; T_{\text{B}}^*=282.3 \text{ K}; p_{\text{B}}^*=0.8909*10^5 \text{ H/M}^2; T_{\text{k}}^*=699.3 \text{ K}; L_{\text{k}}=418938 \text{ Дж/кг}; p_{\text{k}}^*=14.8249*10^5 \text{ H/M}^2; c_{\text{п}}=1.2799 \text{ кДж/(кг.K)}; q_{\text{кc}}=1088.724 \text{ кДж/кг}; g_{\text{T}}=0.02578; R_{\text{T}}=287.62 \text{ Дж/(кг.K)}; p_{\text{r}}^*=14.0836*10^5 \text{ H/M}^2; L_{\text{TR}}=449823 \text{ Дж/кг}; \pi_{\text{TK}}^*=3.657; T_{\text{y}}^*=1161.9 \text{ K}; c_{\text{pc}}=1.2486 \text{ кДж/(кг.K)}; c_{\text{pB}}=1.1098 \text{ кДж/(кг.K)}; c_{\text{pcM}}=1.2400 \text{ кДж/(кг.K)}; T_{\text{yy}}^*=1133.39 \text{ K}; p_{\text{y}}^*=3.8511*10^5 \text{ H/M}^2; T_{\text{c}}=818.4 \text{ K}; \rho_{\text{c}}=0.3862 \text{ кг/м}^3; c_{\text{c}}=183.3 \text{ м/c}; T_{\text{T}}^*=832.97 \text{ K}; L_{\text{Tc}}=348254 \text{ Дж/кг}; N_{\text{Tc}}=1959 \text{ кВт}; C_{\text{e}}=0.2335 \text{ кг/(кВт.ч)}; p_{\text{T}}^*=0.9789*10^5 \text{ H/M}^2; L_{\text{H}}=367305 \text{ Дж/кг}; G_{\text{R}}=5.40 \text{ kr/c}; \eta_{\text{e}}=0.331.$

Отформатировано

2.24. Расчёт высоты ограничения мощности вертолётного ГТД.

Задаётся следующее ограничение мощности: $N_{\text{огр}} = N_{\text{е расч}} = 1875 \text{ кВт.}$ Принимается максимальная скорость ограничения мощности $V_{\text{огр}} = 200 \text{ км/ч.}$ Далее строятся высотные характеристики вертолётного ГТД при $T_{\text{г max}}^* = 1550 \text{ K (рис.2.5)}$.

Отформатировано

На рисунке проводится горизонтальная линия, соответствующая условию $N_{\text{огр}} = N_{\text{е расч}} = 1875 \text{ кВт, до пересечения со значением мощности при } V_{\text{огр}} = 200 \text{ км/ч}.$ Таким образом, находится высота ограничения мощности: $H_{\text{огр}} = 1.05 \text{ км}.$

Рис. 2.5. К определению высоты ограничения мощности вертолётного ГТД

Параметры рабочего процесса и показателей вертолётного ГТД на режиме ограничения мощности;

Отформатировано

 $T_{\rm T}^* = 831.4 \text{ K}; L_{\rm Tc} = 350068 \text{ Дж/кг}; N_{\rm Tc} = 1875 \text{ kBt}; C_{\rm e} = 0.2417 \text{ kr/(kBt.4)};$

 $p_{\underline{\tau}}^* = 0.9618*10^{\overline{5}} \text{ H/м}^2; L_{\underline{\eta}} = 367305 \ \underline{\Pi}$ ж/кг; $G_{\underline{n}} = 5.40 \ \text{кг/c}; \eta_{\underline{e}} = 0.331.$

2.2.5. Определение максимальной скорости полёта вертолёта.

Для определения максимальной скорости полёта вертолёта на заданной высоте необходимо рассчитать потребную мощность $N_{\rm norp}$, состоящую из следующих компонентов:

 $N_{\text{потр}} = N_{\text{инд}} + N_{\text{проф}} + N_{\text{движ}}$

где $N_{\text{инд}}$ – индуктивная мощность, необходимая для создания подъёмной силы,	Отформатировано
равной силе тяжести вертолёта; $N_{\text{проф}}$ – профильная мощность, необходимая для	Отформатировано
реодоления профильного сопротивления лопастей несущего винта; $N_{{}_{\!{ m ЛВИЖ}}}$ —	
иощность движения, необходимая для преодоления лобового сопротивления	Отформатировано
ненесущих частей вертолёта в поступательном полёте,	Отформатировано
<u>Индуктивная мощность</u> определяется средней индуктивной скоростью <i>у</i> _{инд} ,	Отформатировано
создаваемой несущим винтом и корпусом при уравновешивании силы тяжести	
$G_{\underline{o}} = m_{\underline{o}}g$ вертолёта, то есть $N_{\underline{u}\underline{h}\underline{d}} = m_{\underline{o}}gv_{\underline{u}\underline{h}\underline{d}}$	Отформатировано
Для режима горизонтального полета, когда $V>>v_{\text{инд}}$ рекомендуют использовать	
следующую формулу:	
$N_{\text{HOTp}} = \frac{G_{\text{o}}^2}{2\rho_{\text{H}}F_{\text{HR}}V}$	
$N_{\text{HOTP}} = \frac{1}{2\rho_{\text{H}}F_{\text{HP}}V}$	
Профильная мощность определяется той частью крутящего момента M_{κ_2}	Отформатировано
которая создаётся только силами лобового сопротивления лопастей с учётом	
влияния сжимаемости воздуха ($M_{ m npo\phi} = M_{ m K} - M_{ m инд}$, где	
N ₁₁₁₁₇ π _n	
$M_{\rm ИНД} = \frac{N_{\rm ИНД}}{\varpi_{\rm HB}}; \omega_{\rm HB} = \frac{\pi n_{\rm HB}}{30} - \underline{\text{угловая скорость вращения HB), при этом}}$	
110	Ozdonyazynonau
$N_{\text{проф}} = M_{\text{проф}} \omega_{\text{HB}}$	Отформатировано
Крутящий момент несущего винта определяется формулой:	
$k_{_{ m II}}$	
$M_{\mathbf{K}} = r_{\mathbf{Q}} \sum_{i=1}^{n} Q_{\Pi i},$	
ι – 1	
<u>где r_0 — расстояние от центра втулки НВ до точки приложения равнодействующей</u>	
аэродинамической силы лопасти, принимается $r_{Q}=0.7R_{\text{HB}}$;	
$R_{\rm HB} = \frac{D_{\rm HB}}{2}$ - расстояние от центра втулки НВ до периферии лопасти;	Отформатировано
-	<i>'</i>
$Q_{\underline{n}i}$ — сопротивление вращению i — ой лопасти HB; $\kappa_{\underline{n}}$ — количество лопастей HB.	
Сопротивление вращению лопасти на расстоянии $r_{\underline{O}}$ находится по формуле:	(-
Сопротивление вращению лопасти на расстоянии $r_{\underline{O}}$ находится по формуле:	Отформатировано
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_{\rm J} = \frac{1}{2} \rho_{\rm H} b_{\rm HB} U_{\rm X} (c_{\rm X} U_{\rm X} - c_{\rm y} U_{\rm y}) r_Q,$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_{\rm J} = \frac{1}{2} \rho_{\rm H} b_{\rm HB} U_{\rm X} (c_{\rm X} U_{\rm X} - c_{\rm y} U_{\rm y}) r_Q,$	Отформатировано
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_{\rm J} = \frac{1}{2} \rho_{\rm H} b_{\rm HB} U_{\rm X} (c_{\rm X} U_{\rm X} - c_{\rm y} U_{\rm y}) r_Q,$ $c_{\rm JE} b_{\rm HB} - {\rm xop}_{\rm JB} \ {\rm Jonacoth} \ {\rm B} \ {\rm Johnson} \ {\rm J$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_{\rm J} = \frac{1}{2} \rho_{\rm H} b_{\rm HB} U_{\rm X} (c_{\rm X} U_{\rm X} - c_{\rm y} U_{\rm y}) r_Q,$ $c_{\rm JE} b_{\rm HB} - {\rm xop}_{\rm JB} \ {\rm Jonacoth} \ b_{\rm JB} = \frac{D_{\rm HB}}{3650};$ $c_{\rm JE} b_{\rm HB} - {\rm xop}_{\rm JB} \ {\rm Jonacoth} \ b_{\rm JB} = \frac{D_{\rm HB}}{3650};$ $c_{\rm JE} - {\rm rop}_{\rm JB} \ {\rm Jonacoth} \ b_{\rm JE} = \frac{D_{\rm JB}}{3650};$ $c_{\rm JE} - {\rm rop}_{\rm JB} \ {\rm Jonacoth} \ b_{\rm JE} = \frac{D_{\rm JB}}{3650};$ $c_{\rm JE} - {\rm rop}_{\rm JB} \ {\rm Jonacoth} \ b_{\rm JE} = \frac{D_{\rm JB}}{3650};$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_{\rm J} = \frac{1}{2} \rho_{\rm H} b_{\rm HB} U_{\rm X} (c_{\rm X} U_{\rm X} - c_{\rm y} U_{\rm y}) r_Q,$ $c_{\rm JE} b_{\rm HB} - {\rm xop}_{\rm JB} \ {\rm Jonactu} \ {\rm B} \ {\rm Jahhom} \ {\rm cevehuu} \ {\rm принимается} \ {\rm pashoй} \ b_{\rm HB} = \frac{D_{\rm HB}}{3650} \frac{1}{2}.$ $U_{\rm X} - {\rm ropu}_{\rm JSOHT} \ {\rm Jonactu} \ {\rm HB} \ {\rm Jonactu} \ {\rm J$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_{\rm Л} = \frac{1}{2} \rho_{\rm H} b_{\rm HB} U_{\rm X} (c_{\rm X} U_{\rm X} - c_{\rm y} U_{\rm y}) r_Q,$ $r_{\rm ДE} b_{\rm HB} - \text{хорда лопасти в данном сечении принимается равной } b_{\rm HB} = \frac{D_{\rm HB}}{3650};$ $U_{\rm X} - \text{горизонтальная нормальная составляющая скорости обтекания сечения попасти, направлена перпендикулярно к оси лопасти и расположена в плоскости, параллельной плоскости её вращения (рис.2.6.). В общем случае величина U_{\rm X} равна$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_\Pi = \frac{1}{2} \rho_H b_{HB} U_X (c_X U_X - c_y U_y) r_Q,$ где b_{HB} — хорда лопасти в данном сечении принимается равной $b_{HB} = \frac{D_{HB}}{3650}$: $U_X - \text{горизонтальная нормальная составляющая скорости обтекания сечения попасти, направлена перпендикулярно к оси лопасти и расположена в плоскости, параллельной плоскости её вращения (рис.2.6.). В общем случае величина U_X равна сумме окружной скорости сечения \omega_{HB} r_Q и проекции скорости полёта вертолёта$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_{\rm Л} = \frac{1}{2} \rho_{\rm H} b_{\rm HB} U_{\rm X} (c_{\rm X} U_{\rm X} - c_{\rm y} U_{\rm y}) r_Q,$ $r_{\rm Д} = \frac{b_{\rm HB}}{2} - {\rm Xорда} \ {\rm Лопасти} \ {\rm B} \ {\rm Данном} \ {\rm сечении} \ {\rm принимается} \ {\rm равной} \ b_{\rm HB} = \frac{D_{\rm HB}}{3650} :$ $U_{\rm X} - {\rm горизонтальная} \ {\rm нормальная} \ {\rm составляющая} \ {\rm скорости} \ {\rm обтекания} \ {\rm сечения}$ ${\rm Лопасти}, \ {\rm направлена} \ {\rm перпендикулярно} \ {\rm K} \ {\rm оси} \ {\rm Лопасти} \ {\rm U} \ {\rm расположена} \ {\rm B} \ {\rm плоскости},$ ${\rm параллельной} \ {\rm плоскости} \ {\rm её} \ {\rm вращения} \ ({\rm рис.2.6.}). \ {\rm B} \ {\rm общем} \ {\rm случае} \ {\rm величина} \ U_{\rm X} \ {\rm равна}$ ${\rm сумме} \ {\rm окружной} \ {\rm скорости} \ {\rm сечения} \ \omega_{\rm HB} \ r_Q \ {\rm u} \ {\rm проекции} \ {\rm скорости} \ {\rm полёта} \ {\rm вертолёта}$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_\Pi = \frac{1}{2} \rho_H b_{HB} U_X (c_X U_X - c_y U_y) r_Q,$ где b_{HB} — хорда лопасти в данном сечении принимается равной $b_{HB} = \frac{D_{HB}}{3650}$. U_X — горизонтальная нормальная составляющая скорости обтекания сечения попасти, направлена перпендикулярно к оси лопасти и расположена в плоскости, параллельной плоскости её вращения (рис.2.6.). В общем случае величина U_X равна сумме окружной скорости сечения $\omega_{HB} r_Q$ и проекции скорости полёта вертолёта V соз $\alpha_{HB} \sin \psi_{\Pi}$ (см. рис.2.6a): $U_X = \omega_{HB} r_Q + V \cos \alpha_{HB} \sin \psi_{\Pi}$	
Сопротивление вращению лопасти на расстоянии r_Q находится по формуле: $Q_\Pi = \frac{1}{2} \rho_H b_{HB} U_X (c_X U_X - c_y U_y) r_Q$, где b_{HB} — хорда лопасти в данном сечении принимается равной $b_{HB} = \frac{D_{HB}}{3650}$; U_X — горизонтальная нормальная составляющая скорости обтекания сечения попасти, направлена перпендикулярно к оси лопасти и расположена в плоскости, параллельной плоскости её вращения (рис.2.6.). В общем случае величина U_X равна сумме окружной скорости сечения $\omega_{HB} r_Q$ и проекции скорости полёта вертолёта $V \cos \alpha_{HB} \sin \psi_{\Pi}$ (см. рис.2.6a): $U_X = \omega_{HB} r_Q + V \cos \alpha_{HB} \sin \psi_{\Pi}$	

Рис. 2.6. Основные кинематические параметры движения лопасти несущего винта и элементарные аэродинамические силы: $U_x = \omega_r + V \cos \alpha_{\text{нв}} \sin \psi_{\pi}$ - горизонтальная составляющая скорости обтекания профиля Отформатировано лопасти; $U_{\rm V}$ — вертикальная составляющая скорости обтекания профиля лопасти; Отформатировано $U_z = V cos \alpha_{\rm HB} cos \psi_{\rm II}$ — горизонтальная тангенциальная составляющая скорости обтекания лопасти; ψ_{π} — азимутальный угол между продольной осью лопасти и проекцией вектора скорости полёта на плоскость вращения несущего винта; $\alpha_{\rm HB}$ — угол атаки между вектором скорости полёта и конструктивной плоскостью вращения несущего винта; β_n - угол взмаха между конструктивной плоскостью вращения несущего винта и продольной осью лопасти; Отформатировано Отформатировано α - угол атаки в сечении лопасти; dY - элементарная подъёмная сила; dX - элементарная сила лобового сопротивления; $dT = dY cos \Phi + dX sin \Phi$ – элементарная тяга в сечении лопасти; $dQ = dX cos \Phi - dY sin \Phi - сила сопротивления вращению лопасти$ Отформатировано ψ_{π} — азимутальный угол. В расчётах принимается для наступающей лопасти, то есть ψ_{π} =90°.

 $U_{\rm y}$ — вертикальная составляющая скорости обтекания лопасти направлена перпендикулярно к оси лопасти и расположена в плоскости её взмаха (см. рис.2.6). Величина $U_{\rm y}$ включает:

проекцию скорости полёта вертолёта $V \sin \alpha_{HB}$ и индуктивной скорости $v_{\text{инд}}$ определяющих скорость протекания воздушного потока через винта $V \sin \alpha_{HB} - v_{\text{инд}}$;

окружную скорость махового движения $r_Q \frac{d\beta_{\pi}}{d\tau}$, где β_{π} – угол взмаха (рис.2.7),

определяет угловое перемещение лопасти в горизонтальном шарнире относительно конструктивной плоскости вращения и считается положительным при отклонении

Рис.2.7. Зависимость угла и угловой скорости взмаха от азимутального положения лопасти

лопасти вверх от этой плоскости и отрицательным при отклонении лопасти вниз.

Для наступающей лопасти при азимутальном угле ψ_{π} =90° принимаем β_{π} =4.7°.

$$\frac{d\beta_{\Pi}}{d\tau}$$
 - угловая скорость взмаха, при ψ_{Π} =90° принимаем $\frac{d\beta_{\Pi}}{d\tau}$ = 53.3 $\frac{\text{град}}{\text{с}}$

проекцию составляющей скорости полёта вертолета $V\cos\alpha_{\mathrm{HB}}$ на плоскость,

перпендикулярную оси машущей лопасти $V\cos\alpha_{HB}\cos\psi_{\Pi} tg\,\beta_{\Pi}$.

Таким образом

$$U_{\rm y} = V \sin \alpha_{\rm HB} - v_{\rm ИНД} - r_Q \frac{d\beta_{\rm J}}{d\tau} - V \cos \alpha_{\rm HB} \cos \psi_{\rm J} tg \beta_{\rm J}$$

Горизонтальная тангенциальная составляющая скорости обтекания сечения попасти $U_z = V \cos \alpha_{\rm HB} \cos \psi_{\rm L}$ направлена вдоль лопасти и в обычных полётных условиях слабо влияет на её аэродинамику в дальнейшем не учитывается.

Отформатировано

 c_{x} — коэффициент сопротивления сечения лопасти находится по формуле:

$$c_{\rm X} = 0.0007\alpha^2 - 0.0043\alpha + 0.0135$$

где α - угол атаки в сечении лопасти (см. рис.2.6)

$$\alpha = \varphi_{ ext{yct}} + \operatorname{arctg} \frac{U_{ ext{y}}}{U_{ ext{x}}} : \underline{\varphi_{ ext{yct}} pprox \varphi_{ ext{out}}}$$
 (принимается, что угол установки лопасти равен углу

общего шага всей лопасти).

Отформатировано

 c_y — коэффициент подъёмной силы в данном сечении лопасти находится по формуле:

$$c_{\rm V} = -460c_{\rm X}^2 + 48.4c_{\rm X} - 0.202$$

Отформатировано

Таким образом крутящий момент сопротивления вращению лопасти зависит в основном от углов обшего шага $\phi_{\text{ош}}$ и атаки $\alpha_{\text{нв}}$ несущего винта, скорости полёта вертолёта. Значение M_{κ} пропорционально плотности воздуха $\rho_{\rm H}$ и квадрату частоты вращения $HB n^2_{HB}$. При постоянном значении скорости полёта увеличение общего шага вызывает рост крутящего момента во всём эксплуатационном диапазоне углов атаки НВ, тогда как увеличение углов атаки приводит, наоборот, к резкому уменьшению крутящего момента во всём диапазоне углов общего шага НВ. Физически это объясняется тем, что при увеличении угла установки лопастей непосредственно увеличивается сопротивление вращению НВ, а при увеличении угла атаки винт всё в большей мере получает энергию от набегающего снизу встречного воздушного потока, так что при достаточно больших значениях $\alpha_{\text{\tiny HB}}$ он вообще может перейти на режим самовращения, когда $M_{\rm k}$ =0, и даже на режим ветряка, когда $M_{\rm K}$ <0. Поэтому увеличение скорости при нулевых и положительных углах $\alpha_{\rm HB}$ также существенно уменьшает M_{κ} , а при $\alpha_{\rm HB} < 0$ влияет на M_{κ} слабо. Уменьшение крутящего момента наблюдается и при больших отрицательных углах атаки НВ "

Отформатировано

Имея ввиду эксплуатационный диапазон углов общего шага НВ $\phi_{\text{ош}} \approx 1...14^{\circ}$ и полёт вертолёта при средних значениях угла атаки НВ $\alpha_{\text{нв}} \approx 2...4^{\circ}$ производим расчёты крутящего момента M_{κ} .

Отформатировано

Мощность движения $N_{\text{движ}}$ определяется как произведение силы лобового сопротивления корпуса $X_{\text{корп.}}$ на скорость полёта вертолёта

$$N_{\text{ДВИЖ}} = X_{\text{КОРП}}V$$

Отформатировано

и представляет собой секундную работу по перемешению вертолёта на рассстояние V под действием силы, равной силе лобового сопротивления X_{κ} . Величина X_{κ} находится по формуле:

$$X_{\text{КОРП}} = \frac{1}{2}c_{\text{X}\Sigma}\rho_{\text{H}}V^2F_{\text{HB}},$$

Отформатировано

<u>где</u> $c_{x\Sigma}$ - коэффициент лобового сопротивления корпуса (втулка винта, шасси, фюзеляж и другие ненесущие элементы) (рис.2.8). В расчётах принимаем нулевой угол атаки фюзеляжа, то есть ϕ_{ϕ} =0.

При выполнении расчётов принимаются следующие основные данные несущего винта вертолета:

- 1. Относительная толщина профиля лопастей НВ $\overline{c} = \frac{c_{max}}{b} \cdot 100 \%$; $\overline{c} = 8...20 \%$.

 2. Вогнутость (стрела прогиба) лопасти $\overline{f} = \frac{f_{max}}{b} \cdot 100 \%$; $\overline{f} = 3...5 \%$.
- 3. Количество лопастей 3...8 шт.
- <u>4. Удлинение лопасти</u> $\frac{R_{\text{HB}}}{h} = 18...25$.
- 5. Допускаемое число Маха по окружной скорости по концам лопастей

$$M_{\rm O} = \frac{U_{\rm HB}}{\sqrt{kRT_{\rm H}}} = \frac{2\pi n_{\rm HB}}{60\sqrt{kRT_{\rm H}}} = 0.5...0.7.$$

- 6. Окружная скорость вращения концов лопастей НВ U_{HR} =180...220 м/с. 7. Диаметр несущего винта (таблица 2.4): D_{HB} =15...25 м.

Рис. 2.8. Зависимость коэффициентов подъёмной силы и лобового сопротивления от угла атаки фюзеляжа:

1 – втулка НВ; 2 – шасси; 3 – ненесущие элементы; 4 - фюзеляж

Выбор диаметра несущего винта вертолёта

1. На режиме висения с использованием формулы:

Отформатировано

Отформатировано
Отформатировано
Отформатировано
Отформатировано

Отформатировано

$$G_{\rm O} = (N_{\rm e}\xi_N\eta_{\rm O}\sqrt{2\rho_{\rm H}F_{\rm HB}\chi})^{2/3} = (N_{\rm e}\cdot10^3\cdot0.82\cdot0.65\sqrt{2\frac{101325}{287\cdot288.15}\cdot\frac{3.14D_{\rm HB}^2}{4}\cdot0.95})^{\frac{2}{3}} = (N_{\rm e}\xi_N\eta_{\rm O}\sqrt{2\rho_{\rm H}F_{\rm HB}\chi})^{2/3} = (N_{\rm e}\cdot10^3\cdot0.82\cdot0.65\sqrt{2\frac{101325}{287\cdot288.15}\cdot\frac{3.14D_{\rm HB}^2}{4}\cdot0.95})^{\frac{2}{3}} = (N_{\rm e}\xi_N\eta_{\rm O}\sqrt{2\rho_{\rm H}F_{\rm HB}\chi})^{2/3} = (N_{\rm e}\cdot10^3\cdot0.82\cdot0.65\sqrt{2\frac{101325}{287\cdot288.15}\cdot\frac{3.14D_{\rm HB}^2}{4}\cdot0.95})^{\frac{2}{3}} = (N_{\rm e}\cdot10^3\cdot0.82\cdot0.65\sqrt{2\frac{101325}{287\cdot288.15}\cdot\frac{3.14D_{\rm HB}^2}{4}\cdot0.95})^{\frac{2}{3}}$$

$$=82.839(N_{\rm e}D_{\rm HB})^{\frac{2}{3}}, H$$

Мощность силовой установки вертолета $N_{\rm e}$ в кВт, диаметр несущего винта $D_{\rm hb}$ в

метрах, взлётный вес вертолёта G_0 в ньютонах.

Merpax, B	метрах, взлетный вес вертолета O_0 в ньютонах.										
$D_{\text{нв}} = 15 \text{ м}$	$N_{\rm e}$, $\kappa \rm Br$	<u>500</u>	<u>1000</u>	<u>1500</u>	<u>2000</u>	<u>2500</u>					
	<u>Go, H</u>	<u>31740</u>	<u>50384</u>	<u>66022</u>	<u>79980</u>	<u>92808</u>					
	$N_{\rm e}$, $\kappa \rm BT$	<u>3000</u>	<u>3500</u>	<u>4000</u>	<u>4500</u>	<u>5000</u>					
	G_0 , H	<u>104803</u>	<u>116147</u>	<u>126960</u>	<u>137331</u>	<u>147324</u>					
$D_{\text{нв}} = 20 \text{ м}$	$N_{\rm e}$, $\kappa \rm BT$	<u>500</u>	<u>1000</u>	<u>1500</u>	<u>2000</u>	<u>2500</u>					
	G_0 , H	<u>38450</u>	<u>61036</u>	<u>79980</u>	<u>96889</u>	<u>112429</u>					
	$N_{\rm e}$,кВт	<u>3000</u>	<u>3500</u>	<u>4000</u>	<u>4500</u>	<u>5000</u>					
	<u>G_o, H</u>	<u>126960</u>	140702	<u>153801</u>	<u>166365</u>	<u>178471</u>					
$D_{\text{нв}} = 25 \text{ м}$	$N_{\rm e}$,к $B_{\rm T}$	<u>500</u>	<u>1000</u>	<u>1500</u>	<u>2000</u>	<u>2500</u>					
	G_0 , H	<u>44618</u>	<u>70826</u>	92808	112429	<u>130463</u>					
	$N_{\rm e}$, $\kappa \rm BT$	3000	<u>3500</u>	<u>4000</u>	<u>4500</u>	<u>5000</u>					
	G_0 , H	147324	<u>163270</u>	<u>178471</u>	<u>193050</u>	207097					

2. Обработка статистической информации в работе [5].

$$G_o = 8.9 \cdot 10^{-5} N_e^2 + 31.518 N_e + 5037;$$

$$D_{\rm HB} = -1.8 \cdot 10^{-7} N_{\rm e}^2 + 3.355 \cdot 10^{-3} N_{\rm e} + 8.192$$

$N_{\rm e}$, $\kappa {\rm BT}$	<u>500</u>	<u>1000</u>	<u>1500</u>	<u>2000</u>	<u>2500</u>	<u>3000</u>	<u>3500</u>	<u>4000</u>	<u>4500</u>	<u>5000</u>		
<u>G_o, H</u>	<u>20818</u>	<u>36644</u>	<u>52514</u>	<u>68429</u>	<u>84388</u>	<u>100393</u>	<u>116440</u>	<u>132533</u>	<u>148670</u>	<u>164852</u>		
$\underline{D}_{\text{HB}}, \underline{M}$	<u>9.824</u>	<u>11.367</u>	12.819	<u>14.192</u>	<u>15.454</u>	<u>18.314</u>	<u>17.729</u>	<u>18.732</u>	<u>19.644</u>	<u>30.291</u>		Отформатировано

<u>Находим силу тяги несущего винта в условиях взлёта при стандартных атмосферных условиях ($p_{\rm H}$ =101325 Па, $T_{\rm H}$ =288.15 К):</u>

$$T = (N_{\rm e}\xi_N\eta_{\rm O}\sqrt{2\rho_{\rm H}F_{\rm HB}\chi})^{2/3} = (1875 \cdot 10^3 \cdot 0.82 \cdot 0.65\sqrt{2\frac{101325}{287 \cdot 288.15} \cdot 314 \cdot 0.95})^{\frac{2}{3}} =$$

$$= 142935 H,$$

$$\underline{\text{где}}\ F_{\text{HB}} = \frac{\pi D_{\text{HB}}^2}{4} = \frac{3.14 \cdot 20 \cdot 20}{4} = 314\ \text{м}^2$$
 - ометаемая площадь несущего винта;

 $\underline{D_{\text{нв}}}$ =20 м — диаметр несущего винта, находится по значению $N_{\underline{e}}$ =1875 кВт из таблицы 2.4.

 ξ_N =0.82 – коэффициент использования мощности силовой турбины на режиме висения; ξ_N =0.86 – то же в горизонтальном полёте; η_o =0.65 – коэффициент полезного действия несущего винта на режиме висения; $\rho_{\rm H}$ – плотность наружного воздуха находится из уравнения состояния для идеального газа;

_-

<u> х=0.95 – коэффициент использования ометаемой площади несущего винта</u>

Таким образом, взлётная масса вертолёта равна:

$$m_{\rm O} = \frac{T}{g} = \frac{142935}{9.81} = 14570 \,\mathrm{KF}$$

Принимаем окружную скорость концов лопастей несущего винта $U_{\text{\tiny HB}}$ =200 м/с.

Угловая скорость вращения винта равна
$$\omega_{\rm HB} = \frac{2U_{\rm HB}}{D_{\rm HB}} = \frac{2\cdot 200}{20} = 20$$
 рад/с . Крутящий

момент несущего винта на режиме висения равен:

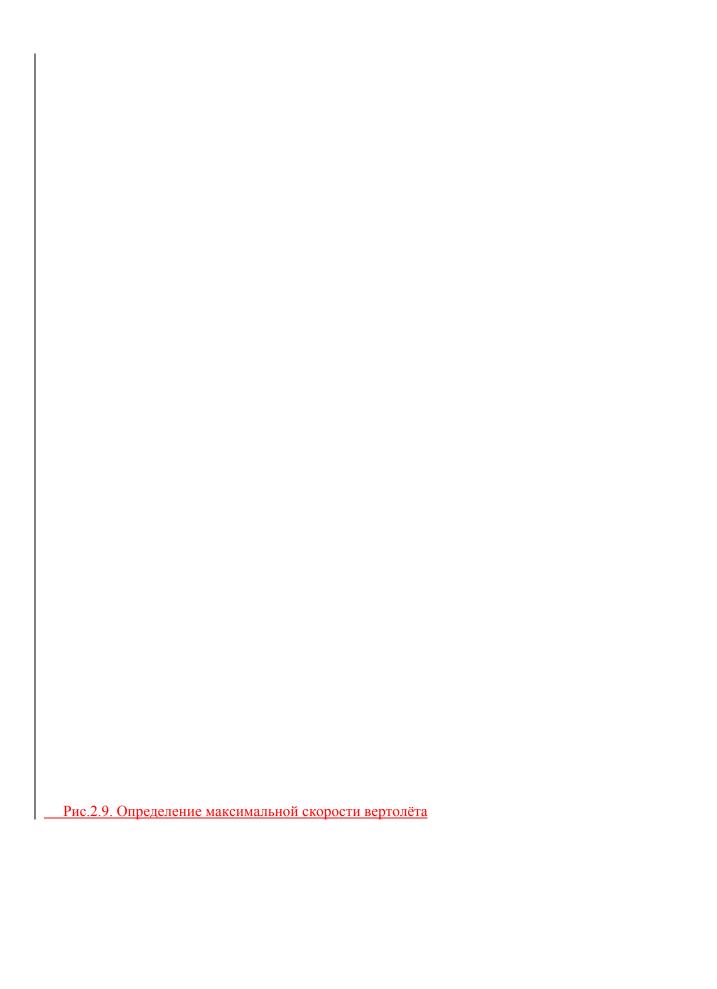
$$M_{\text{KO}} = \frac{N_{\text{e}}\xi_{N}}{\omega_{\text{HB}}} = \frac{1875 \cdot 10^{3} \cdot 0.82}{20} = 76875 \text{ Hm}.$$

Угол установки лопасти несущего винта $\phi_{\text{ош}}=8^{\circ}$, угол атаки несущего винта $\alpha_{\text{нв}}=2^{\circ}$.

Отформатировано

Отформатировано

Порядок и результаты расчёта потребной мощности вертолёта приведены в таблице 2.5. Величина располагаемой мощности двигателя N_e = N_{rc} определалась по алгоритму, представленному в таблице 2.3.


Таблица 2.5

	Определение максимальной скорости полёта вертолёта									
<u>No</u>	Наименование параметра,	<u>V,</u>	Выс	ота полёта.	<u>KM</u>					
Π/Π	расчётная формула	<u>км/ч</u>	0.5	1.0	2	<u>4</u>	_5			
<u>1</u>	2	<u>3</u>	<u>4</u>	5	<u>6</u>	7	_8			
	Индуктивная мощность	<u>100</u>	<u>1004</u>	<u>1055</u>	<u>1167</u>	<u>1438</u>	<u>1603</u>			
	T^2	<u>150</u>	<u>669</u>	<u>703</u>	<u>778</u>	<u>959</u>	<u>1069</u>			
	$N_{\text{ИНД}} = \frac{1}{n}, \kappa B m$	<u>200</u>	<u>502</u>	<u>527</u>	<u>583</u>	<u>719</u>	<u>802</u>			
<u>1</u>	$2\frac{p_{\rm H}}{p_{\rm H}}F_{\rm HB}V$	<u>250</u>	<u>402</u>	<u>422</u>	<u>467</u>	<u>575</u>	<u>641</u>			
	$N_{\text{ИНД}} = \frac{T^2}{2\frac{p_{\text{H}}}{RT_{\text{H}}}F_{\text{HB}}V}, \kappa Bm$	<u>300</u>	<u>335</u>	<u>352</u>	<u>389</u>	<u>479</u>	<u>534</u>			
		<u>350</u>	<u>287</u>	<u>301</u>	<u>333</u>	<u>411</u>	<u>458</u>			
	Индуктивный момент	<u>100</u>	<u>50195</u>	<u>52746</u>	<u>58345</u>	<u>71916</u>	<u>80156</u>			
	N 3	<u>150</u>	<u>33463</u>	<u>35164</u>	<u>38897</u>	<u>47944</u>	<u>53437</u>			
	$M_{\rm ИНЛ} = \frac{{}^{\rm ИНД}}{10^{3}} \cdot 10^{3}$, HM	<u>200</u>	<u>25097</u>	<u>26383</u>	<u>29173</u>	<u>35958</u>	<u>40078</u>			
2	$M{\rm ИНД} = \frac{N_{\rm ИНД}}{\omega_{\rm HB}} \cdot 10^3, \rm HM$	<u>250</u>	<u>20078</u>	<u>21098</u>	<u>23338</u>	<u>28766</u>	<u>32062</u>			
		<u>300</u>	<u>16732</u>	<u>17582</u>	<u>19448</u>	<u>23972</u>	<u>26719</u>			
		<u>350</u>	<u>14341</u>	<u>15070</u>	<u>16670</u>	<u>20547</u>	<u>22902</u>			
	Индуктивная скорость	<u>100</u>	<u>7.0</u>	<u>7.4</u>	<u>8.2</u>	<u>10.1</u>	<u>11.2</u>			
	$N_{\rm HHI}$.	<u>150</u>	<u>4.7</u>	<u>4.9</u>	<u>5.4</u>	<u>6.7</u>	<u>7.5</u>			
	$v_{\text{ИНЛ}} = \frac{M}{C}, \frac{M}{C}$	<u>200</u>	<u>3.5</u>	<u>3.7</u>	<u>4.1</u>	<u>5.0</u>	<u>5.6</u>			
3	$v{\text{ИНД}} = \frac{N_{\text{ИНД}}}{G_{\text{O}}}, \frac{\text{M}}{\text{c}}$	<u>250</u>	<u>2.8</u>	<u>3.0</u>	<u>3.3</u>	<u>4.0</u>	<u>4.5</u>			
		<u>300</u>	<u>2.3</u>	<u>2.5</u>	<u>2.7</u>	<u>3.4</u>	<u>3.7</u>			
		<u>350</u>	<u>2.0</u>	<u>2.1</u>	<u>2.3</u>	<u>2.9</u>	<u>3.2</u>			

	Продолжение табл.2.5									
1	2	3	4	5	<u>6</u>	<u>7</u>	8			
	Горизонтальная нормальная	<u>100</u>	<u>168</u>	<u>168</u>	<u>168</u>	<u>168</u>	<u>168</u>			
	составляющая скорости	<u>150</u>	<u>182</u>	<u>182</u>	<u>182</u>	<u>182</u>	<u>182</u>			
	обтекания лопасти	<u>200</u>	<u>196</u>	<u>196</u>	<u>196</u>	<u>196</u>	<u>196</u>			
<u>4</u>	$U_{\mathbf{X}} = \omega_{\mathbf{HB}} r_{\mathbf{Q}} +$	<u>250</u>	209	209	209	209	209			
	A HB Q	<u>300</u>	<u>223</u>	<u>223</u>	223	<u>223</u>	<u>223</u>			
	$\pm V\cos\alpha = \sin \alpha = \frac{M}{2}$	<u>350</u>	<u>237</u>	237	<u>237</u>	237	<u>237</u>			
	$+V\cos\alpha_{\rm HB}\sin\psi_{\rm II},\frac{\rm M}{\rm c}$									
	Вертикальная составляющая	<u>100</u>	<u>-12.6</u>	-12.9	<u>-13.7</u>	<u>-15.6</u>	<u>-16.8</u>			
	скорости обтекания лопасти	<u>150</u>	<u>-9.7</u>	-10.0	-10.5	<u>-11.8</u>	-12.5			
	$U_y = V \sin \alpha_{\rm HB} - v_{\rm ИНД} -$	<u>200</u>	<u>-8.1</u>	<u>-8.3</u>	<u>-8.7</u>	<u>-9.6</u>	<u>-10.2</u>			
5	у , энг жив , инд	250	-6.9	<u>-7.0</u>	<u>-7.4</u>	<u>-8.1</u>	<u>-8.6</u>			
	$d\beta_{\pi}$	300	-5.9	-6.1	-6.3	<u>-7.0</u>	<u>-7.3</u>			
	$-r_Q \frac{d\beta_{II}}{d\tau}$	350	-5.1	-5.2	-5.5	-6.0	-6.3			
	$\sim at$									
	$-V\cos\alpha_{\rm HB}\cos\psi t_{\rm \Pi}g\beta_{\rm \Pi},\frac{\rm M}{c}$									
	, соз «нв соз федерд, с									
	Угол атаки в сечении лопасти	<u>100</u>	<u>7.9</u>	<u>3.6</u>	<u>3.3</u>	<u>2.7</u>	<u>2.3</u>			
	$U_{\mathbf{v}}$	<u>150</u>	<u>7.9</u>	<u>4.9</u>	<u>4.7</u>	<u>4.3</u>	<u>4.1</u>			
	$\alpha = \varphi_{\text{OIII}} + arctg \frac{U_{\text{y}}}{U_{\text{x}}}$,град	<u>200</u>	<u>8.0</u>	<u>5.6</u>	<u>5.5</u>	<u>5.2</u>	<u>5.0</u>			
<u>6</u>	$U_{\mathbf{x}}$	<u>250</u>	<u>8.0</u>	<u>6.1</u>	<u>6.0</u>	<u>5.8</u>	<u>5.7</u>			
		<u>300</u>	<u>8.0</u>	<u>6.4</u>	<u>6.4</u>	<u>6.2</u>	<u>6.1</u>			
		<u>350</u>	<u>8.0</u>	<u>6.7</u>	<u>6.7</u>	<u>6.6</u>	<u>6.5</u>			
	Коэффициент лобового	<u>100</u>	0.023	0.007	0.007	0.007	0.007			
	сопротивления профиля лопасти	<u>150</u>	0.024	0.009	0.009	0.008	0.018			
	несущего винта	<u>200</u>	0.024	<u>0.011</u>	<u>0.011</u>	0.010	<u>0.010</u>			
7	$c_{\mathbf{X}} = c_{\mathbf{X}}(\alpha)$	<u>250</u>	0.024	<u>0.013</u>	0.013	0.012	<u>0.012</u>			
	A A	<u>300</u>	0.024	<u>0.015</u>	0.015	0.014	0.013			
		<u>350</u>	0.024	<u>0.016</u>	0.016	0.015	<u>0.015</u>			
	Коэффициент подъёмной силы	<u>100</u>	<u>0.678</u>	<u>0.117</u>	<u>0.11</u>	<u>0.114</u>	<u>0.127</u>			
	профиля лопасти несущего винта	<u>150</u>	<u>0.681</u>	<u>0.201</u>	<u>0.185</u>	<u>0.153</u>	<u>0.137</u>			
	$c_{\mathbf{y}} = c_{\mathbf{y}}(c_{\mathbf{x}})$	<u>200</u>	0.684	<u>0.286</u>	0.271	0.237	<u>0.218</u>			
_8	<i>y</i> × × × ×	<u>250</u>	0.685	0.356	0.343	0.313	0.296			
		<u>300</u>	0.686	<u>0.415</u>	0.404	0.378	0.363			
		<u>350</u>	0.687	0.464	0.455	0.433	0.419			
	Сила сопротивления вращению	<u>100</u>	<u>4259</u>	<u>882</u>	<u>793</u>	<u>705</u>	<u>720</u>			
	лопасти несушего винта	<u>150</u>	<u>4046</u>	<u>1291</u>	<u>1125</u>	<u>838</u>	<u>719</u>			
	$p_{\rm H}$	<u>200</u>	<u>4050</u>	<u>1735</u>	<u>1536</u>	<u>1179</u>	<u>1020</u>			
9	$Q_{\mathrm{J}} = \frac{1}{2} \frac{p_{\mathrm{H}}}{RT_{\mathrm{H}}} b_{\mathrm{HB}} U_{\mathrm{X}} (c_{\mathrm{X}} U_{\mathrm{X}} -$	<u>250</u>	<u>4140</u>	<u>2145</u>	<u>1918</u>	<u>1510</u>	<u>1327</u>			
	Z MI _H	<u>300</u>	<u>4275</u>	<u>2530</u>	<u>2275</u>	<u>1818</u>	<u>1613</u>			
	$-c_{\mathbf{y}}U_{\mathbf{y}})r_{\mathbf{Q}},\mathbf{H}$	<u>350</u>	<u>4434</u>	<u>2899</u>	<u>2615</u>	<u>2108</u>	<u>1882</u>			
i	J J Z Z									
	Момонт оонножит точна произ	100	140006	20002	27750	24702	25226			
	Момент сопротивления враще-	100 150	149096 141631	<u>30882</u>	<u>27759</u> 39400	24702 29353	<u>25226</u>			
	нию лопасти (крутящий момент несущего винта)	<u>150</u>		45203			<u>25179</u>			
10		<u>200</u>	141749	<u>60738</u>	53768	41275	<u>35724</u>			
10	$M_{\mathbf{K}} = k_{\mathbf{\Pi}} Q_{\mathbf{\Pi}} r_{\mathbf{Q}}, \mathbf{H} \mathbf{M}$	<u>250</u>	144923	75092	67143	52850	46447			
	_	<u>300</u>	149629	88563	79644	63633	<u>56467</u>			
<u> </u>		<u>350</u>	<u>155212</u>	<u>101467</u>	<u>91557</u>	<u>73807</u>	<u>65883</u>			

					Продоля	кение таб	<u>5л.2.5</u>
1	2	3	<u>4</u>	5	<u>6</u>		_8
	Профильная мощность	<u>100</u>	<u>1978</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
	$N_{\Pi po \oplus} = (M_{K} -$	<u>150</u>	<u>2163</u>	<u>201</u>	<u>10</u>	<u>0</u>	<u>0</u>
	* *	<u>200</u>	<u>2333</u>	<u>687</u>	<u>492</u>	<u>106</u>	<u>0</u>
<u>11</u>	$-M_{\rm ИНЛ})\omega_{\rm HB}\cdot 10^{-3}$, кВт	<u>250</u>	<u>2497</u>	<u>1080</u>	<u>876</u>	<u>482</u>	<u>288</u>
	$M_{\rm ИНД}/\omega_{\rm HB}$ 10 ,кы	<u>300</u>	<u>2658</u>	<u>1420</u>	<u>1204</u>	<u>793</u>	<u>595</u>
		<u>350</u>	<u>2817</u>	<u>1728</u>	<u>1498</u>	<u>1065</u>	<u>860</u>
	Мощность движения	<u>100</u>	<u>39</u>	<u>37</u>	<u>34</u>	<u>27</u>	<u>25</u>
	p_{H}	<u>150</u>	<u>132</u>	<u>126</u>	<u>114</u>	<u>92</u>	<u>83</u>
	$N_{\text{ДВИЖ}} = \frac{1}{2}c_{XK}\frac{P_{H}}{RT_{H}}$.	<u>200</u>	<u>314</u>	<u>299</u>	<u>270</u>	<u>219</u>	<u>197</u>
<u>12</u>	$Z = KI_{\rm H}$	<u>250</u>	<u>613</u>	<u>584</u>	<u>528</u>	<u>428</u>	<u>384</u>
	$V^3 F_{\rm HB} \cdot 10^{-3}$, $\kappa B_{\rm T}$	<u>300</u>	<u>1060</u>	<u>1009</u>	<u>912</u>	<u>740</u>	<u>664</u>
	$P_{\text{HB}} = 10$, KBT	<u>350</u>	<u>1683</u>	<u>1602</u>	<u>1448</u>	<u>1175</u>	<u>1054</u>
	Потребная мощность для	<u>100</u>	<u>3021</u>	<u>1092</u>	<u>1201</u>	<u>1466</u>	<u>1628</u>
	вращения несущего винта	<u>150</u>	<u>2965</u>	<u>1030</u>	<u>902</u>	<u>1051</u>	<u>1152</u>
<u>13</u>	$N_{\Pi \text{OTP}} = N_{\text{ИНД}} +$	<u>200</u>	<u>3149</u>	<u>1514</u>	<u>1346</u>	<u>1045</u>	<u>998</u>
	1	<u>250</u>	<u>3512</u>	<u>2086</u>	<u>1871</u>	<u>1485</u>	<u>1313</u>
	$+N_{\Pi m po \dot \phi} + N_{ m ДВИЖ}$, к $ m B au$	<u>300</u>	<u>4053</u>	<u>2780</u>	<u>2505</u>	<u>2012</u>	<u>1793</u>
	1 1	<u>350</u>	<u>4787</u>	<u>3631</u>	<u>3279</u>	<u>2651</u>	<u>2372</u>
	Потребная мощность для	<u>100</u>	<u>1511</u>	<u>546</u>	<u>600</u>	<u>733</u>	<u>814</u>
	вращения несущего винта на	<u>150</u>	<u>1483</u>	<u>515</u>	<u>451</u>	<u>526</u>	<u>576</u>
<u>14</u>	один двигатель	<u>200</u>	<u>1575</u>	<u>757</u>	<u>673</u>	<u>522</u>	<u>499</u>
	$N_{\text{потр дв}} = \frac{1}{2} N_{\text{потр}}, \text{кВт}$	<u>250</u>	<u>1756</u>	<u>1043</u>	<u>935</u>	<u>743</u>	<u>657</u>
	1 потр дв $= 2^{1}$ потр, кв	<u>300</u>	<u>2026</u>	<u>1390</u>	<u>1252</u>	<u>1006</u>	<u>897</u>
		<u>350</u>	<u>2394</u>	<u>1816</u>	<u>1640</u>	<u>1325</u>	<u>1186</u>
	Располагаемая мощность одного	<u>100</u>	<u>1638</u>	<u>1593</u>	<u>1505</u>	<u>1337</u>	<u>1256</u>
	двигателя для вращения	<u>150</u>	<u>1641</u>	<u>1596</u>	<u>1508</u>	<u>1340</u>	<u>1259</u>
<u>15</u>	несущего винта	<u>200</u>	<u>1647</u>	<u>1602</u>	<u>1514</u>	<u>1344</u>	<u>1264</u>
	$N_{pacn\;ДB} = N_{TC} \xi_N$, к BT	<u>250</u>	<u>1656</u>	<u>1611</u>	<u>1522</u>	<u>1352</u>	<u>1270</u>
	F	<u>300</u>	<u>1668</u>	<u>1622</u>	<u>1533</u>	<u>1361</u>	<u>1279</u>
		<u>350</u>	<u>1682</u>	<u>1636</u>	<u>1546</u>	<u>1373</u>	<u>1290</u>

Для определения максимальной или минмальной путевой скорости вертолёта строятся графики потребной и располагаемой мощности в зависимости от скорости полёта (рис.2.9). Пересечение кривых означает равенство $N_{\text{потр}} = N_{\text{расп}}$, а значение скорости в этой точке даёт V_{max} ,

2.3. Вспомогательный ГТД.

Отформатировано

Высотно-скоростными характеристиками вспомогательных ГТД (рис.2.10) называют зависимости эквивалентной мощности $N_{\text{экв}}$ и удельного расхода $C_{\text{экв}}$ от высоты и скорости полёта при принятом законе управления двигателя.

Отформатировано

Эквивалентная мощность ВГТД складывается из мощности, затраченной на сжатие отбираемого воздуха $N_{\rm отб}$, и мощности, потребной для привода электрогенератора $N_{\rm пр \, reh}$:

$$N_{\rm 9KB} = N_{\rm OTG} + N_{\rm \Pi p \ \Gamma eH} = N_{\rm OTG} + \frac{N_{\rm \Gamma eH}}{\eta_{\rm \Gamma eH}\eta_{\rm peq}}, \label{eq:N_9KB}$$

Отформатировано

где $\eta_{\text{ред}}$ – коэффициент полезного действия редуктора – промежуточного элемента между валом турбокомпрессора и валом генератора; $\eta_{\text{ген}}$ – коэффициент полезного действия при преобразовании механической энергии в электрическую в генераторе; $N_{\text{ген}}$ – электрическая мощность на клеммах генератора.

Отформатировано

Имея в виду, что $N_{\text{отб}} = L_{\text{к}} G_{\text{отб}}$, где $L_{\text{к}}$ – удельная эффективная работа компрессора (механическая энергия, подводимая к валу ротора компрессора), а $G_{\text{отб}}$ – расход отбираемого воздуха, можно написать:

$$N_{
m 3KB} = L_{
m K} G_{
m OTO} + \frac{N_{
m reh}}{\eta_{
m reh} \eta_{
m peg}}$$

В связи с приводом электрогенератора переменного тока, требующего стабильной частоты вращения выводного вала ГТД, закон управления и программа регулирования двигателя представляется в виде: $n_{\text{физ}} = const$, $T_{\text{г}}^* = var$.

Для расчёта высотно-скоростных характеристик ВГТД задаются характеристики отдельных элементов двигателя:

а) входное устройство. Большинство современных ВГТД размещается обычно в хвостовой части фюзеляжа в специальном отсеке (см. рис.2.10), оборудованным окном и закрывающей створкой. Форма окна и створки бывают различной и такой, что динамическое давление (или скоростной напор), создаваемый при полёте ВС, используется не полностью. В результате повышение давления воздуха на входе в окно отсека находится по формуле:

$$\Delta p = \xi p_H \left[\left(1 + \frac{\kappa - 1}{2} M_H^2 \right)^{\frac{\kappa}{\kappa - 1}} - 1 \right],$$

<u>где</u> ξ =0.25...0.75 – коэффициент использования скоростного напора. Причём, чем плавнее обводы створки и окна, тем большие значения ξ рекомендуется принимать.

Поток воздуха, поступающий в отсек, отличается сложным характером течения. Это объясняется внезапным расширением на выходе из окна внутрь отсека, свободным объёмом внутри отсека причудливой формы (в зависимости от геометрии ВГТД и отсека), различием проходных сечений до входа в компрессор и другими причинами. Однако приближённо можно принять, что характер течения воздушного потока внутри отсека остаётся неизменным при различных H и V. Отсюда следует, что коэффициент восстановления полного давления внутри отсека не меняется по режимам полёта: $\sigma_{\text{вх}}$ =const.

Рис.2.10. Схема вспомогательного ГТД:

- 1 контур отсека фюзеляжа воздушного судна, в котором размещается ВГТД;
- 2 электрогенератор; 3 редуктор; 4 входной канал перед компрессором;
- 5 компрессор; 6 камера сгорания; 7 турбина; 8 выходное сопло;
- 9 створка отсека; 10 заслонка системы отбора воздуха; 11 трубопровод для перепуска влздуха при запуске ВГТД (при закрытии заслонки); 12 – эжектор (противопожарная перегородка) для вентиляции отсека; 13 – трубопровод для отбираемого воздуха к потребителю; $G_{\text{отб}}$ – расход отбираемого воздуха;
- <u>НП направление полёта ВС</u>

Отформатировано

Отформатировано Отформатировано

б) компрессор
$$L_{\text{кал}}^* = const$$
, $\eta_{\text{к}}^* = const$; в) камера сгорания $\eta_{\text{г}} = const$; $\sigma_{\text{кc}} = const$; $\sigma_{\text{rc}} = const$; $\sigma_{\text{rc}} = const$; $\sigma_{\text{rc}} = const$; $\sigma_{\text{rc}} = const$;

д) выходное сопло $\phi_{DC} = const$;

е) система отбора воздуха.

Для управления расходом отбираемого воздуха, а следовательно, и режимом работы ГТД, в системе отбора обычно устанавливают сопло Вентури, в наименьшем <u>сечении которого режим течения не меняется ($\lambda_{\rm kp} = const$)</u>. При постоянной площади данного счения это условие соответствует неизменности параметра расхода отбираемого воздуха и коэффициента восстановления полного давления в системе отбора воздуха:

$$\frac{G_{\text{ОТб}}\sqrt{T_{\text{ОТб}}^*}}{\underset{p_{\text{ОТб}}}{*}} = const \; ; \; \sigma_{\text{отб}} = const; \; \; \text{ж) электрогенератор} \; \; \eta_{\text{ген}} = const; \; \eta_{\text{рел}} = const.$$

Принимается также, что адиабатический КПД процесса расширения газа в турбине и выходном сопле остаётся неизменным по режимам полёта:

$$\eta_{\text{AJ, T+pc}} = \frac{1 - \frac{T_{\text{C}}}{T_{\Gamma}^*}}{1 - (\frac{p_{\text{H}}}{*})^{\frac{K_{\Gamma} - 1}{K_{\Gamma}}}} = const_{\text{A}}$$

$$1 - (\frac{p_{\text{H}}}{*})^{\frac{K_{\Gamma} - 1}{K_{\Gamma}}}$$

<u>где $T_{\rm c}$ – действительная температура газа в выходном сечении сопла находится из</u> уравнения сохранения энергии для данного счения:

$$T_{\rm c} = T_{\rm c}^* - \frac{c_{\rm c}^2}{2\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}R_{\Gamma}},$$

 $\underline{c_c}$ =140...180 м/с – скорость истечения газа из выходного сопла.

Исходными данными для расчёта высотно-скоростных характеристик ВГТД являются результаты газодинамического расчёта двигателя на H=0 и V=0 [1]: мощность электрической энергии N_{ret} =45 кВт; давление отбираемого воздуха $p_{\text{отб}}^* = 4.7*10^5 \text{ H/m}^2$; температура газа перед турбиной $T_r^* = 1050 \text{ K}$; расход отбираемого воздуха $G_{\text{отб}}=1.35$ кг/с; прототип двигателя ВГТД ТА-6А.

Основные данные проектируемого двигателя:

а) входное устройство

 $\sigma_{\text{BX}} = 0.96$; $p_{\text{H}} = 101325 \text{ H/m}^2$; $T_{\text{H}} = 288.15 \text{ K}$; $p_{\text{H}}^* = 101325 \text{ H/m}^2$; $T_{\text{H}}^* = 288.15 \text{ K}$;

Отформатировано Отформатировано

Отформатировано

б) компрессор

 $\pi_{\rm K}^*=5.00$; $\eta_{\rm K}^*=0.8$; $T_{\rm B}^*=288.15$ K; $p_{\rm B}^*=0.9727*10^5$ H/M²; $c_{\rm B}=160$ M/c; $\lambda_{\rm B}=0.5151$;

 $q(\lambda_B)=0.7257$; $G_B=5.29$ KF/c; $F_B=0.03147$ M²; $L_K=211462$ Дж/KF; $N_K=1118$ KBT;

 $T_{\kappa}^{*}=498.6 \text{ K}; p_{\kappa}^{*}=4.8705*10^{5} \text{ H/m}^{2}; c_{\kappa}=110 \text{ m/c}; \lambda_{\kappa}=0.2692; q(\lambda_{\kappa})=0.4119; F_{\kappa}=0.01456 \text{ m}^{2};$

Отформатировано Отформатировано

в) камера сгорания

 \underline{c}_{Γ} =1.1599 кДж/(кг.К); $q_{\kappa c}$ =639.5 кДж/кг; g_{Γ} =0.01514; α_{Σ} =4.41; R_{Γ} =287.3 Дж/(кг.К);

 $\sigma_{\text{rc}} = 0.95$; $p_{\text{r}}^* = 4.6269 \times 10^5 \text{ H/m}^2$; $G_{\text{r}} = 203 \text{ kg/y}$;

<u>г) тур</u>бина

 $p_{\rm T}$ =1.01325*10⁵ H/м²; $\eta_{\rm T}$ =0.82; $L_{\rm T}$ =313086 Дж/кг; $g_{\rm T}$ =0.7153; $G_{\rm T}$ =3.78 кг/с; $T_{\rm T}$ =779.6 К;

 $g_{\text{ONT}} = 0.04$; $\eta_{\text{M}} = 0.985$; $\lambda_{\text{T}} = 0.35$; $q(\lambda_{\text{T}}) = 0.5273$; $c_{\text{T}} = 1.77$ M/c; $p_{\text{T}}^* = 1.0873 \times 10^5$ H/M²;

 $F_{\rm T}=0.04911 \text{ m}^2; \, \eta_{\rm T}^*=0.853; \, \eta_{\rm T+nc}=0.8594;$

Отформатировано Отформатировано

д) выходное сопло

 $p_c = 101325 \text{ H/m}^2$; $c_c = 173.5 \text{ m/c}$; $T_c = 766.7 \text{ K}$; $\rho_c = 0.46 \text{ kg/m}^3$; $F_c = 0.05005 \text{ m}^2$; $D_c = 0.252 \text{ m}$:

е) электрогенератор

Отформатировано

 N_{2eH} =45 kBT; η_{reH} =0.85; $\eta_{ne\pi}$ =0.97;

ж) система отбора и перепуска воздуха

Отформатировано

 $G_{\text{οτ6}} = 1.35 \text{ K} \Gamma/\text{C}; p^*_{\text{οτ6}} = 4.7*10^5 \text{ H/m}^2; T^*_{\text{οτ6}} = 498.6 \text{ K}; g_{\text{οτ6}} = 0.255; σ_{\text{οτ6}} = 0.965.$

з) общие показатели ВГТД

 N_{3KB} =340 kBt; C_{3KB} =0.597 kg/(kBt.4); N_{VI} =64.3 kBt/(kg/c).

Отформатировано

Порядок и результаты расчёта высотно-скоростных характеристик ВГТД приведены в таблице 2.6.

Удалено: ¶

Отформатировано

	Высотно-скоростные характеристики ВГТД								
<u>№</u>	Наименование показателя, расчётная	$\underline{M}_{\scriptscriptstyle \mathrm{H}_{\scriptscriptstyle ar{\bullet}}}$	Высота по	<u>олёта, км</u>					
Π/Π	формула		<u>0</u>	2	<u>4</u>	<u>6</u>			
<u>1</u>	2	<u>5</u>	<u>6</u>	<u>7</u>	8	9			
	Температура наружного воздуха по	0.0	<u>288.1</u>	<u>275.1</u>	<u>262.1</u>	<u>249.2</u>			
	<u>ΓΟCT 4401-81</u>	<u>0.10</u>	<u>288.1</u>	<u>275.1</u>	<u>262.1</u>	<u>249.2</u>			
<u>1</u>	$T_{\rm H} = 288.15 - 6.5 \cdot H$	<u>0.20</u>	<u>288.1</u>	<u>275.1</u>	<u>262.1</u>	<u>249.2</u>			
		<u>0.40</u>	<u>288.1</u>	<u>275.1</u>	<u>262.1</u>	<u>249.2</u>			
		0.60	<u>288.1</u>	<u>275.1</u>	<u>262.1</u>	<u>249.2</u>			
	Давление наружного воздуха по ГОСТ	0.0	1.0132	0.7926	0.6126	0.4674			
	<u>4401-81</u>	<u>0.10</u>	1.0132	0.7926	<u>0.6126</u>	<u>0.4674</u>			
	$p_{H} = 1.01325 \cdot (1 - $	0.20	1.0132	0.7926	0.6126	0.4674			
<u>2</u>		<u>0.40</u>	1.0132	0.7926	<u>0.6126</u>	0.4674			
	$\left(-\frac{H}{44368}\right)^{5.2532} \cdot 10^5, \frac{H}{2}$	0.60	1.0132	0.7926	0.6126	0.4674			
	$-\frac{44.368}{44.368}$, $\frac{10}{M}$								
	Температура торможения на	0.0	288.1	275.1	262.1	249.2			
	Входе в двигатель	0.10	288.7	275.7	262.7	249.2 249.6			
<u>3</u>		0.20	290.5	277.4	264.2	251.1			
<u>-</u>	$T_{\rm H}^* = T_{\rm H} (1 + \frac{\kappa - 1}{2} M_{\rm H}^2)$	0.40	297.4	284.0	270.5	257.1			
	2 11/	0.60	308.9	295.0	281.0	267.1			
	Полное давление на входе в	0.0	0.9727	0.7609	0.5881	0.4487			
	компрессор	0.10	0.9761	0.7635	0.5902	0.4503			
4	*	0.20	0.9865	0.7716	0.5964	0.4550			
	$p_{\rm B} = \xi p_{\rm H} [(1 +$	0.40	1.0294	0.8052	0.6224	0.4748			
		0.60	1.1067	0.8657	0.6691	0.5105			
	$\frac{K}{1}$ 1 - 2 $\frac{K}{1}$ 1 - 2 5 H								
	$+\frac{\kappa-1}{2}M_{\rm H}^2)^{\frac{\kappa}{\kappa-1}}-1]\cdot 10^5, \frac{\rm H}{\rm M2}$								
	M ₂								
	<u>ξ=0.5</u>								
	Коэффициент восстановления полного	0.0	<u>0.9600</u>	<u>0.9600</u>	<u>0.9600</u>	<u>0.9600</u>			
II _	давления во входном устройстве	0.10	<u>0.9567</u>	<u>0.9567</u>	0.9567	0.9567			
<u>5</u>	* n	0.20	0.9468	0.9468	0.9468	0.9468			
	$\sigma_{\rm BX} = \frac{p_{\rm B}}{*}$	0.40	0.9099	0.9099	0.9099	0.9099			
	$p_{ m H}^{\star}$	0.60	0.8663	0.8663	0.8663	0.8663			
i	Температура воздуха на входе в	0.0	288.1	275.1	262.1	249.2			
	компрессор	0.10	288.7	275.7	262.7	249.6			
<u>6</u>	$T_{\underline{B}}^* = T_{\underline{A}}^*$	0.20	290.5	277.4	264.2	251.1			
		0.40	<u>297.4</u>	<u>284.0</u>	<u>270.5</u>	<u>257.1</u>			
<u> </u>		0.60	<u>308.9</u>	<u>295.0</u>	<u>281.0</u>	<u>267.1</u>			
	Степень повышения давления в	0.0	<u>5.01</u>	<u>5.32</u>	<u>5.68</u>	<u>6.09</u>			
	компрессоре	<u>0.10</u>	<u>4.99</u>	<u>5.31</u>	<u>5.66</u>	<u>6.08</u>			
<u>7</u>	. I* <u>K</u>	0.20	<u>4.86</u>	<u>5.26</u>	<u>5.62</u>	<u>6.03</u>			
	$\pi_{K}^{*} = \left(1 + \frac{L_{K \text{ad}}^{*}}{*}\right)^{\frac{K}{K-1}}$	<u>0.40</u>	<u>4.81</u>	<u>5.10</u>	<u>5.44</u>	<u>5.83</u>			
		0.60	<u>4.59</u>	<u>4.86</u>	<u>5.17</u>	<u>5.54</u>			
	$c_{p_{B}}T_{B}$								

				Продо	лжение т	абл.2.6
1	2	3	4	5	<u>6</u>	7
	Температура воздуха за компрессором	0.0	498.7	485.7	<u>472.7</u>	459.7
	* * Lv	<u>0.10</u>	<u>499.2</u>	<u>486.2</u>	<u>473.2</u>	<u>460.2</u>
<u>8</u>	$T_{\mathrm{K}}^* = T_{\mathrm{B}}^* + \frac{L_{\mathrm{K}}}{c_{\mathrm{pB}}}$	0.20	<u>501.0</u>	<u>487.9</u>	<u>474.8</u>	<u>461.7</u>
	$c_{\rm pB}$	0.40	<u>507.9</u>	<u>494.5</u>	<u>481.1</u>	<u>467.6</u>
		0.60	<u>519.4</u>	<u>505.5</u>	<u>491.5</u>	<u>477.6</u>
	Температура отбираемого воздуха	0.0	<u>498.7</u>	<u>485.7</u>	<u>472.7</u>	<u>459.7</u>
	$T_{\text{OTO}}^* = T_{\text{K}}^*$	<u>0.10</u>	<u>499.2</u>	<u>486.2</u>	<u>473.2</u>	<u>460.2</u>
<u>9</u>	$I_{\text{OT}\delta} = I_{\text{K}}$	<u>0.20</u>	<u>501.0</u>	<u>487.9</u>	<u>474.8</u>	<u>461.7</u>
		<u>0.40</u>	<u>507.9</u>	<u>494.5</u>	<u>481.1</u>	<u>467.6</u>
		<u>0.60</u>	<u>519.4</u>	<u>505.5</u>	<u>491.5</u>	<u>477.6</u>
	Давление воздуха за компрессором	0.0	<u>4.8705</u>	<u>4.0472</u>	<u>3.3394</u>	<u>2.7343</u>
	$p_{\rm K}^* = p_{\rm B}^* \pi_{\rm K}^* \cdot 10^5 , \frac{\rm H}{10^2}$	<u>0.10</u>	<u>4.8750</u>	<u>4.0506</u>	<u>3.3420</u>	<u>2.7362</u>
<u>10</u>	$p_{\rm K} = p_{\rm B} n_{\rm K} \cdot 10$, $-\frac{1}{2}$	<u>0.20</u>	<u>4.8889</u>	<u>4.0613</u>	<u>3.3500</u>	<u>2.7421</u>
	M ⁻	<u>0.40</u>	<u>4.9509</u>	<u>4.1091</u>	<u>3.3862</u>	<u>2.7690</u>
		0.60	<u>5.0756</u>	<u>4.2066</u>	<u>3.4614</u>	<u>2.8259</u>
	<u>Давление отбираемого воздуха</u> $p_{\text{ОТб}}^* = p_{\text{K}}^* \sigma_{\text{ОТб}} \cdot 10^5, \frac{\text{H}}{\text{M}^2}$	0.0	4.7000	<u>3.9055</u>	<u>3.2225</u>	<u>2.6386</u>
	$n^* = n^* = 10^5 \text{ H}$	<u>0.10</u>	<u>4.7043</u>	<u>3.9089</u>	3.2250	<u>2.6405</u>
<u>11</u>	$p_{\text{OTO}} - p_{\text{K}} \sigma_{\text{OTO}} \cdot 10^{\circ}, \frac{2}{2}$	<u>0.20</u>	<u>4.7178</u>	<u>3.9191</u>	<u>3.2327</u>	<u>2.6461</u>
	M	<u>0.40</u>	<u>4.7776</u>	<u>3.9653</u>	<u>3.2677</u>	<u>2.6721</u>
		<u>0.60</u>	<u>4.8979</u>	<u>4.0594</u>	<u>3.3402</u>	<u>2.7270</u>
	Расход отбираемого воздуха	0.0	1.350	<u>1.137</u>	<u>0.951</u>	0.789
	$\left(C \left(\frac{T^*}{T^*} \right) \right)$	0.10	1.350	1.137	0.951	0.790
<u>12</u>	$G_{\text{OTO}} = \left(\frac{G_{\text{OTO}} \sqrt{T_{\text{OTO}}^*}}{P_{\text{OTO}}}\right)_{\text{pact}}.$	0.20	1.352	<u>1.138</u>	0.952	0.790
	O _{0T0} - *	0.40	1.360	1.144	0.956	0.793
	p_{OT}	0.60	<u>1.378</u>	<u>1.158</u>	<u>0.966</u>	0.800
	pac 1					
	* n \(\varepsilon \)					
	$\frac{P010}{\sqrt{1000}}, \frac{K\Gamma}{N}$					
	$\cdot \frac{p_{\text{OTG}}}{\sqrt{T_{\text{OTG}}^*}}, \frac{\kappa_{\Gamma}}{c}$					
		0.0	1050.5	1040.0	1022.0	1000.0
	Температура газа перед турбиной	0.0	1052.5	1040.8	1023.9	1009.8
12	в первом приближении	0.10	1051.7	1040.3	1023.4	1009.3
<u>13</u>	$T_{\Gamma}^* = T_{\Gamma \text{ pac}}^*$	0.20	1050.0	1038.3	1021.2	1007.8
	т трасч	0.40	1047.5	1029.1	1013.6	1000.7
 	Спанияя успорияя тангай уссоту в	0.60	1029.0 1.1604	1012.4 1.1567	998.1 1.1520	986.8 1.1479
	Средняя условная теплоёмкость в					
<u>14</u>	камере сгорания	0.10	1.1603 1.1601	1.1567 1.1564	1.1520 1.1517	1.1479 1.1477
17	$c_{\Pi} = 0.9 + 10^{-4}$.	0.40	1.1601	1.1553	1.1517	1.1469
		0.60	<u>1.1603</u> <u>1.1577</u>	<u>1.1533</u> <u>1.1530</u>	1.1488	<u>1.1469</u> <u>1.1451</u>
	$\cdot (2T_{\Gamma}^* + T_{K}^*), \frac{\kappa \square \kappa}{\kappa_{\Gamma}, K}$	0.00	1.13//	1.1330	1.1700	1.1731
	(21 r 1 K), Kr·K					
	Удельное количество теплоты,	0.0	642.6	642.0	<u>635.0</u>	631.5
	подводимое к воздуху в камере	0.10	641.0	640.8	633.7	630.3
<u>15</u>	<u>сгорания</u>	0.20	636.9	636.5	<u>629.3</u>	626.8
	$q_{\mathrm{KC}} = c_{\mathrm{\Pi}}(T_{\mathrm{\Gamma}}^* - T_{\mathrm{K}}^*),$	0.40	<u>626.0</u>	<u>617.6</u>	<u>612.8</u>	<u>611.3</u>
	$q_{\rm KC} = c_{\rm II} (I_{\rm \Gamma} - I_{\rm K}),$	0.60	<u>590.0</u>	584.4	<u>581.8</u>	<u>583.0</u>
	кДж					
	KΓ					
L						

				Продо.	пжение та	абл.2.6
1	2	3	4	5	<u>6</u>	<u>7</u>
	Отношение расходов топлива и	<u>0.0</u>	0.01521	<u>0.01520</u>	<u>0.01503</u>	0.01495
	воздуха в камере сгорания	<u>0.10</u>	0.01518	0.01517	<u>0.01501</u>	0.01492
<u>16</u>	q_{KC}	0.20	0.01508	0.01507	0.01490	0.01484
	$g_{\rm T} = \frac{q_{\rm KC}}{H_{\nu} \eta_{\rm KC}}$	0.40	0.01482	0.01462	0.01451	0.01447
	$u _{KC}$	0.60	0.01397	0.01384	0.01378	0.01380
	Давление газа перед турбиной	0.0	4.6269	3.8448	3.1724	2.5976
	$p_{\Gamma}^* = p_{K}^* \sigma_{KC} \cdot 10^5, \frac{H}{M^2}$	0.10	4.6312	3.8481	3.1749	2.5994
<u>17</u>	$p_{\Gamma} = p_{K} \sigma_{KC} \cdot 10^{\circ}, \frac{1}{2}$	0.20	4.6445	3.8582	3.1825	2.6050
	M ²	0.40	4.7033	3.9037	3.2169	2.6306
		0.60	<u>4.8218</u>	3.9963	3.2883	<u>2.6846</u>
	Расход газа через турбину	0.0	<u>3.78</u>	<u>3.16</u>	2.63	2.16
	(* * *	<u>0.10</u>	<u>3.78</u>	<u>3.16</u>	2.63	2.17
<u>18</u>	$G = G_{\Gamma} \sqrt{T_{\Gamma}} = p_{\Gamma} K_{\Gamma}$	0.20	3.80	3.17	2.64	2.17
	$G_{\Gamma} = \frac{1}{*}$	0.40	3.85	3.22	2.68	2.20
	p_{Γ} T_{Γ}	0.60	3.98	3.33	2.76	2.26
	$G_{\Gamma} = \left(\frac{G_{\Gamma}\sqrt{T_{\Gamma}^{*}}}{p_{\Gamma}^{*}}\right)_{\text{pacy}} \cdot \frac{p_{\Gamma}^{*}}{\sqrt{T_{\Gamma}^{*}}}, \frac{\kappa_{\Gamma}}{c}$					
	Расход воздуха через компрессор $G_{\text{в}}$ из	<u>0.0</u>	<u>5.28</u>	<u>4.42</u>	<u>3.68</u>	<u>3.04</u>
	соотношения	0.10	<u>5.29</u>	<u>4.43</u>	<u>3.69</u>	<u>3.05</u>
<u>19</u>	$G_{\Gamma} = G_{\mathrm{B}}(1 + g_{\mathrm{T}})(1 -$	<u>0.20</u>	<u>5.30</u>	<u>4.44</u>	<u>3.70</u>	3.05
		<u>0.40</u>	<u>5.37</u>	<u>4.50</u>	<u>3.74</u>	3.09
	G_{OTO} , Kr	0.60	<u>5.53</u>	4.62	3.84	3.16
	$-\frac{G_{\text{OT}\delta}}{G_{\text{B}}}-g_{\text{OXJI}}),\frac{\text{K}\Gamma}{\text{c}}$					
	Относительный отбор воздуха	0.0	0.256	0.257	0.258	0.259
	G_{OTF}	0.10	0.256	0.257	0.258	0.259
<u>20</u>	$g_{\text{OTO}} = \frac{G_{\text{OTO}}}{G_{\text{P}}}$	0.20	0.255	0.256	0.257	0.259
	$G_{\rm B}$	<u>0.40</u>	0.253	0.254	0.255	0.257
		0.60	0.249	<u>0.250</u>	0.252	0.253
	Действительная температура	<u>0.0</u>	<u>768.5</u>	<u>750.8</u>	<u>729.1</u>	<u>709.0</u>
	газа в обрезе выходного сопла	<u>0.10</u>	<u>767.8</u>	<u>750.3</u>	<u>728.6</u>	<u>708.6</u>
<u>21</u>	$T - T^*$ (1 m	0.20	<u>766.1</u>	<u>748.5</u>	<u>726.7</u>	<u>707.2</u>
	$T_{c} = T_{\Gamma}^{*} \{1 - \eta_{a \perp T + pc} \cdot$	<u>0.40</u>	<u>762.3</u>	<u>740.1</u>	<u>719.7</u>	<u>700.9</u>
		0.60	<u>745.2</u>	<u>724.7</u>	<u>705.6</u>	<u>688.3</u>
	$\frac{\kappa_{\Gamma}-1}{}$					
	$\left \cdot \left[1 - \left(\frac{p_{\mathrm{H}}}{*} \right)^{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}} \right] \right\}$					
	p_{Γ}					
	Плотность газа в обрезе сопла	0.0	0.4588	0.3673	0.2924	0.2294
	$p_{\rm H} \kappa_{\Gamma}$	<u>0.10</u>	0.4592	<u>0.3676</u>	<u>0.2926</u>	<u>0.2295</u>
<u>22</u>	$\rho_{\rm C} = \frac{p_{\rm H}}{R_{\rm \Gamma} T_{\rm C}}, \frac{\kappa \Gamma}{M^3}$	0.20	0.4602	0.3685	0.2934	0.2300
	TTC M	0.40	0.4625	0.3727	0.2962	0.2321
		0.60	0.4732	0.3806	0.3022	0.2363
	Скорость истечения газа из выходного	0.0	<u>173.7</u>	<u>181.3</u>	<u>189.5</u>	<u>199.2</u>
	сопла	<u>0.10</u>	<u>173.7</u>	<u>181.4</u>	<u>189.5</u>	<u>199.2</u>
<u>23</u>	$G_{\rm B}(g_{\Gamma}+g_{\rm OXJ})_{\rm M}$	0.20	<u>174.0</u>	<u>181.6</u>	<u>189.7</u>	<u>199.4</u>
	$c_{\rm c} = \frac{G_{\rm B}(g_{\rm \Gamma} + g_{\rm OXJI})}{\rho_{\rm c} F_{\rm c}}, \frac{M}{c}$	0.40	<u>175.5</u>	<u>182.4</u>	<u>190.6</u>	200.2
	PC ¹ C	<u>0.60</u>	<u>177.4</u>	<u>184.3</u>	<u>192.4</u>	<u>202.0</u>
1			1			1

Примечание: В пункте 13 приведены значения $T_{_{\Gamma}}^{*}$ второго приближения.

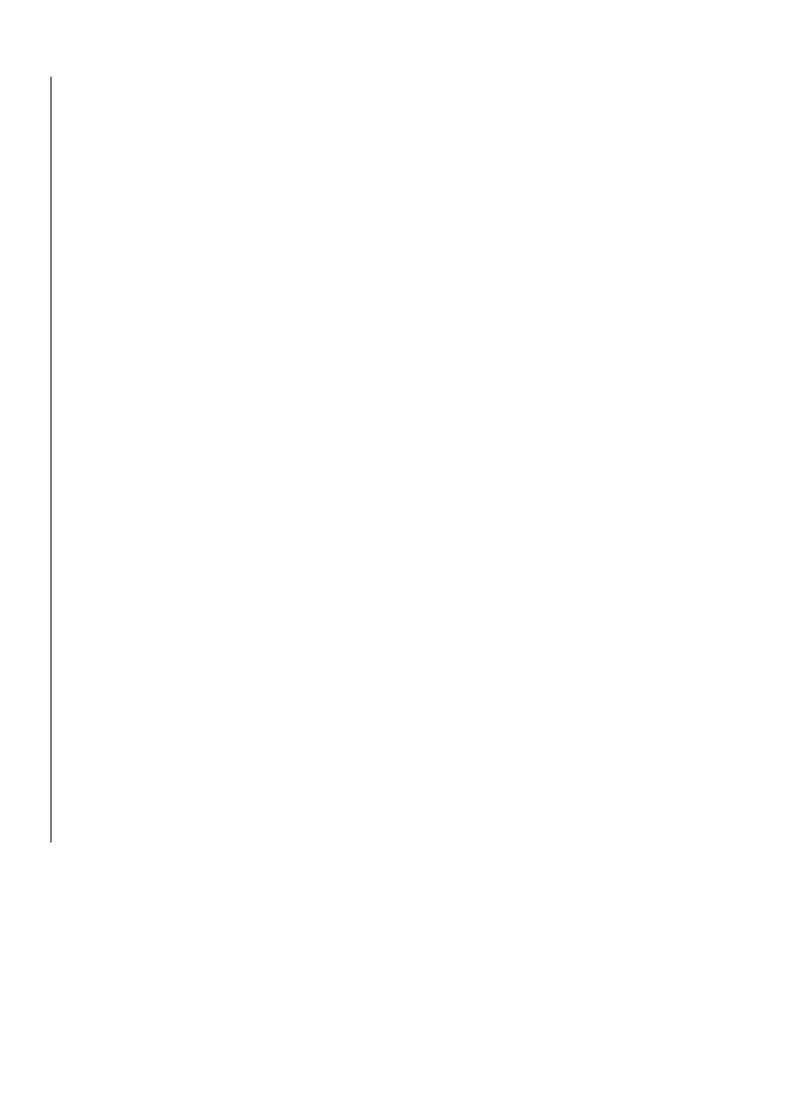
				Продо	лжение т	абл.2.6
1	2	<u>3</u>	4	5	<u>6</u>	<u>7</u>
	Температура газа за турбиной	0.0	<u>781.5</u>	<u>765.0</u>	<u>744.6</u>	<u>726.1</u>
	2	0.10	<u>780.8</u>	<u>764.5</u>	<u>744.1</u>	<u>725.7</u>
<u>24</u>	$T^* = T^* = T + \frac{c_c}{}$	0.20	<u>779.2</u>	<u>762.7</u>	<u>742.3</u>	<u>724.4</u>
	$r_{\rm T} - r_{\rm C} - r_{\rm C}$	0.40	775.6	<u>754.5</u>	<u>735.4</u>	<u>718.2</u>
	$T_{\mathrm{T}}^* = T_{\mathrm{c}}^* = T_{\mathrm{c}} + \frac{c_{\mathrm{c}}^2}{2\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}R_{\Gamma}}$	0.60	<u>758.8</u>	<u>739.4</u>	<u>721.6</u>	<u>706.0</u>
	Температура газа перед турбиной из	0.0	1052.5	1040.8	1023.9	1009.8
	уравнения баланса мощностей	0.10	1051.7	1040.3	1023.4	1009.3
<u>25</u>	N_{reu}	0.20	<u>1050.0</u>	1038.3	<u>1021.2</u>	1007.8
	$L_{\rm K}G_{\rm B} + \frac{1 \rm CH}{n}$	<u>0.40</u>	<u>1047.5</u>	<u>1029.1</u>	<u>1013.6</u>	<u>1000.7</u>
	$T^* - T^* \perp $	0.60	<u>1029.0</u>	<u>1012.4</u>	<u>998.1</u>	<u>986.8</u>
	$T_{\Gamma}^* = T_{T}^* + \frac{L_{K}G_{B} + \frac{N_{\Gamma \text{eH}}}{\eta_{\Gamma \text{eH}}\eta_{\text{peg}}}}{G_{\Gamma}\frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1}R_{\Gamma}\eta_{M}}$					
	Удельная работа турбины	0.0	<u>314873</u>	<u>318373</u>	322392	<u>327472</u>
	, к _г в ст* т* Лж	<u>0.10</u>	<u>314788</u>	<u>318296</u>	<u>322311</u>	<u>327391</u>
<u>26</u>	$L_{\rm T} = \frac{\kappa_{\Gamma}}{\kappa_{\Gamma} - 1} R_{\Gamma} (T_{\Gamma}^* - T_{\rm T}^*), \frac{\mu_{\rm K}}{\kappa_{\Gamma}}$	0.20	<u>314552</u>	<u>318041</u>	<u>322043</u>	<u>327142</u>
	$\kappa_{\Gamma^{-1}}$ KI	0.40	<u>313769</u>	<u>316967</u>	320994	<u>326078</u>
		<u>0.60</u>	<u>311904</u>	<u>315093</u>	<u>319085</u>	<u>324145</u>
	Давление газа за турбиной	0.0	<u>1.0810</u>	<u>0.8634</u>	<u>0.6754</u>	<u>0.5225</u>
	$p_{\mathrm{T}}^* = p_{\mathrm{\Gamma}}^* (1 -$	<u>0.10</u>	<u>1.0812</u>	0.8638	<u>0.6756</u>	<u>0.5226</u>
	$p_{\rm T} = p_{\rm \Gamma} (1 -$	<u>0.20</u>	<u>1.0825</u>	0.8643	<u>0.6756</u>	<u>0.5229</u>
<u>27</u>	<i>К-</i> -	<u>0.40</u>	<u>1.0964</u>	<u>0.8657</u>	<u>0.6773</u>	<u>0.5240</u>
	$-\frac{L_{\rm T}}{\kappa_{\rm T}-1}\cdot 10^5$ H	0.60	<u>1.1006</u>	0.8692	0.6799	0.5262
	$-\frac{L_{\rm T}}{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma}-1}R_{\Gamma}T_{\Gamma}^{*}})^{\frac{\kappa_{\Gamma}}{\kappa_{\Gamma}-1}} \cdot 10^{5}, \frac{\rm H}{\rm M}^{2}$					
	Эквивалентная мощность ВГТД	0.0	338	<u>293</u>	<u>254</u>	<u>220</u>
	N_{ren}	<u>0.10</u>	<u>339</u>	<u>293</u>	<u>254</u>	<u>220</u>
<u>28</u>	$N_{\text{ЭКВ}} = L_{\text{K}} G_{\text{ОТО}} + \frac{N_{\text{Ген}}}{\eta_{\text{Ген}} \eta_{\text{ред}}},$	0.20	<u>339</u>	<u>294</u>	<u>254</u>	<u>220</u>
	'Іген'Іред	<u>0.40</u>	<u>340</u>	<u>295</u>	<u>255</u>	<u>221</u>
	кВт	0.60	<u>344</u>	<u>298</u>	<u>257</u>	222
	Часовой расход топлива	0.0	<u>204</u>	<u>170</u>	<u>140</u>	<u>115</u>
	$G_{\rm T} = 3600 g_{\rm T} G_{\rm B} (1 -$	<u>0.10</u>	<u>204</u>	<u>170</u>	<u>140</u>	<u>115</u>
<u>29</u>	ı Oı b	0.20	<u>203</u>	<u>169</u>	<u>139</u>	<u>114</u>
	$-g_{\text{OTO}}-g_{\text{OXJ}}, \frac{\text{K}\Gamma}{\text{u}}$	0.40	<u>202</u>	<u>167</u>	<u>138</u>	<u>113</u>
	GOIO GOAJI/7 4	0.60	<u>197</u>	<u>163</u>	<u>135</u>	<u>111</u>
	Удельный расход топлива	0.0	0.602	0.580	<u>0.551</u>	0.522
	G G_{T} V_{T}	0.10	<u>0.601</u>	<u>0.579</u>	<u>0.551</u>	<u>0.522</u>
<u>30</u>	$C_{3KB} = \frac{1}{N}, \frac{KI}{KD_{TM}}$	0.20	0.599	<u>0.577</u>	<u>0.548</u>	<u>0.520</u>
	$C_{\text{9KB}} = \frac{G_{\text{T}}}{N_{\text{9KB}}}, \frac{\kappa_{\Gamma}}{\kappa_{\text{BT}} \cdot \text{q}}$	0.40	0.594	<u>0.567</u>	0.540	0.513
		0.60	<u>0.573</u>	<u>0.548</u>	<u>0.524</u>	0.493
	<u>Удельная мощность ВГТД</u>	0.0	<u>64.07</u>	<u>66.32</u>	<u>68.93</u>	<u>72.23</u>
	$N_{\rm 2KB-KBT\cdot C}$	0.10	<u>64.02</u>	<u>66.28</u>	<u>68.88</u>	<u>72.18</u>
<u>31</u>	$N_{\rm yg} = \frac{N_{\rm ЭKB}}{G_{\rm B}}, \frac{{\rm \kappa Br \cdot c}}{{\rm \kappa r}}$	0.20	63.89	<u>66.13</u>	<u>68.73</u>	72.04
	- GR KI	0.40	63.44	<u>65.51</u>	68.13	71.44
		<u>0.60</u>	<u>62.34</u>	<u>64.41</u>	<u>67.02</u>	<u>70.33</u>

		Продолжение табл.2.6				
1	2	_3	4	<u>197 5</u>	<u>6</u>	
<u>32</u>	Относительная плотность тока на	0.0	0.7250	0.7584	0.7979	0.8423
	входе в компрессор	0.10	0.7240	0.7572	0.7966	0.8409
	G	0.20	0.7207	<u>0.7537</u>	0.7928	0.8365
	$G_{\rm B}\sqrt{T_{\rm B}}$	0.40	0.7072	0.7408	0.7781	0.8199
	$q(\lambda_{\rm B}) = \frac{G_{\rm B}\sqrt{T_{\rm B}^*}}{0.0404p_{\rm B}^*F_{\rm B}}$	0.60	0.6902	<u>0.7216</u>	0.7565	0.7955
	$0.0404 p_{\rm B} F_{\rm B}$					
	Приведенная скорость на входе в	<u>0.0</u>	<u>0.5144</u>	<u>0.5461</u>	0.5862	<u>0.6347</u>
	компрессор $\lambda_{\text{в}}$ из таблиц	<u>0.10</u>	<u>0.5135</u>	<u>0.5449</u>	<u>0.5847</u>	<u>0.6340</u>
<u>33</u>	газодинамических функций по	<u>0.20</u>	<u>0.5105</u>	<u>0.5415</u>	<u>0.5808</u>	<u>0.6288</u>
	значению $q(\lambda_{\rm B})$	<u>0.40</u>	<u>0.4983</u>	<u>0.5292</u>	<u>0.5657</u>	<u>0.6101</u>
		<u>0.60</u>	<u>0.4832</u>	<u>0.5114</u>	<u>0.5443</u>	<u>0.5837</u>
	Скорость воздушного потока на входе	<u>0.0</u>	<u>159.8</u>	<u>165.8</u>	<u>173.7</u>	<u>183.6</u>
	в компрессор	<u>0.10</u>	<u>159.7</u>	<u>165.6</u>	<u>173.4</u>	<u>183.3</u>
<u>34</u>	2PT*	0.20	<u>159.2</u>	<u>165.0</u>	<u>172.8</u>	<u>182.3</u>
	$c_{\rm B} = \lambda_{\rm B} \sqrt{\frac{2\kappa RT_{\rm B}}{\kappa+1}}, \frac{\rm M}{c}$	<u>0.40</u>	<u>157.2</u>	<u>163.2</u>	<u>170.3</u>	<u>179.0</u>
	$\kappa+1$, c	<u>0.60</u>	<u>155.4</u>	<u>160.7</u>	<u>167.0</u>	<u>174.6</u>
	Относительная плотность тока на	<u>0.0</u>	<u>0.4116</u>	<u>0.4093</u>	<u>0.4077</u>	<u>0.4057</u>
	выходе из компрессора	<u>0.10</u>	<u>0.4119</u>	<u>0.4095</u>	<u>0.4080</u>	<u>0.4059</u>
<u>35</u>	C	<u>0.20</u>	<u>0.4127</u>	<u>0.4104</u>	<u>0.4088</u>	<u>0.4066</u>
	$a(\lambda) = \frac{G_B \sqrt{I_K}}{I_K}$	<u>0.40</u>	<u>0.4152</u>	<u>0.4139</u>	<u>0.4120</u>	<u>0.4097</u>
	$q(\lambda_{\rm K}) = \frac{G_{\rm B} \sqrt{T_{\rm K}^*}}{0.0404 p_{\rm K}^* F_{\rm K}}$	0.60	<u>0.4217</u>	<u>0.4200</u>	0.4179	<u>0.4152</u>
	- R R	0.0	0.2689	0.2673	0.2662	0.2649
	<u>Приведенная скорость на выходе из</u> компрессора λ_{κ} из таблиц	0.10	0.2692	0.2676	0.2665	0.2650
<u>36</u>	газодинамических функций по	0.20	0.2697	0.2681	0.2670	0.2655
<u> 50</u>	$\frac{1}{3}$ значению $\frac{q}{\lambda_{\kappa}}$	0.40	0.2715	0.2705	0.2693	0.2676
	Situ territo q(x _k)	0.60	0.2760	0.2748	0.2733	0.2715
	Скорость воздуха на выходе из	0.0	109.9	107.8	105.9	103.9
	компрессора	0.10	110.0	108.0	106.1	104.0
<u>37</u>		0.20	110.4	108.3	106.4	104.4
	$c_{K} = \lambda_{K} \sqrt{\frac{2\kappa R T_{K}^{*}}{\kappa + 1}}, \frac{M}{C}$	0.40	112.0	110.1	108.1	105.9
	$C_{\rm K} = \Lambda_{\rm K} \sqrt{\frac{\kappa}{\kappa+1}}, \frac{m}{c}$	0.60	115.1	113.0	110.9	108.6
<u>38</u>	Относительная плотность тока на	0.0	0.5303	0.5490	0.5761	0.6064
	выходе из турбины	0.10	0.5307	0.5492	0.5763	0.6067
	*	0.20	0.5314	0.5502	0.5776	0.6074
	$G_{\rm B}(g_{\rm \Gamma}+g_{\rm OXJI})\sqrt{T_{\rm T}}$	0.40	0.5307	0.5551	0.5817	0.6115
	$q(\lambda_{\rm T}) = \frac{1}{2} \frac{1}{2}$	0.60	0.5407	0.5648	0.5912	0.6204
	$q(\lambda_{\rm T}) = \frac{G_{\rm B}(g_{\rm T} + g_{\rm OXJI})\sqrt{T_{\rm T}^*}}{0.0396p_{\rm T}^*F_{\rm T}}$					
<u>39</u>	Приведенная скорость на выходе из	0.0	0.3523	0.3663	0.3870	<u>0.4108</u>
	$_{\underline{\text{турбины}}\ \lambda_{\underline{\tau}}$ из таблиц	0.10	<u>0.3525</u>	<u>0.3665</u>	0.3872	<u>0.4110</u>
	газодинамических функций в	0.20	0.3530	<u>0.3672</u>	0.3882	<u>0.4116</u>
	зависимости от $q(\lambda_{\text{T}})$	<u>0.40</u>	<u>0.3525</u>	<u>0.3710</u>	0.3914	<u>0.4148</u>
		0.60	<u>0.3601</u>	<u>0.3783</u>	0.3988	<u>0.4220</u>
<u>40</u>	Скорость газа на выходе из турбины	<u>0.0</u>	<u>178.4</u>	<u>183.5</u>	<u>191.3</u>	<u>200.5</u>
	2 B. T*	<u>0.10</u>	<u>178.4</u>	<u>183.5</u>	<u>191.3</u>	<u>200.5</u>
	$C_{\rm m} = \lambda_{\rm max} / \frac{2K_{\rm L}K_{\rm L}I_{\rm T}}{M}$	0.20	<u>178.5</u>	<u>183.7</u>	<u>191.6</u>	200.7
	$c_{\mathrm{T}} = \lambda_{\mathrm{T}} \sqrt{\frac{2\kappa_{\Gamma} R_{\Gamma} T_{\mathrm{T}}^{*}}{\kappa_{\Gamma} + 1}}, \frac{M}{c}$	0.40	<u>177.8</u>	<u>184.6</u>	<u>192.2</u>	<u>201.3</u>
	·	<u>0.60</u>	<u>179.7</u>	<u>186.3</u>	<u>194.0</u>	<u>203.1</u>

Примечание: Газовая постоянная продуктов сгорания находится по формуле:

$$R_{\Gamma} = R_{\rm B} \, \frac{1 + 1.0862 g_{\rm T}}{1 + g_{\rm T}}$$

По результатам расчётов вычерчиваются зависимости эквивалентной мощности $N_{\text{экв}}$ и удельного расхода топлива $C_{\text{экв}}$ ВГТД от скорости полёта при варьировании высоты (скоростные характеристики) и от высоты полёта при изменении скорости (высотные характеристики). Затем на эти характеристики наносятся эксплуатационные ограничения по устойчивой работе компрессора ($\pi^*_{\text{к max}}$ =(1.1...1.15) $\pi^*_{\text{к расч}}$), камеры сгорания ($p^*_{\text{к min}}$ =(0.7...0.8)*10⁵ H/м²). Далее осуществляется анализ протекания лётных характеристик ВГТД и производится оценка влияния на них различных факторов.


Список использованных источников.

1. Шулекин В.Т., Тихонов Н.Д. Методические указания по газодинамическому расчёту турбореактивных и турбовальных двигателей ВС ГА по дисциплине «Термодинамика, теплопередача и теория АД» для студентов специальности 130300 всех форм обучения. М.:МГТУ ГА,1998. 64с.

2. Шулекин В.Т., Тихонов Н.Д. Пособие по расчёту высотно-скоростных характеристик двухконтурных турбореактивных двигателей по дисциплине «Теория авиационных двигателей» (курсовая работа, часть 2 для студентов специальности 130300 всех форм обучения). М.:МГТУ ГА,2002. 88с.

- 3. Володко А.М. Основы аэродинамики и динамики полёта вертолётов. Учебное пособие для вузов. М.:Транспорт,1988. 342с.
- 4. Акимов А.И., Берестов Л.М., Михеев Р.А. Лётные испытания вертолётов. М.:Машиностроение, 1994. 408с.
- 5. Ружицкий Е.Н. Зарубежные вертолёты. М.:ООО «Издательство Астрель»,2002. 382c.
- <u>6. Поляков П.М. и др. Авиационные вспомогательные силовые установки.</u> <u>М.:Машиностроение,1978.</u>

Отформатировано


```
Удалено: ¶

МОСКОВСКИЙ
ГОСУДАРСТВЕННЫЙ

 ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ¶
 ГРАЖДАНСКОЙ АВИАЦИИ¶
Кафедра
«Двигатели летательных
аппаратов»¶
¶
                               Шулекин
 В.Т., Тихонов Н.Д.¶
 ПОСОБИЕ¶
 по выполнению курсовой работы, ч.2 «Расчёт высотноскоростных ¶
 характеристик газотурбинных двигателей воздушных судов гражданской ¶
... [1]
 Удалено:
                       1.
 Удалено: Начальное значение
 \pi^*_{_{\text{кнд}}} рассчитывается по формуле:¶
 \pi_{_{\mathrm{KHJ}}}^* = (1 + \frac{const_1}{T_{\mathrm{H}}^*})
 (2.10)¶ где значение константы const<sub>1</sub> находится на расчётном
 режиме. ¶
2. Определяется
температура торможения за
компрессором НД. ¶
                         \kappa-1
 T_{\rm X}^* = T_{\rm H}^{*\kappa\eta_{\rm O\,HJ}}
(2.11)¶
3. Относительное изменение
```

приведенной частоты вра ... [2]

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра «Двигатели летательных аппаратов»

Шулекин В.Т., Тихонов Н.Д.

ПОСОБИЕ

по выполнению курсовой работы, ч.2 «Расчёт высотноскоростных характеристик газотурбинных двигателей воздушных судов гражданской авиации по дисциплине «Термодинамика, теплопередача и теория двигателей» для студентов специальности 130300 всех форм обучения

Эксплуатационными характеристиками авиационных газотурбинных двигателей (ГТД) называют зависимости тяги P (или мощности N) и удельного расхода топлива $C_{yд}$ (или C_e) от высоты H, скорости полёта V и от режима работы двигателя с учётом эксплуатационных ограничений. Отсюда изменение P (или N) и $C_{yд}$ (или C_e) от H называют высотными, от V – скоростными и от режима работы двигателя (или, что тоже самое от частоты вращения ротора ГТД n) - дроссельными характеристиками соответственно. Характеристики P (или N) и C_{yd} (или C_e) от H и V называют высотно-скоростными (ВСХ) или лётными.

Тяга (или мощность) двигателя и его экономичность ($C_{yд}$ или C_e) при заданных условиях полёта (H и V) и при известных коэффициентах полезного действия (КПД) отдельных элементов ГТД определяются основными параметрами рабочего процесса:

- а) степенью повышения давления воздуха в компрессоре π_{κ}^* ;
- б) температурой газа перед турбиной $T_{\scriptscriptstyle \Gamma}^*$;
- в) температурой газа в форсажной камере T_{Φ}^* (для форсированных ТРД и ТРДД), а также степенью двухконтурности m (для двухконтурных ТРД).

В ГТД величина π_{κ}^* зависит в основном от частоты вращения ротора n . Поэтому n, T_{Γ}^* , T_{Φ}^* являются **регулируемыми параметрами** . Изменение названных параметров двигателя определённым образом на различных режимах работы ГТД составляет содержание закона управления (регулирования) и программы регулирования двигателя.

Например, при расчёте BCX (переменные H и V) и задании определённого положения рычага управления двигателем (РУД) изменение $n, T_{\Gamma}^*, T_{\Phi}^*$ свидетельствует о **законе управления** (регулирования) ГТД, а при расчёте дроссельных характеристик (неизменные H и V, переменные положения РУД) изменение упомянтых параметров составляет определённую **программу регулирования двигателя**.

Использование того или иного закона управления ГТД устанавливается условиями эксплуатации воздушного судна. Например, для получения максимальной тяги (или мощности), необходимой для взлёта ВС, рекомендуют следующий закон управления двигателя:

$$n = n_{max} = const; \ T_{\Gamma}^* = T_{\Gamma max}^* = const; \ T_{\Phi}^* = T_{\Phi max}^* = const. \tag{1}$$

При наборе высоты полёта BC согласно Руководству по лётной эксплуатации (РЛЭ) для двигателя рекомендуют следующий закон управления:

$$n=n_{\text{HOM}}=const; T_{\Gamma}^*=T_{\Gamma \text{ HOM}}^*=const; T_{\Phi}^*=T_{\Phi \text{ HOM}}^*=const.$$
 (2)

На крейсерской скорости полёта (на эшелоне $H_{\rm kp}$ и $V_{\rm kp}$) управление ГТД осуществляется по закону, который обеспечивает такое сочетание параметров $n,\ T_{_\Gamma}^*$,

 T_{ϕ}^* , чтобы достгнуть наилучшей экономичности ($C_{\text{уд кр}}$ =min) (необходимой для максимальной продолжительности полёта).

Для реализации заданного закона управления необходимо иметь соответствующие средства воздействия на двигатель, называемые **регулирующими факторами**. Такими факторами могут быть:

- а) в ТРД (или в ТРДД) расход топлива $G_{\rm T}$; площадь критического сечения реактивного сопла $F_{\rm kp}$; минимальное сечение межлопаточных каналов первого соплового аппарата турбины («горло» двигателя) $F_{\rm cal}$; угол поворота направляющих лопаток в компрессоре $\phi_{\rm ha}$; угол поворота рабочих лопаток вентилятора $\phi_{\rm DLB}$ и др.;
- б) в ТРДФ (или в ТРДДФ) дополнительно ещё расход топлива в форсажной камере $G_{\text{тф}}$;
 - в) в ТВД дополнительно ещё угол установки лопастей воздушного винта фуст.

Причём для независимого изменения всех регулируемых параметров нужно иметь такое же количество регулирующих факторов. Распределение же регулиру-ющих факторов между регулируемыми параметрами может быть различным. В авиационных ГТД часто применяется следующая система воздействий:

$$G_{\mathrm{T}} \Leftrightarrow n; \quad F_{\mathrm{KP}} \Leftrightarrow T_{\mathrm{r}}^{*}; \quad G_{\mathrm{T}\phi} \Leftrightarrow T_{\phi}^{*}; \quad \varphi_{\mathrm{ycr}} \Leftrightarrow n$$
 (3)

Реализация закона управления (1) требует измерения T_r^* , что в ряде случаев представляет определённые трудности ввиду значительной нераномерности температурного поля в радиальном и окружном направлениях, отсутствии надёжной высокотемпературной измерительной аппаратуры и т.д. Крометого, установка регулируемых выходного сопла и первого соплового аппарата турбиныЮ позволяющих изменять $F_{\rm kp}$ и $F_{\rm cal}$, в ряде случаев оказывается нецелесообразным ввиду сложности и громоздкости органов управления. Поэтому часто в целях упрощения системы автоматического управления (САУ) и, следовательно, повышения надёжной работы двигателя и обеспечения надлежащего уровня безопасности полётов ВС $F_{\rm kp}$ и $F_{\rm cal}$ сохраняют неизменными. ПРи этом возможны следующие законы управления двигателем:

a)
$$n = n_{\text{max}} = const$$
; $T_{\Gamma}^* = \text{var}$; (4a)

$$6) T_{\Gamma}^* = T_{\Gamma max}^* = const; n = var$$

$$(46)$$

Как показывают теоретические расчёты, при определённых параметрах рабочего процесса и при дозвуковых скоростях полета ($M_{\rm H}<1$) при $F_{\rm kp}=const$, $F_{\rm cal}=const$ сохраняются также постоянными удельная работа компрессора $L_{\rm k}$ и $T_{\rm r}^*$. Например, такое изменение $L_{\rm k}$ и $T_{\rm r}^*$ при законе управления (4a) характерно для одновального ТРД при $\pi_{\rm k}^*$ расчётная степень повышения давления в компрессоре на H=0, V=0).

Если же ТРД применяется для обеспечения сверхзвуковых скоростей полета $(M_{\rm H}>1.3)$, то использование закона управления (4a) нецелесообразно, так как при нерегулируемом выходном сопле $(F_{\rm kp}=const)$ происходит существенное снижение тяги из-за уменьшения $T_{\rm r}^*$ или частоты вращения ротора n (при законе управления 4б).

При применении двухвальных ТРД улучшается работа турбокомпрессора на нерасчётных режимах за счёт расширения диапазона устойчивых режимов работы компрессора. Однако такая схема ГТД приводит к появлению ещё одного

регулируемого параметра $n_{\rm H\,\!I}$ (или $n_{\rm B\,\!I}$) — частоты вращения ротора низкого (или высокого) давления, то есть в двухвальных ТРД регулируемыми параметрами являются $n_{\rm HZ}$, $n_{\rm BZ}$ и $T_{\rm r}^*$. При неизменной проточной части турбокомпрессора ($F_{\rm cal}$ = const, $F_{ca2} = const$) наличие одного регулирующего фактора приводит к следующим возможным законам управления:

a)
$$T_{\Gamma}^{*} = const; n_{B,\Pi} = var; n_{H,\Pi} = var$$
 (5a)
6) $n_{B,\Pi} = const; T_{\Gamma}^{*} = var; n_{H,\Pi} = var$ (56)

$$6) n_{\text{BJ}} = const; T_{\Gamma}^* = var; n_{\text{HJ}} = var$$

$$(56)$$

B)
$$n_{\rm HJ} = const$$
; $T_{\rm r}^* = var$; $n_{\rm BJ} = var$ (5B)

Целесообразность использования того или иного закона управления обусловливается целью или назначением летательного аппарата. Например, закон управления (5б) оказывается выгодным для ВС с околозвуковыми скоростями полёта $(M_{\rm H}=0.9...0.95).$

Для сверхзвуковых скоростей полёта более целесообразным может оказаться закон управления (5в). В этом случае с ростом $M_{\rm H}$ увеличиваются $n_{\rm BД}$ и $T_{\rm F}^*$, что существенно повышает тягу двигателя. Однако при этом необходимо ограничивать $T_{\scriptscriptstyle \Gamma}^{\ *}$, чтобы предохранить лопатки первых ступеней турбины высокого давления от «перегрева», то есть перейти на закон управления (5а).

Таким образом, для больших сверхзвуковых скоростей полёта получается комбинированный закон управления (5в и 5а). Закон управления (5а) является промежуточным между законами (5в(и (5б) и часто называется «ограничением по предельной температуре газа».

В форсированных ТРД (ТРДФ) чаще применяется закон управления (1). Однако непосредствееное поддержание постоянной ${T_{\Phi}}^*$ ещё более сложно, чем ${T_{\Gamma}}^*$. Поэтому у ТРДФ, имеющих на бесфорсажных режимах закон управления (4а), для режимов форсажа применяют:

$$\pi_{\mathsf{T}}^* = const; F_{\mathsf{Kp}\,\phi} = const \tag{6}$$

где $F_{\mathrm{kp}\; \varphi} = F_{\mathrm{kp}\; \sqrt{\frac{T_{\varphi}^*}{T_{\pi}^*}}}$ - потребная площадь выходного сопла в критическом сечении

при включении форсажной камеры; ${T_{\scriptscriptstyle \mathrm{T}}}^*$ - температура газа за турбиной. При этом величина ${T_{\Phi}}^*$ с достаточной степенью точности сохраняется постоянной.

Для небольших скоростей полёта ($M_{\rm H}$ =0.6...0.7) применяют турбовинтовые двигатели (ТВД). Регулирующими факторами в ТВД обычно являются: $G_{\scriptscriptstyle \rm T}$ – расход топлива и ϕ_{ycr} – угол установки лопастей воздушного винта, а регулируемыми параметрами n и T_r^* . На всех отечественных ТВД (НК-12, АИ-20, АИ-24 и др.), а также на большинстве зарубежных ТВД применяется закон управления:

$$n = const$$
; $T_{\Gamma}^* = var$ (7)

а после, так называемой высоты $H_{\text{огр}}$ и скорости $V_{\text{огр}}$ ограничения винтовой мощности n = const; $T_{\Gamma}^* = T_{\Gamma max}^* = const$

Постоянство частоты вращения ротора ТВД имеет следующие преимущества: упрощается система автоматического управления; обеспечивается приемлемая экономичность двигателя на дроссельных режимах; уменьшается опасность возникновения резонансных колебаний вала и лопаток; увеличивается запас устойчивости компрессора на пониженных режимах работы двигателя; улучшается приёмистость ГТД и др. К недостаткам этого закона управления следует отнести

требование большого диапазона изменения ϕ_{ycr} (сложная конструкция воздушного винта), а также то, что двигатель в течение большей части периода эксплуатации должен работать на максимальной частоте вращения ротора ГТД.

Большое распространение получили в гражданской авиации вспомогательные ГТД (ВГТД). Входящие в состав вспомогательных силовых установок (ВСУ), они на воздушных судах обеспечивают: запуск основных (маршевых) двигателей ВС; питание системы кондиционирования)СКВ) сжатым воздухом; питание бортовой сети ВС электроэнергией переменного и постоянного токов и др. В связи с приводом электрогенератора переменного тока и удовлетворения требований стабильности его выходных параметров независимо от внешних и внутренний воздействий в ВГТД применяется закон и программа регулирования:

 $n_{\phi\mu 3} = const; T_{\Gamma}^* = var$ (9)

Основным двигателем в современных ВС ГА является двухконтурный ТРД (ТРДД). Существуют различные схемы ТРДД: двухвальные и трехвальные; с раздельным выпуском газа и воздуха из выходных сопел; со смешением газа и воздуха за турбиной и общим выходным соплом; с передним или задним расположением вентилятора ТРДД; с форсажной камерой в общем выходном сопле или в наружном контуре и др.

В качестве регулирующего факторап в ТРДД, как правило, выступает расход топлива $G_{\rm T}$. Поэтому для ТРДД с нерегулируемой геометрией проточной части ($F_{\rm cal} = const$, $F_{\rm kpl} = const$, $F_{\rm kpl} = const$) может быть использован один из вышеприведенных законов управления (5a, 5б, 5в). Выбор того или иного закона управления обосновывается также, как и для двухвального ТРД.

Для форсированных ТРДД (ТРДДФ) в принципе могут использоваться упомянутые законы управления для ТРД (6). В отличие от ТРДФ в ТРДДФ с нерегулиремым компрессором условие $T_{\phi}^* = const$ соответствует в общем случае не постоянная, а переменная площадь критического сечения выходного сопла $F_{\kappa p \phi}$. Порядок её определения показан ниже в конкретном примере расчёта ВСХ ТРДДФ.

Обычно расчёт высотно-скоростных характеристик авиационных ГТД включает решение следующих задач:

- 1. Выбор и обоснование закона управления двигателя. В учебной практике для этих целей используется задание двигателя прототипа, который устанавливается на конкретных воздушных судах.
- 2. Определение (или задание) характеристик отдельных элементов двигателя (входного устройства, компрессора, камеры сгорания, турбины, выходного сопла, камеры смешения, форсажной камеры, редуктора, генератора, воздушного винта и др.).
- 3. Газодинамический расчёт двигателя в условиях старта воздушного судна (H=0, V=0) на взлётном режиме работы ГТД.
- 4. Составление системы уравнений совместной работы элементов ГТД для нерасчётных режимов работы двигателя.
- 5. Расчёты ГТД на различных скоростях и высотах полёта с цель. Определения тяги (или мощности) и удельного расхода топлива.
 - 6. Построение эксплуатационных ограничений.

1. Определение характеристик отдельных элементов двигателя.

1.1. Входное устройство.

Для дозвуковых скоростей полёта BC коэффициент восстановления полного давления во входном устройстве находится по формуле:

$$\sigma_{\rm BX} = \sigma_{\rm BX \ pacy} - 0.033 \cdot M_{\rm H} \tag{1.1}$$

Для сверхзвуковых скоростей полёта BC этот показатель эффективности входного устройства рассчитывается по стандартной зависимости:

$$\sigma_{ex} = \sigma_{ex \ pac^{4}} - 0.02241 \cdot (M_{H} - 1)^{2} - 0.14561 \cdot (M_{H} - 1)^{3} + 0.086282 \cdot (M_{H} - 1)^{4} - 0.014342 \cdot (M_{H} - 1)^{5}$$
(1.2)

1.2. Компрессор.

1.2.1. Нерегулируемый компрессор. Закон управления двигателя для дозвуковых скоростей полёта ВС для одновального ТРД n = const. При постоянной степени понижения давления в турбине ($\pi_{\rm T}^* = const$ при $F_{\rm kp} = const$) степень повышения давления воздуха в компрессоре $\pi_{\rm k}^*$, адиабатический КПД $\eta_{\rm k}^*$ и относительная плотность тока на входе в компрессор $q(\lambda_{\rm B})$ находятся по формулам:

$$\frac{1. \pi_{\kappa \text{ pacy}}^* = 2.5...7}{\pi_{\kappa}^* = 2.12 \cdot \overline{n} - 1.12,}$$
(1.2)

$$\overline{\eta_{\kappa}^*} = -2.6 + 7.6 \cdot \overline{n} - 4 \cdot \overline{n}^2 \quad (\text{при } \pi_{\kappa \text{ pacy}}^* = 2.5...3.5)$$
 (1.3)

$$\overline{\eta_{\kappa}^*} = -0.5 + 3.5 \cdot \overline{n} - 2 \cdot \overline{n}^2 \quad (\text{при } \pi_{\kappa \text{ pacy}}^* = 3.5...7.0)$$
 (1.4)

$$\overline{q(\lambda_{\rm B})} = 0.5 + 0.5 \cdot \overline{n} \quad (\pi_{\rm K \, pacq}^* = 2.5)$$
 (1.5)

$$\overline{q(\lambda_{\rm B})} = 0.155 + 0.845 \cdot \overline{n} \quad (\pi_{\rm K \, pac4}^* = 2.5...3.0)$$
 (1.6)

$$\overline{q(\lambda_{\rm B})} = 0.075 + 0.925 \cdot \overline{n} \quad (\pi_{\rm K \, pacq}^* = 3.0...4.0)$$
 (1.7)

$$\overline{q(\lambda_{\rm B})} = -0.2 + 1.2 \cdot \overline{n} \quad (\pi_{\rm K \, pac^{\rm H}}^* = 4.0...4.5)$$
 (1.8)

$$\overline{q(\lambda_{\rm B})} = -0.33 + 1.33 \cdot \overline{n} \quad (\pi_{\rm \kappa \ pac^{\rm q}}^* = 4.5...5.0)$$
 (1.9)

$$\overline{q(\lambda_{\rm B})} = -0.45 + 1.45 \cdot \overline{n} \quad (\pi_{\rm K \ pac4}^* = 5.0...7.0)$$
 (1.10)

где
$$\overline{\pi_{\rm K}^*} = \frac{\pi_{\rm K}^*}{\pi_{\rm K} \; {\rm pac}^{_{\rm H}}}; \; \overline{n} = \frac{n_{\rm \Pi p}}{n_{\rm \Pi p} \; {\rm pac}^{_{\rm H}}} = \frac{\frac{n}{\sqrt{T_{\rm H}^*}}}{\frac{n_{\rm pac}^{_{\rm H}}}{\sqrt{T_{\rm H}^* \; {\rm pac}^{_{\rm H}}}}} = \sqrt{\frac{288}{T_{\rm H}^*}}; \; \overline{q(\lambda_{\rm B})} = \frac{q\{\lambda_{\rm B})}{q\{\lambda_{\rm B} \; {\rm pac}^{_{\rm H}}\}}.$$

2. На расчётном режиме значения $q(\lambda_{\text{в расч}})$ могут быть выбраны из таблицы 1.1. Таблица 1.1

Примечание:
$$q(\lambda) = (\frac{k+1}{2})^{\frac{1}{k-1}} \lambda (1 - \frac{k-1}{k+1} \lambda^2)^{\frac{1}{k-1}}$$
.

1.2.2. Регулиремый компрессор путём поворота лопаток входного направляющего аппарата и направляющих аппаратов первых ступеней. Закон управления двигателя для дозвуковых скоростей полёта ВС для одновального ТРД n=const при $\pi_{\scriptscriptstyle {
m T}}^{\ *}=const$:

$$\frac{\pi^{\text{pu}} \ n \le 1.0}{\pi_{\kappa}^* = 2.5 \cdot n - 1.5} \ (\pi^{\text{pu}} \ \pi_{\kappa \text{ pacy}}^* = 6...10)$$
 (1.11)

$$\overline{\pi_{\kappa}^*} = 3.2 \cdot \overline{n} - 2.2 \text{ (при } \pi_{\kappa \text{ pacy}}^* = 11...20)$$
 (1.12)

$$\frac{\pi^{\text{при }} n > 1.0}{\pi_{\kappa}^* = 2.1 \cdot n - 1.1 \ (\text{при } \pi_{\kappa \text{ pacy}}^* = 6...20)$$
 (1.13)

$$\overline{\eta_{\kappa}^*} = -0.9 + 4.2 \cdot \overline{n} - 2.3 \cdot \overline{n}^2$$
 (при $\pi_{\kappa \text{ pacy}}^* = 6...20$) (1.14)

Для относительной плотности тока :

$$\overline{q(\lambda_{\rm B})} = a \cdot (\overline{n} - 1)^3 + \epsilon \cdot (\overline{n} - 1)^2 + c \cdot (\overline{n} - 1) + 1, \tag{1.15}$$

где значения a, e, c берутся из таблицы 1.2.

Таблица 1.2

С полученными значениями π_{κ}^{*} , η_{κ}^{*} и $q(\lambda_{\mathtt{B}})$ далее рассчитываются:

- относительное изменение удельной работы компрессора

$$\overline{L_k} = \frac{L_k}{L_k \ pac^{4}},\tag{1.16}$$

где
$$L_{\rm k} = c_{\rm p} T_{\rm H}^* (\pi_{\kappa}^{*\frac{\kappa-1}{\kappa}} - 1)/\eta_{\kappa}^*; L_{\kappa \; {\rm pacu}} = c_{\rm p} T_{\rm H \; pacu}^* (\pi_{\kappa \; pacu}^{*\frac{\kappa-1}{\kappa}} - 1)/\eta_{\kappa \; {\rm pacu}}^*$$

- относительное изменение температуры газа перед турбиной

$$\overline{T_{\Gamma}^*} = \overline{L_k} \tag{1.17}$$

Для двухвальных ТРД (или ТРДД) при законе управления двигателя (5б) (для дозвуковых скоростей полёта ВС) написанные выше зависимости относятся в компрессору высокого давления (определяются $\pi^*_{\text{квд}}$, $\eta^*_{\text{квд}}$, $q(\lambda_x)$). Для компрессора низкого давления степень повышения давления воздуха $\pi^*_{\text{кнд}}$, $\eta^*_{\text{кнд}}$, $q(\lambda_{\text{в}})$) рассчитываются из уравнений совместной работы элементов турбокомпрессора низкого давления (см. ниже).

1.3. Камера сгорания.

Принимается, что на всех режимах полёта коэффициент выделения тепла η_r и коэффициент восстановления полного давления $\sigma_{\kappa c}$ не меняются, то есть:

$$\eta_{\rm r} = const, \, \sigma_{\rm KC} = const.$$
 (1.18)

1.4. Турбина.

Принимается, что приведенный расход газа через первый сопловой аппарат

турбины $\frac{G_{\Gamma}\sqrt{T_{\Gamma}^{*}}}{p_{\Gamma}^{*}}$ и адиабатический КПД по параметрам заторможенного потока $\eta_{{}^{*}}$

не меняются по режимам полёта, то есть:

$$\frac{G_{\Gamma}\sqrt{T_{\Gamma}^{*}}}{\underset{P_{\Gamma}}{*}} = const; \, \eta_{\tau}^{*} = const. \tag{1.19}$$

1.6. Камера смешения в двухконтурных ТРД.

Принимается, что на входе в камеру смешения отношение приведенного расхода в

наружном контуре
$$\frac{G_{\rm B2}\sqrt{T_{\rm BH}^*}}{p_{\rm BH}}$$
 и газа во внутреннем контуре $\frac{G_{\Gamma}\sqrt{T_{\Gamma}^*}}{p_{\Gamma}}$, а также

коэффициент восстановления полного давления σ_{cm} остаются неизменными по режимам полета, то есть:

режимам полета, то есть:
$$\frac{G_{\rm B2}\sqrt{T_{\rm BH}^*}}{\frac{p_{\rm BH}}{G_{\rm \Gamma}\sqrt{T_{\rm \Gamma}^*}}} = const; \, \sigma_{\rm cm} = const \tag{1.20}$$

1.7. Выходное сопло.

Принимается, что коэффициент скорости в выходном сопле не меняется по режимам полёта, то есть:

$$\varphi_c = const.$$
 (1.21)

1.8. Форсажная камера.

$$\eta_{r\phi} = const, \, \sigma_{\kappa\phi} = const.$$
 (1.22)

1.9. Редуктор.

Принимается, что механический КПД редуктора остаётся неизменным на всех режимах полёта:

$$\eta_{\text{pe}_{\pi}} = const$$
(1.23)

1.10. Воздушный винт.

Принимается, что КПД винта находится для произвольного режима полёта по формуле:

$$\eta_{\rm B} = \eta_{\rm B \ pac +} M_{\rm H} (2.857 - 2.04 M_{\rm H}),$$
(1.24)

где расчётное значение КПД винта $\eta_{\text{в расч}}$ определяется на крейсерском режиме полёта ВС $(H_{\text{кр}}, M_{\text{кр}})$ (для двигателя – прототипа).

1.11. Система отбора воздуха в ВГТД.

Для того, чтобы внешние воздействия не оказывали влияния на работу ВГТД, в системе отбора воздуха на нужды летательного аппарата устанавливается труба Вентури, в критическом сечении которой приведенный расход воздуха сохраняется постоянным на всех режимах полёта, то есть:

$$\frac{G_{\text{OT}\delta}\sqrt{T_{\text{OT}\delta}^*}}{\underset{p_{\text{OT}\delta}}{*}} = const \tag{1.25}$$

Принимается также, что в системе отбора воздуха коэффициент восстановления полного давления не меняется по режимам полёта, то есть $\sigma_{\text{orf}} = const.$ (1.26)

1.12. Система отбора мощности от турбины двигателя.

Мощность, отбираемая от турбины, на привод вспомогательных агрегатов (топливных и масляных насосов, генератора и др.), а также для преодоления трения в опорах ротора двигателя учитывается механическим КПД $\eta_{\text{мех}}$, величина которого сохраняется постоянной на всех режимах полёта: $\eta_{\text{мех}} = const$.

Для расчёта ВСХ ВГТД принимается, что КПД электрогенератора не меняется по режимам полёта: $\eta_{reh} = const$.

2. Система уравнений совместной работы элементов авиационных ГТД.

Для того, чтобы рассчитать параметры рабочего процесса в авиационных ГТД на нерасчётных режимах работы для каждого типа двигателя (ТРД, ТРДД, ТВД, ВГТД и др.) составляется система уравнений совместной работы.

2.1. Совместная работа турбины и сопла ТРД.

Уравнение совместной работы турбины и выходного сопла ТРД представляется в виде:

$$\pi_{\mathrm{T}}^* = \left[\frac{\sigma_{\mathrm{Kp}} F_{\mathrm{Kp}} q(\lambda_{\mathrm{Kp}})}{\sigma_{\mathrm{ca}} F_{\mathrm{ca}1} q(\lambda_{\mathrm{ca}1})} \right]_{n+1}^{2n}, \tag{2.1}$$

где $\sigma_{\rm кp}$ — коэффициент восстановления полного давления между сечением за турбиной и критическим сечением; $\sigma_{\rm ca}$ — то же между входом в турбину и минимальным сечением первого соплового аппарата ("горлом" двигателя); $F_{\rm kp}$, $F_{\rm cal}$ — площадь критического сечения выходного сопла и "горла" двигателя; $q(\lambda_{\rm kp})$,

 $q(\lambda_{\rm cal})$ — относительные плотности тока в рассматриваемых сечениях проточной части турбины и сопла; n — показатель полиропы расширения газа в турбине и сопле.

В современных ТРД, ТРДД, ТРДФ и ТРДДФ перепад давления в выходных соплах в большинстве нерасчётных режимов работы оказывается больше критического значения ($\pi_{\rm kp}$ =1.85 для газа и 1.89 – для воздуха), поэтому при расчёте высотноскоростных характеристик принимают $q(\lambda_{\rm kp}) \approx const.$

Отличительной особенностью "горла" двигателя является постоянный режим течения в первом сопловом аппарате даже при достаточно глубоком дроссели-вании ГТД. Поэтому в расчётах лётных характеристик названных типов авиационных ГТД принимают $q(\lambda_{cal}) \approx const.$

Таким образом, пренебрегая изменением потерь полного давления в первом сопловом аппарате турбины ($\sigma_{ca} \approx const$) и в выходном сопле ($\sigma_{\kappa p} \approx const$) при нерегулируемой прточной части турбины ($F_{cal} = const$) и сопла ($F_{\kappa p} = const$) при расчёте ВСХ принимаем для всех законов управления двигателя условие $\pi_{\tau}^* = const$.

- 2.2. Совместная работа компрессора, камеры сгорания и турбины.
- 2.2.1. Совместная работа элементов турбокомпрессора в одновальном ТРД.

Совместная работа компрессора, камеры сгорания и турбины на нерасчётных режимах работы описывается уравнением:

$$\frac{\pi_{\mathrm{K}}^*}{q(\lambda_{\mathrm{B}})} = C\sqrt{\frac{\frac{\kappa-1}{*_{\mathrm{K}}^*}-1}{\eta_{\mathrm{K}}^*}},\tag{2.2}$$

где C – функция:

$$C = \sqrt{(1-g_{\text{охл}}-g_{\text{отб}})(1+g_{\text{т}})} \cdot \frac{m_{\text{B}}}{m_{\text{T}}} \cdot \frac{F_{\text{B}}}{F_{\text{cal}}} \cdot \frac{1}{\sigma_{\text{KC}}\sigma_{ca}q(\lambda_{\text{cal}})}$$

$$\frac{c_{\text{pB}}}{c_{\text{pr}} \eta_{\text{Mex}} \left(1 - \frac{1}{\frac{\kappa_{\mathcal{E}} - 1}{\kappa_{\mathcal{E}}}}\right) \eta_{\text{T}}^{*}} }{\pi_{\text{T}}^{*} \kappa_{\mathcal{E}}} \tag{2.3}$$

Пренебрегая на нерасчётных режимах работы турбокомпрессора изменением: средней теплоёмкости газа (c_{pr}) и воздуха (c_{ps}) ;

отборами воздуха на охлаждение $g_{\text{охл}}$ турбины и на нужды летательного аппарата $g_{\text{отб}}$; относительным расходом топлива в камере сгорания $g_{\rm T}$;

потерь полного давления в камере сгорания $\sigma_{\kappa c}$ и в первом сопловом аппарате турбины σ_{ca} ;

механического КПД $\eta_{\text{мех}}$ и КПД турбины η_{T}

и согласно ранее принятым допущениям (см. 2.1) можно считать, что функция Cпредставляет собой константу, значение которой находится на расчётном режиме. Тогда степень повышения давления в компрессоре одновавального ТРД π_{κ}^{*} , КПД η_{κ}^{*} и относительная плотность тока $q(\lambda_{\rm B})$ на входе в компрессор рассчитываются по формулам, приведенным выше (см. раздел 1.2).

2.2.2. Совместная работа элементов турбокмпрессоров в двухвальном ТРД.

Уравнение совместной работы компрессора высокого давления, камеры сгорания и турбины привода компрессора ВД представляется в виде:

$$\frac{\pi_{\text{KBД}}^*}{q(\lambda_X)} = C_1 \sqrt{\frac{\frac{\kappa - 1}{* \kappa}}{\pi_{\text{KBД}}^* - 1}},$$
(2.4)

где C_1 – функция находится по формуле:

$$C_1 = \sqrt{(1 - g_{\text{OXJ}} - g_{\text{OTG}})(1 + g_{\text{T}})} \cdot \frac{m_{\text{B}}}{m_{\text{F}}} \cdot \frac{F_{\text{X}}}{F_{\text{cal}}} \cdot \frac{1}{\sigma_{\text{Kc}}\sigma_{ca}q(\lambda_{\text{cal}})} \cdot$$

$$\frac{c_{\text{pB}}}{c_{\text{pr}} \eta_{\text{Mex}} \left(1 - \frac{1}{\frac{\kappa_{\mathcal{E}} - 1}{\kappa_{\mathcal{E}}}}\right) \eta_{\text{TBA}}^{*}} }{\frac{\kappa_{\mathcal{E}} - 1}{\pi_{\text{TBA}}}} \tag{2.5}$$

Значение относительной плотности тока на входе в компрессор ВД $q(\lambda_{x \text{ pacy}})$ на расчётном режиме определяется следующи образом:

- 1. Задаёмся скоростью выхода из компрессора ВД $c_{\text{к расч}}$ =100...120 м/с.
- 2. Определяется приведенная скорость за компрессором ВД и :

$$\lambda_{\kappa \text{ pacy}} = \frac{c_{\kappa \text{ pacy}}}{\sqrt{\frac{2\kappa RT_{\kappa \text{ pacy}}^*}{\kappa+1}}}; q(\lambda_{\kappa \text{ pacy}}) = \left(\frac{\kappa+1}{2}\right)^{\frac{1}{\kappa-1}} \lambda_{\kappa \text{ pacy}} \left(1 - \frac{\kappa-1}{\kappa+1}\lambda_{\kappa \text{ pacy}}^*\right)^{\frac{1}{\kappa-1}}$$

3. Принимая приближенно распределение $q(\lambda)$ по тракту компрессора линейным,

находим значение
$$q(\lambda_{\text{х расч}})$$
 из соотношения:
$$\frac{q(\lambda_{\text{х расч}}) - q(\lambda_{\text{к расч}})}{q(\lambda_{\text{в расч}}) - q(\lambda_{\text{к расч}})} = \frac{\pi_{\text{кнд расч}}^* - \pi_{\text{кнд расч}}^* \pi_{\text{квд расч}}^*}{1 - \pi_{\text{кнд расч}}^* \pi_{\text{квд расч}}^*}$$

При принятых выше допущениях функция C_1 представляет собой константу, величина которой определяется на расчётном режиме. На нерасчётных режимах значения $\pi^*_{_{\text{КВД}}}$, $\eta^*_{_{\text{КВД}}}$ и $q(\lambda_{_{\! X}})$ могут быть рассчитаны по формулам, приведенным в разделе 1.2, если известно относительное изменение приведенной частоты вращения ротора турбкомпрессора высокого давления:

$$\overline{n_{\text{B} \Pi}} = \frac{\frac{n_{\text{B} \Pi}}{\sqrt{T_{\text{X}}^{*}}}}{\frac{n_{\text{B} \Pi} \text{ pac}^{\text{H}}}{\sqrt{T_{\text{X}}^{*} \text{ pac}^{\text{H}}}}} = \sqrt{\frac{T_{\text{X}}^{*} \text{ pac}^{\text{H}}}{T_{\text{X}}^{*}}} = \sqrt{\frac{T_{\text{X}}^{*} \text{ pac}^{\text{H}}}{T_{\text{X}}^{*}}} = \sqrt{\frac{T_{\text{X}}^{*} \text{ pac}^{\text{H}}}{\frac{\kappa - 1}{\kappa}}}{\sqrt{T_{\text{H}}^{*} (1 + \frac{\pi_{\text{KH} \Pi}}{\kappa} - 1)}}} \tag{2.6}$$

Уравнение совместной работы элементов турбокомпрессора низкого давления представляется в виде:

$$\frac{\pi_{\text{KH},\Pi}^* \pi_{\text{KB},\Pi}^*}{q(\lambda_{\text{B}})} = C_2 \sqrt{\frac{\pi_{\text{KH},\Pi}^* - 1}{\pi_{\text{KH},\Pi}^* - 1}}{\eta_{\text{KH},\Pi}^*}}$$
(2.7)

где
$$C_2$$
 – функция находится по формуле:
$$C_2 = \sqrt{(1-g_{\text{охл}}-g_{\text{отб}})(1+g_{\text{т}})} \cdot \frac{m_{\text{B}}}{m_{\Gamma}} \cdot \frac{F_{\text{B}}}{F_{\text{cal}}} \cdot \frac{1}{\sigma_{\text{KC}}\sigma_{ca}q(\lambda_{\text{cal}})} \cdot$$

$$\frac{c_{\text{pB}}}{c_{\text{pr}}\eta_{\text{Mex}}\left(1-\frac{1}{\frac{\kappa_{\Gamma}-1}{\kappa_{\Gamma}}}\right)\eta_{\text{TBД}}^{*}\left(1-\frac{1}{\frac{\kappa_{\Gamma}-1}{\kappa_{\Gamma}}}\right)\eta_{\text{THД}}^{*}} }{\frac{\kappa_{\Gamma}-1}{\pi_{\text{TBД}}}\eta_{\text{THД}}^{*}} \tag{2.8}$$

При принятых выше допущениях функция C_2 представляет собой константу, величина которой находится на расчётном режиме.

Из формул (2.4) и (2.7) видно, что неизвестными величинами в общем случае являются: $\pi^*_{\text{кнд}}$, $q(\lambda_{\text{в}})$, $\eta^*_{\text{кнд}}$. Поэтому для решения задачи принимаем дополнительное условие: адиабатический КПД ступени компрессора низкого давления $\eta_{0\, HZ}$ или, что тоже самое показатель политропы сжатия в этом компрессоре не меняются по режимам полёта. В этом случае адиабатический КПД компрессора низкого давления рассчитывается по формуле:

$$\eta_{\text{кнд}}^* = \frac{\frac{\frac{\kappa - 1}{\kappa}}{\frac{\kappa - 1}{\kappa} - 1}}{\frac{\kappa - 1}{\kappa \eta_{\text{0 HZ}}}}$$

$$= \frac{\frac{\kappa - 1}{\kappa \eta_{\text{0 HZ}}}}{\frac{\kappa \eta_{\text{0 HZ}}}{\kappa \eta_{\text{0 HZ}}} - 1}$$
(2.9)

Определение на нерасчётных режимах значений $\pi^*_{\text{кнд}}, q(\lambda_{\text{в}}), \eta^*_{\text{кнд}}, \pi^*_{\text{квд}}, q(\lambda_{\text{х}}), \eta^*_{\text{квд}}$ производится в следующей последовательности:

Стр. 97: [2] Удалено Виктор 02.11.2001 10:06:00

Начальное значение $\pi^*_{\text{кнд}}$ рассчитывается по формуле:

$$\pi_{\text{кнд}}^* = \left(1 + \frac{const_1}{T_{\text{H}}^*}\right)^{\frac{\kappa\eta_{\text{O HД}}}{\kappa - 1}},$$
(2.10)

где значение константы $const_1$ находится на расчётном режиме.

2. Определяется температура торможения за компрессором НД:

$$T_{\mathrm{X}}^{*} = T_{\mathrm{H}}^{*\kappa\eta_{\mathrm{O}\,\mathrm{H}\mathrm{J}}} \tag{2.11}$$

3. Относительное изменение приведенной частоты вращения ротора турбокомпрессора высокого давления (при законе управления n=const):

$$\overline{n_{\rm BH}} = \sqrt{\frac{T_{\rm X}^* \, \rm pacq}{T_{\rm X}^*}} \tag{2.12}$$

- 4. Степень повышения давления воздуха $\pi^*_{\text{квд}}$, относительная плотность тока на входе в компрессор ВД $q(\lambda_{\text{x}})$, КПД $\eta^*_{\text{квд}}$, относительное изменение работы $\overline{L_k}$ и температуры газа перед турбиной $\overline{T_{\Gamma}^*}$ определяются по формулам, приведенным в разделе 1.2.
- 5. Из уравнения (2.7) находится относительная плотность тока на входе в компрессор НД $q(\lambda_{\text{в}})$.
- 6. Из уравнения неразрывности между сечениями проточной части компрессора "B-B" и "X-X"

$$\frac{F_{\rm X}}{F_{\rm B}} = \sqrt{\frac{T_{\rm X}^*}{T_{\rm B}^*}} \cdot \frac{q(\lambda_{\rm B})}{\pi_{\rm KHJ}^*} \cdot \frac{1}{q(\lambda_{\rm X})} = \sqrt{\pi_{\rm KHJ}^*}^* \frac{\kappa - 1}{\kappa \eta_{\rm O~HJ}} \cdot \frac{q(\lambda_{\rm B})}{\pi_{\rm KHJ}^*} \cdot \frac{1}{q(\lambda_{\rm X})}$$

рассчитывается новое значение $\pi^*_{\text{кнд}}$:

$$\pi_{\text{кнд}}^* = \left[const_2 \cdot \frac{q(\lambda_B)}{q(\lambda_X)}\right]^{\frac{2\kappa\eta_{0 \text{ нд}}}{2\kappa\eta_{0 \text{ нд}} - \kappa - 1}}$$
(2.13)

где $const_2 = \frac{F_X}{F_B}$ - значение находится на расчётном режиме.

В случае не совпадения найденного значения $\pi^*_{\text{кнд}}$ с ранее определённым в п.1 расчёт повторяется, начиная с п.2, с новым значением $\pi^*_{\text{кнд}}$ до полной сходимости.

2.2.3. Совместная работа элементов турбокмпрессоров в трёххвальном ТРД.

Уравнение совместной работы элементов турбокомпрессора ВД представляется также как для двухвального ТРД (см. формулу 2.4).

Уравнение совместной работы элементов турбокомпрессора среднего давления представляется в виде:

$$\frac{\pi_{\text{KCД}}^* \pi_{\text{KBД}}^*}{q(\lambda_{\text{BH}})} = C_4 \sqrt{\frac{\frac{\frac{K-1}{*}}{\pi_{\text{KCД}}^*} - 1}{\frac{\pi_{\text{KCД}}}{*}}}, \qquad (2.14)$$

где C_3 – функция находится по формуле:

$$C_{4} = \sqrt{(1 - g_{\text{OXJ}} - g_{\text{OTG}})(1 + g_{\text{T}})} \cdot \frac{m_{\text{B}}}{m_{\Gamma}} \cdot \frac{F_{\text{BH}}}{F_{\text{Cal}}} \cdot \frac{1}{\sigma_{\text{KC}}\sigma_{ca}q(\lambda_{\text{Cal}})} \cdot \frac{1}{\sigma_{\text{KC}}\sigma_{ca}q(\lambda_{\text{Cal}})} \cdot \frac{c_{\text{pB}}}{c_{\text{pr}}\eta_{\text{Mex}}} \cdot \frac{1}{(1 - \frac{1}{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}})\eta_{\text{TBJ}}^{*}} (1 - \frac{1}{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}})\eta_{\text{TCJ}}^{*}}$$

$$\sqrt{\frac{c_{\text{pB}}}{c_{\text{pr}}\eta_{\text{Mex}}} \frac{1}{\eta_{\text{TBJ}}} \eta_{\text{TBJ}}^{*} (1 - \frac{1}{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}})\eta_{\text{TCJ}}^{*}} }$$

$$(2.15)$$

Уравнение совместной работы элементов турбкомпрессора низкого давления представляется формулой:

$$\frac{\pi_{\text{KHД}}^* \pi_{\text{KCД}} \pi_{\text{KBД}}^*}{q(\lambda_{\text{B}})} = C_5 \sqrt{\frac{\frac{\kappa - 1}{* \kappa}}{\pi_{\text{KHД}}^* - 1}}$$

$$\frac{\pi_{\text{KHД}}^* \pi_{\text{KCД}} \pi_{\text{KB}}^*}{\eta_{\text{KHД}}}$$
(2.15)

где C_4 – функция находится по формуле

$$C_5 = \sqrt{(1 - g_{\text{OXJI}} - g_{\text{OTG}})(1 + g_{\text{T}})} \cdot \frac{m_{\text{B}}}{m_{\text{F}}} \cdot \frac{F_{\text{B}}}{F_{\text{cal}}} \cdot \frac{1}{\sigma_{\text{KC}}\sigma_{ca}q(\lambda_{\text{cal}})} \cdot$$

$$\frac{c_{\text{pB}}}{c_{\text{pr}} \eta_{\text{Mex}} (1 - \frac{1}{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}}) \eta_{\text{TBД}}^{*} (1 - \frac{1}{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}}) \eta_{\text{TCД}}^{*} (1 - \frac{1}{\frac{\kappa_{\Gamma} - 1}{\kappa_{\Gamma}}}) \eta_{\text{THД}}^{*}}}{\eta_{\text{TBД}}^{*} \eta_{\text{TCД}}^{*} \eta_{\text{TCД}}^{*} \eta_{\text{THД}}^{*}}}$$
(2.16)

Согласно принятым выше допущениям функции C_3 и C_4 можно приближённо считать константами, значение которых определяется на расчётном режиме.

Определение на нерасчётных режимах значений $\pi^*_{\text{кнд}}$, $q(\lambda_{\text{в}})$, $\eta^*_{\text{кнд}}$, $\pi^*_{\text{ксд}}$, $q(\lambda_{\text{вн}})$, $\eta^*_{\text{ксд}}$, $\pi^*_{\text{квд}}$, $q(\lambda_{\text{х}})$, $\eta^*_{\text{квд}}$ производится по алгоритму, написанному выше для двухвального ТРД. Дополнительными условиями здесь являются неизменная степень политропы сжатия в компрессоре НД и СД.