ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра технической эксплуатации авиационных электросистем и пилотажно - навигационных комплексов

А.А. Гусев

СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПОЛЕТОМ

ПОСОБИЕ

по выполнению лабораторной работы «Изучение и исследование контуров угловой стабилизации самолета»

Для студентов IV и V курсов специальности 160903 всех форм обучения

	Данные	пособ	бие :	издаются	В	соответс	ствии	c :	учебно	ой програ	MM	ой
дисці	иплины	«Сис	гемь	і автома	гит	ческого	упра	вле	кин	полетом»	Д	ΙПЯ
студе	нтов IV	и V к	ypco	в специал	ьн	ости 160	903					
	Рассмот	рены	и (одобрены	Н	а засед	ании	кас	редры		Γ.	И
метод	цического	э совет	га пс	специаль	но	сти						

Рецензент профессор Константинов В.Д.

ЛАБОРАТОРНАЯ РАБОТА №2

«Изучение и исследование контуров угловой стабилизации самолета»

Цель работы.

Целью работы является изучение и исследование методом математического моделирования свойств системы «Самолет – автопилот (АП)» с различными законами управления, а также оценка влияния отказов в контурах угловой стабилизации на динамические свойства система «Самолет – автопилот».

Программа работы.

- 1. Знакомство с основными теоретическими положениями и подготовка исходных данных для выполнения лабораторной работы.
- 2. Знакомство с персональным компьютером и программой «MARS».
- 3. Экспериментальное исследование контуров угловой стабилизации самолета, описываемых различными законами управления.
- 4. Анализ полученных результатов, выводы.
- 5. Оформление отчета.

Исходным материалом для подготовки к лабораторной работе являются значения коэффициентов математической модели самолета типа ТУ-154 представленные в табл.1 и табл.2, соответственно, для продольного и бокового движений.

Номер задания выдается преподавателем при проведении лабораторной работы.

Таблица 1

№	Исходные данные							
задания								
Коэффиц.	$a_{m_Z}^{\omega_Z}$	$a_{m_{_{\scriptstyle Z}}}^{\dot{\alpha}}$	$a_{m_z}^{\alpha}$	$a_{m_{Z}}^{\delta_{B}}$	a_y^{α}	$a_{m_Z}^{M_Z}$		
Размерн.	c ⁻¹	c ⁻¹	c ⁻²	c ⁻²	c ⁻¹	c ⁻²		
1	0,8	0,18	3,4	1,9	0,9	9,5·10 -7		
2	0,7	0,15	2,4	1,3	0,6	9,5·10 -7		
3	0,6	0,17	3,6	1,7	0,8	9,5·10 -7		
4	0,5	0,19	2,9	1,6	0,7	9,5·10 -7		
5	0,4	0,16	2,2	1,5	0,5	9,5.10 -7		

$N_{\overline{0}}$	Исходные данные							
задания								
Коэффиц.	$a_{m_y}^{\omega_y}$	$a_{m_y}^\beta$	$a_{m_y}^{\delta_H}$	$a_{m_x}^{\omega_x}$	$a_{m_X}^{\delta_{\vartheta}}$	a_z^{β}	$a_{\rm m_y}^{\rm M_y}$	$a_{m_X}^{M_X}$
Размерн.	c ⁻¹	c ⁻²	c ⁻²	c ⁻¹	c ⁻²	c ⁻¹	c ⁻²	c ⁻²
1	0,15	1,22	0,53	1,62	1,3	0,09	$6,9\cdot10^{-5}$	$2,3\cdot10^{-4}$
2	0,09	0,99	0,39	0,95	1,1	0,09	$7,4\cdot10^{-5}$	$2,6\cdot10^{-4}$
3	0,17	1,60	0,68	2,45	2,3	0,19	$7,8\cdot10^{-5}$	$3,6\cdot10^{-4}$
4	0,19	1,40	0,50	1,33	1,6	0,10	$7,3\cdot10^{-5}$	$2,6\cdot10^{-4}$
5	0,10	1,30	0,43	1,48	1,4	0,13	$7,0.10^{-5}$	$2,5\cdot10^{-4}$

1. <u>Знакомство с основными теоретическими положениями и подготовка исходных данных для выполнения лабораторной работы</u>.

При подготовке к лабораторной работе студентам необходимо изучить материал, изложенный в [1] на страницах 266-314.

По заданию преподавателя, используя исходные данные, приведенные в табл.1 и табл.2, произвести расчет передаточных чисел, входящих в исследуемый закон управления контура угловой стабилизации самолета.

Расчет передаточных чисел выполняется по выражениям, представленным ниже, в настоящем методическом пособии.

Номера расчетных формул представлены в соответствующих ячейках табл. 3÷5

Результаты расчетов передаточных чисел для исследуемых в лабораторной работе законов управления занести в табл. 3÷5.

1.1. Автопилоты стабилизации угла тангажа.

Наиболее распространенными автопилотами стабилизации угла тангажа являются автопилоты с законами управления представленными в табл.3.

Таблица 3

						пцаз	
$N_{\underline{0}}$	Законы управления	Параметры законов управления					
п/п		k ₉	k_{ω_z}	k ÿ	T_{9}	T_{μ}	
1	$\delta_{\rm B} = k_{\vartheta}(\vartheta - \vartheta_{\rm 3}) + k_{\omega_{\rm Z}}\omega_{\rm Z}$	(1-2)	(1-1)	-	-	-	
2	$\delta_{\rm B} = k_{\vartheta} \frac{T_{\vartheta} p + 1}{n} (\vartheta - \vartheta_{\vartheta}) + k_{\omega_{\rm Z}} \omega_{\rm Z}$	(1-4)	(1-3)	-	(1-5)	-	
	$O_B = K_9 - (9 - 9_3) + K_{\omega_z} \omega_z$	или	или		или		
	r	(1-7)	(1-6)		(1-8)		
3	$p\delta_{B} = k_{\vartheta}(\vartheta - \vartheta_{3}) + k_{\omega_{z}}\omega_{z} + k_{B}p^{2}\vartheta$	(1-	(1-9)	(1-1)	-	-	
	9	10)					
4	$T_{\mu}p$	(1-	(1-12)	_	_	1-2	
	$\frac{T_{_{\mathrm{II}}}p}{T_{_{\mathrm{II}}}p+1}\delta_{_{\mathrm{B}}} = k_{_{\vartheta}}(\vartheta - \vartheta_{_{3}}) + k_{\omega_{_{\mathrm{Z}}}}\omega_{_{\mathrm{Z}}}$	14)	ИЛИ (1.12)			c	
	- N F · -		(1-13)				

1.1.1 Автопилот стабилизации угла тангажа, с законом управления $\delta_{_B}=k_{_{\vartheta}}(\vartheta-\vartheta_{_3})+k_{_{\varpi_z}}\omega_{_Z}$

Исследуемый АП представляет собой ПД регулятор, у которого в качестве исполнительного устройства используется сервопривод с жесткой обратной связью (СПЖОС).

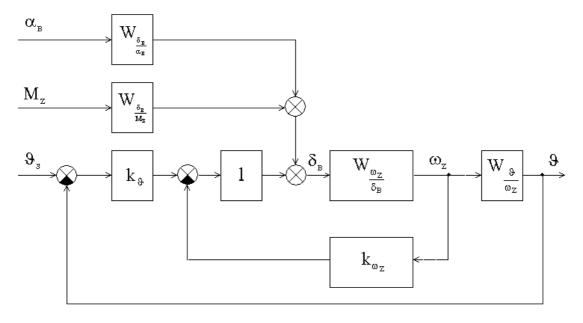


Рис.1 Структурная схема замкнутой системы «самолет - автопилот» с СПЖОС

Представленная на рис.1 структурная схема замкнутой системы «Самолет - АП» описывается системой уравнений представляющей собой совокупность уравнений объекта и регулятора (АП).

$$\begin{cases} (p^2 + a_{m_Z}^{\omega_Z} p)\vartheta + (a_{m_Z}^{\alpha} p + a_{m_Z}^{\alpha})\alpha + a_{m_Z}^{\delta_B} \delta_{_B} = a_{m_Z}^{M_Z} M_{_Z} + a_{m_Z}^{\alpha} p \alpha_{_B} \\ - p\vartheta + (p + a_{_Y}^{\alpha})\alpha = p\alpha_{_B} \\ - (k_\vartheta + k_{\omega_Z} p)\vartheta + \delta_{_B} = -k_\vartheta \vartheta_{_3} \end{cases}$$

Расчет передаточных чисел выполним по методике изложенной в [2], согласно которой передаточное число по угловой скорости определим из условия обеспечения потребного коэффициента затухания для скорректированного контуром демпфера тангажа самолета равного $\dot{\xi}_{\alpha} = (0,7 \div 1)$. Тогда

$$\kappa_{\omega_{z}} = \frac{-\left(s_{1} - 2\dot{\xi}_{\alpha}^{2}a_{y}^{\alpha}\right) \pm 2\dot{\xi}_{\alpha}\sqrt{\left(\dot{\xi}_{\alpha}a_{y}^{\alpha}\right)^{2} - s_{1}a_{y}^{\alpha} + s_{2}\right)}}{a_{m_{z}}^{\delta_{B}}} \tag{1-1}.$$

Величину передаточного числа по углу определим по выражению

$$k_{\vartheta} = (0.9 \div 1)(s_2 + k_{\omega_Z} a_{m_Z}^{\delta_B} a_y^{\alpha}) \cdot \frac{1}{a_{m_Z}^{\delta_B}}$$
 (1-2).

1.1.2 Автопилот стабилизации угла тангажа, с законом управления $\delta_{_{B}}=k_{_{\,\vartheta}}\,\frac{T_{_{\,\vartheta}}\,p+1}{p}(\vartheta-\vartheta_{_{\,3}})+k_{_{\varpi_{_{Z}}}}\omega_{_{Z}}$

Исследуемый АП представляет собой ПДИ регулятор, у которого в качестве исполнительного устройства используется сервопривод с жесткой обратной связью (СПЖОС).

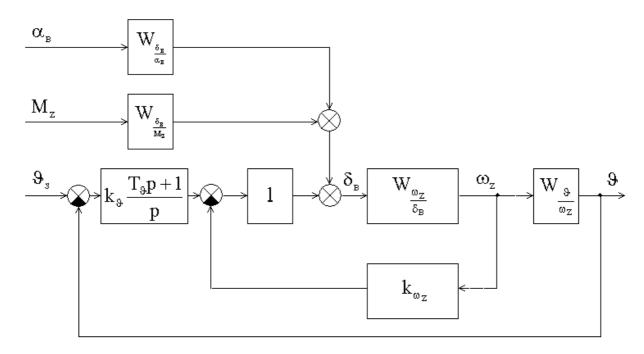


Рис.2 Структурная схема замкнутой системы «самолет - автопилот»

Система уравнений, описывающая представленную структуру имеет вид

$$\begin{cases} (p^{2} + a_{m_{z}}^{\omega_{z}}p)9 + (a_{m_{z}}^{\alpha}p + a_{m_{z}}^{\alpha})\alpha + a_{m_{z}}^{\delta_{B}}\delta_{_{B}} = a_{m_{z}}^{M_{z}}M_{z} + a_{m_{z}}^{\alpha}p\alpha_{_{B}} \\ -p9 + (p + a_{y}^{\alpha})\alpha = p\alpha_{_{B}} \\ -(k_{9}\frac{T_{9}p + 1}{p} + k_{\omega_{z}}p)9 + \delta_{_{B}} = -k_{9}\frac{T_{9}P + 1}{p}9_{_{3}} \end{cases}$$

В соответствии с методикой по выбору и расчету параметров закона изложенной в [2], управления, вначале следует проанализировать отношение $\frac{\sqrt{s_2 + k_{\omega_Z} a_{m_Z}^{\delta_B} a_y^{\alpha}}}{a_y^{\alpha}}.$ Если $\frac{\sqrt{s_2 + k_{\omega_Z} a_{m_Z}^{\delta_B} a_y^{\alpha}}}{a_v^{\alpha}} \geq 10, \text{ то параметры закона управления следует}$

определять по выражениям:

$$k_{\omega_{z}} = \frac{-(s_{1} - 2\dot{\xi}_{\alpha}^{2}a_{y}^{\alpha}) \pm 2\dot{\xi}_{\alpha}\sqrt{(\dot{\xi}_{\alpha}a_{y}^{\alpha})^{2} - s_{1}a_{y}^{\alpha} + s_{2})}}{a_{m_{z}}^{\delta_{B}}}$$

$$k_{\vartheta} = 5 \cdot (s_{2} + k_{\omega_{z}}a_{m_{z}}^{\delta_{B}}a_{y}^{\alpha}) \cdot \frac{a_{y}^{\alpha}}{a_{m_{z}}^{\delta_{B}}}$$
(1-3)

$$T_9 = \frac{0.1}{a_v^{\alpha}} \tag{1-5}$$

Если $\frac{\sqrt{s_2 + k_{\omega_Z} a_{m_Z}^{\delta_B} a_y^{\alpha}}}{a_y^{\alpha}} < 10$, то параметры закона управления следует

определять по выражениям:

$$k_{\omega_{z}} = \frac{-\left(s_{1} - 2\dot{\xi}_{\alpha}^{2}a_{y}^{\alpha}\right) \pm 2\dot{\xi}_{\alpha}\sqrt{\left(\dot{\xi}_{\alpha}a_{y}^{\alpha}\right)^{2} - s_{1}a_{y}^{\alpha} + s_{2}\right)}}{a_{m_{z}}^{\delta_{B}}}$$
(1-6)

$$k_{9} = (0.09 \div 0.1) \cdot (s_{2} + k_{\omega_{z}} a_{m_{z}}^{\delta_{B}} a_{y}^{\alpha}) \cdot \frac{a_{y}^{\alpha}}{a_{m_{z}}^{\delta_{B}}}$$
(1-7)

$$T_9 = \frac{10}{a_v^{\alpha}} \tag{1-8}$$

1.1.3 Автопилот стабилизации угла тангажа, с законом управления $p\delta_{_B} = k_{_{\vartheta}}(\vartheta - \vartheta_{_3}) + k_{_{\omega_Z}}\omega_{_Z} + k_{_{\overset{\square}{u}}}\,p^2\,\vartheta$

Исследуемый АП представляет собой ПДИ регулятор, у которого в качестве исполнительного устройства используется сервопривод со скоростной обратной связью (СПЖОС).

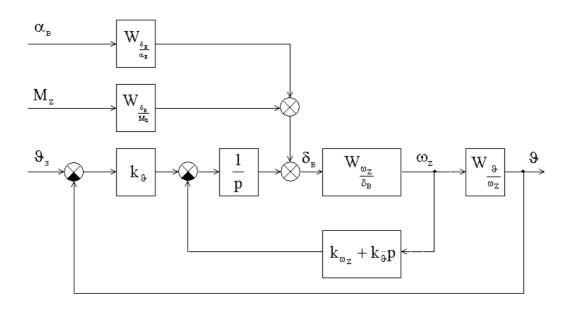


Рис.3 Структурная схема замкнутой системы «самолет - автопилот»

Система уравнений, описывающая представленную структуру, имеет вид:

$$\begin{cases} (p^{2} + a^{\omega_{z}}_{m_{z}}p)\vartheta + (a^{\dot{\alpha}}_{m_{z}}p + a^{\alpha}_{m_{z}})\alpha + a^{\delta_{B}}_{m_{z}}\delta_{_{B}} = a^{M_{z}}_{m_{z}}M_{_{z}} + a^{\dot{\alpha}}_{m_{z}}p\alpha_{_{B}} \\ -p\vartheta + (p + a^{\alpha}_{_{y}})\alpha = p\alpha_{_{B}} \\ -(k_{\vartheta} + k_{\omega_{z}}p + k_{\ddot{\vartheta}}p^{2})\vartheta + p\delta_{_{B}} = -k_{\vartheta}\vartheta_{_{3}} \end{cases}$$

В соответствии с методикой по выбору и расчету параметров исследуемого закона управления, изложенной в [2], расчет передаточных чисел выполняем по выражениям:

$$\kappa_{\omega_{z}} = \frac{(2,5 \div 5) \cdot s_{2}}{a_{m_{z}}^{\delta_{B}}}$$
 (1-9)

$$\mathbf{k}_{9} = (0.7 \div 0.9) \cdot \mathbf{k}_{\omega_{7}} \tag{1-10}$$

$$k_{\ddot{9}} = \frac{(0,71 \div 0,83) \cdot a_{y}^{\alpha} + (1,68 \div 1,57) \cdot \sqrt{k_{\omega_{z}} a_{m_{z}}^{\delta_{B}}} - s_{1}}{a_{m_{z}}^{\delta_{B}}}$$
(1-11)

1.1.3 Автопилот стабилизации угла тангажа, с законом управления

$$\frac{T_{u}p}{T_{u}p+1}\delta_{B} = k_{\vartheta}(\vartheta - \vartheta_{\vartheta}) + k_{\omega_{z}}\omega_{z}$$

Исследуемый АП представляет собой ПДИ регулятор, у которого в качестве исполнительного устройства используется сервопривод с изодромной обратной связью (СПИОС).

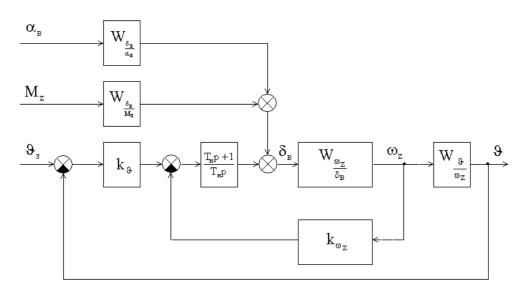


Рис.3 Структурная схема замкнутой системы «самолет - автопилот»

Система уравнений, описывающая представленную структуру имеет вид:

$$\begin{cases} (p^2 + a_{m_Z}^{\omega_Z} p)\vartheta + (a_{m_Z}^{\alpha} p + a_{m_Z}^{\alpha})\alpha + a_{m_Z}^{\delta_B} \delta_{_B} = a_{m_Z}^{M_Z} M_{_Z} + a_{m_Z}^{\dot{\alpha}} p \alpha_{_B} \\ -p\vartheta + (p + a_{_Y}^{\alpha})\alpha = p\alpha_{_B} \\ -(k_\vartheta + k_{\omega_Z} p)\vartheta + \frac{T_{_{\!U}} p}{T_{_{\!U}} p + 1} \delta_{_B} = -k_\vartheta \vartheta_{_3} \end{cases}$$

Для данного закона управления, наибольшее распространение получили автопилоты у которых $T_u=1\div 2$ с.. Поэтому, при подготовке к выполнению задания для рассматриваемого закона управления необходимо определить только два параметра k_9 и k_{ω_2} .

Причем, если
$$\frac{1}{a_y^{\alpha}} > (1.67 \div 1.25) \cdot T_{_{\mathrm{I\! I}}}$$
, то
$$k_{\omega_{_{\mathrm{Z}}}} = (1.5 \div 4.0) \cdot \frac{s_2 + (0.36 \div 0.64) \cdot (a_y^{\alpha})^2 - (0.6 \div 0.8) \cdot a_y^{\alpha} \cdot s_1}{a_{_{\mathrm{m}_{_{\mathrm{Z}}}}}^{\delta_{_{\mathrm{B}}}} \cdot [1 - (1.67 \div 1.25) \cdot a_y^{\alpha} \cdot T_{_{\mathrm{I\! I}}}]} \cdot T_{_{\mathrm{I\! I}}}. \tag{1-12}$$

Если
$$T_{\text{u}} > (0.6 \div 0.8) \cdot \frac{1}{a_{\text{v}}^{\alpha}}$$
, то

$$k_{\omega_{Z}} = (1.5 \div 4.0) \cdot \frac{T_{\mu}^{2} \cdot s_{2} + (0.36 \div 0.64) - T_{\mu} \cdot (0.6 \div 0.8) \cdot s_{1}}{a_{m_{Z}}^{\delta_{B}} \cdot T_{\mu} \cdot [a_{y}^{\alpha} \cdot T_{\mu} - (0.6 \div 0.8)]}$$
(1-13)

Исходя из условия, что требуемая величина времени регулирования равна $t_{\text{per }9} \approx 3 \div 4 \text{ c}$, величина передаточного числа по углу определится выражением:

$$k_{\vartheta} = (0.8 \div 1.0) \cdot k_{\omega_{z}}$$
 (1-14)

1.2. Автопилоты стабилизации угла курса.

Наибольшее распространение на самолетах гражданской авиации получили автопилоты стабилизации курса прямой схемы с законами управления представленными в табл.4

Таблица 4

No	Законы управления	Параметры законов управления					
Π/Π		k_{ϕ}	k_{ω_y}	k	T_{φ}	T_{μ}	
				φ			
1	$\delta_{H} = k_{\varphi}(\varphi - \varphi_{3}) + k_{\omega_{y}}\omega_{y}$	(2-2)	(2-1)	-	-	-	
2	$T_{\omega} p+1$	(2-4)	(2-3)	-	(2-5)	-	
	$\delta_{H} = k_{\phi} \frac{T_{\phi} p + 1}{p} (\phi - \phi_{3}) + k_{\omega_{y}} \omega_{y}$	или	(2-6)		(2-8)		
	P	(2-7)					
3	$p\delta_{H} = k_{\varphi}(\varphi - \varphi_{3}) + k_{\omega_{y}}\omega_{y} + k_{\bar{\varphi}}p^{2}\varphi$	(2-10)	(2-9)	(2-11)	-	-	
4	$T_{\mu}p$	(2-14)	(2-12)	-	-	1-2	
	$\frac{T_{\mu}p}{T_{\mu}p+1}\delta_{H} = k_{\varphi}(\varphi - \varphi_{3}) + k_{\omega_{y}}\omega_{y}$		или			c	
	INP I		(2-13)				

Структурные схемы для каждого закона управления представленного в табл.4 и системы уравнений, описывающие их аналогичны соответствующим законам управления для автопилотов тангажа с той лишь разницей, что в качестве уравнений объекта управления необходимо использовать частную модель бокового движения «Рысканияскольжения» имеющую вид:

$$\begin{cases} \left(p^{2} + a_{m_{y}}^{\omega_{y}}p\right)\phi + a_{m_{y}}^{\beta}\beta = -a_{m_{y}}^{\delta_{H}}\delta_{H} + a_{m_{y}}^{M_{y}}M_{y} \\ -p\phi + \left(p + a_{z}^{\beta}\right)\beta = p\beta_{B} \end{cases}$$

В связи со сказанным, ниже приводятся только выражения для определения передаточных чисел АП курса.

1.2.1 Автопилот стабилизации угла курса, с законом управления $\delta_{_{\rm H}} = k_{_{\phi}}(\phi - \phi_{_3}) + k_{_{\varpi_{_{V}}}} \omega_{_{Y}}$

Передаточные числа для исследуемого закона управления определяем по выражениям:

$$k_{\omega_{y}} = \frac{-(f_{1} - 2\dot{\xi}_{\beta}^{2}a_{z}^{\beta}) \pm 2\dot{\xi}_{\beta}\sqrt{(\dot{\xi}_{\beta}a_{z}^{\beta})^{2} - f_{1}a_{z}^{\beta} + f_{2})}}{a_{m_{y}}^{\delta_{H}}}$$
(2-1)

$$k_{\varphi} = (0.9 \div 1)(f_2 + k_{\omega_y} a_{m_y}^{\delta_H} a_z^{\beta}) \cdot \frac{1}{a_{m_y}^{\delta_H}}$$
 (2-2)

1.2.2 Автопилот стабилизации угла курса, с законом управления $\delta_{_{\rm H}} = k_{_{\phi}} \frac{T_{_{\phi}} \, p + 1}{n} (\phi - \phi_{_3}) + k_{_{\omega_y}} \omega_{_y}$

В соответствии с методикой по выбору и расчету параметров закона управления, изложенной в [2], в начале следует проанализировать отношение $\frac{\sqrt{f_2 + k_{\omega_y} a_{m_y}^{\delta_H} a_z^{\beta}}}{a_z^{\beta}} \,.$

Если $\frac{\sqrt{f_2 + k_{\omega_y} a_{m_y}^{\delta_H} a_z^{\beta}}}{a_z^{\beta}} \ge 10$, то параметры закона управления следует

определять по выражениям:

определять по выражениям:

$$k_{\omega_{y}} = \frac{-(f_{1} - 2\dot{\xi}_{\beta}^{2}a_{z}^{\beta}) \pm 2\dot{\xi}_{\beta}\sqrt{(\dot{\xi}_{\beta}a_{z}^{\beta})^{2} - f_{1}a_{z}^{\beta} + f_{2})}}{a_{m_{y}}^{\delta_{H}}}$$
(2-3)

$$k_{\varphi} = 5 \cdot (f_2 + k_{\omega_y} a_{m_y}^{\delta_H} a_z^{\beta}) \cdot \frac{a_z^{\beta}}{a_{m_y}^{\delta_H}}$$
(2-4)

$$T_{\varphi} = \frac{0.1}{a_{z}^{\beta}} \tag{2-5}$$

Если $\frac{\sqrt{f_2 + k_{\omega_y} a_{m_y}^{\delta_H} a_z^{\beta}}}{a_z^{\beta}} < 10$, то параметры закона управления следует

$$k_{\omega_{y}} = \frac{-(f_{1} - 2\dot{\xi}_{\beta}^{2}a_{z}^{\beta}) \pm 2\dot{\xi}_{\beta}\sqrt{(\dot{\xi}_{\beta}a_{z}^{\beta})^{2} - f_{1}a_{z}^{\beta} + f_{2})}}{a_{m_{y}}^{\delta_{H}}}$$
(2-6)

$$k_{\varphi} = (0.09 \div 0.1) \cdot (a_2 + k_{\omega_y} a_{m_y}^{\delta_H} a_z^{\beta}) \cdot \frac{a_y^{\alpha}}{a_{m_y}^{\delta_H}}$$
 (2-7)

$$T_{\varphi} = \frac{10}{a_{z}^{\beta}} \tag{2-8}$$

1.2.3 Автопилот стабилизации угла курса, с законом управления $p\delta_{_{\rm H}} = k_{_{\phi}}(\phi - \phi_{_3}) + k_{_{\omega_y}}\omega_{_y} + k_{_{_{\bar{\phi}}}}p^2\phi$

Передаточные числа для приведенного закона управления определяем по выражениям:

$$k_{\omega_{y}} = \frac{(2,5 \div 5) \cdot f_{2}}{a_{m_{y}}^{\delta_{H}}}$$
 (2-9)

$$k_{\varphi} = (0.7 \div 0.9) \cdot k_{\omega_{V}}$$
 (2-10)

$$k_{\ddot{\phi}} = \frac{(0.71 \div 0.83) \cdot a_{z}^{\beta} + (1.68 \div 1.57) \cdot \sqrt{k_{\omega_{y}} a_{m_{y}}^{\delta_{H}}} - f_{1}}{a_{m_{y}}^{\delta_{H}}}$$
(2-11)

1.2.4 Автопилот стабилизации угла курса, с законом управления $\frac{T_{_{\rm H}}p}{T_{_{_{_{}}}p+1}}\delta_{_{_{\rm H}}}=k_{_{\phi}}(\phi-\phi_{_{3}})+k_{_{\omega_y}}\omega_{_y}$

Для данного закона управления, наибольшее распространение получили автопилоты у которых $T_u=1\div 2$ с. Поэтому в рассматриваемом законе управления определяются только два параметра k_{ϕ} и k_{ω_v} .

Причем, если
$$\frac{1}{a_z^{\beta}} > (1.67 \div 1.25) \cdot T_{_{\rm II}}$$
, то
$$k_{\omega_y} = (1,5 \div 4,0) \cdot \frac{f_2 + (0,36 \div 0,64) \cdot (a_z^{\beta})^2 - (0.6 \div 0.8) \cdot a_z^{\beta} \cdot f_{_{\rm I}}}{a_{m_y}^{\delta_{_{\rm II}}} \cdot [1 - (1.67 \div 1.25) \cdot a_z^{\beta} \cdot T_{_{\rm II}}]} \cdot T_{_{\rm II}} \qquad (2-12)$$
 Причем, если
$$T_{_{\rm II}} > (0,6 \div 0,8) \cdot \frac{1}{a_z^{\beta}},$$

$$\mathbf{k}_{\omega_{y}} = (1,5 \div 4,0) \cdot \frac{\mathbf{T}_{u}^{2} \cdot \mathbf{f}_{2} + (0,36 \div 0,64) - \mathbf{T}_{u} \cdot (0.6 \div 0.8) \cdot \mathbf{f}_{1}}{\mathbf{a}_{m_{y}}^{\delta_{H}} \cdot \mathbf{T}_{u} \cdot [\mathbf{a}_{z}^{\beta} \cdot \mathbf{T}_{u} - (0,6 \div 0,8)]}$$
(2-13)

Исходя из условия, что требуемая величина времени регулирования равна $t_{\text{per}\phi} \approx 3 \div 4\,\text{c}$, величина передаточного числа по углу определится выражением:

$$k_{\varphi} = (0.8 \div 1.0) \cdot k_{\omega_{y}}$$
 (2-14)

1.3. Автопилоты стабилизации угла крена.

Наибольшее распространение на самолетах гражданской авиации получили автопилоты стабилизации крена прямой схемы с законами управления представленными в табл.5

Таблица 5

№	Законы управления	Параметры законов управления					
п/п		\mathbf{k}_{γ}	k_{ω_x}	k γ	T_{γ}	Ти	
1	$\delta_{9} = k_{\gamma} (\gamma - \gamma_{3}) + k_{\omega_{x}} \omega_{x}$	(3-2)	(3-1)	-	-	-	
2	$\delta_{9} = k_{\gamma} \frac{T_{\gamma} p + 1}{p} (\gamma - \gamma_{3}) + k_{\omega_{x}} \omega_{x}$	(3-4)	(3-3)	-	(3-5)	-	
3	$p\delta_{3} = k_{\gamma}(\gamma - \gamma_{3}) + k_{\omega_{X}}\omega_{x} + k_{\ddot{y}}p^{2}\gamma$	(3-7)	(3-6)	(3-8)	-	-	
4	$\frac{T_{u}p}{T_{u}p+1}\delta_{9} = k_{\gamma}(\gamma - \gamma_{3}) + k_{\omega_{x}}\omega_{x}$	(3- 10)	(3-9)	-	-	1-2 c	

Структурные схемы для каждого закона управления представленного в табл.5 и системы уравнений описывающие их аналогичны соответствующим законам управления для автопилотов тангажа с той лишь разницей, что в качестве уравнений объекта управления необходимо использовать частную модель бокового движения «Чистый-крен» имеющую вид:

$$\left(p^2 + a_{m_x}^{\omega_x} p\right) \gamma = -a_{m_x}^{\delta_{\vartheta}} \delta_{\vartheta} + a_{m_x}^{M_x} M_x$$

В связи со сказанным, ниже приводятся только выражения для определения передаточных чисел АП крена.

1.3.1 Автопилот стабилизации угла крена, с законом управления $\delta_{_9} = k_{_{\gamma}}(\gamma-\gamma_{_3}) + k_{_{\varpi_X}}\omega_{_X}$

Передаточные числа для исследуемого закона управления определяем по выражениям:

$$k_{\omega_{X}} = \frac{9.48 - a_{m_{X}}^{\delta_{9}} \cdot t_{per\gamma}}{a_{m_{X}}^{\delta_{9}} \cdot t_{per\gamma}},$$
 где $t_{per\gamma} = 1 \div 2 c.$ (3-1)

$$k_{\gamma} = \frac{22.5}{a_{m_{\chi}}^{\delta_{9}} \cdot t_{per\gamma}^{2}}$$
 (3-2)

1.3.2 Автопилот стабилизации угла крена, с законом управления $\delta_{_9} = k_{_{\gamma}} \, \frac{T_{_{\gamma}} \, p + 1}{p} (\gamma - \gamma_{_3}) + k_{\omega_x} \omega_x$

Передаточные числа для исследуемого закона управления определяем по выражениям:

$$k_{\omega_{X}} = \frac{18 - a_{m_{X}}^{\delta_{9}} \cdot t_{pery}}{a_{m_{Y}}^{\delta_{9}} \cdot t_{pery}}$$
, где $t_{pery} = 1 \div 2 c.$ (3-3)

$$k_{\gamma} = \frac{216}{a_{m_{\chi}}^{\delta_{9}} \cdot t_{per\gamma}^{3}}$$
 (3-4)

$$T_{\gamma} = 0.41 \cdot t_{\text{pery}} \tag{3-5}$$

1.3.3 Автопилот стабилизации угла крена, с законом управления $p\delta_{_{9}}=k_{_{\gamma}}(\gamma-\gamma_{_{3}})+k_{_{\varpi_{_{X}}}}\omega_{_{x}}+k_{_{_{"}}}p^{2}\gamma$

Передаточные числа для исследуемого закона управления определяем по выражениям:

$$\mathbf{k}_{\omega_{\mathbf{X}}} = \frac{18 - a_{\mathbf{m}_{\mathbf{X}}}^{\delta_{9}} \cdot \mathbf{t}_{\mathsf{per}\gamma}}{a_{\mathbf{m}_{\mathbf{X}}}^{\delta_{9}} \cdot \mathbf{t}_{\mathsf{per}\gamma}}$$
, где $\mathbf{t}_{\mathsf{per}\gamma} = 1 \div 2 \, \mathbf{c}$. (3-6)

$$k_{\gamma} = \frac{108}{a_{m_{\chi}}^{\delta_{9}} \cdot t_{per\gamma}^{2}}$$
 (3-7)

$$k_{\ddot{\gamma}} = \frac{216}{a_{m_x}^{\delta_3} \cdot t_{per\gamma}^3} \tag{3-8}$$

1.3.4 Автопилот стабилизации угла крена, с законом управления $\frac{T_{_{\rm H}}p}{T_{_{\rm H}}p+1}\delta_{_{9}}=k_{_{\gamma}}(\gamma-\gamma_{_{3}})+k_{_{\varpi_{_{X}}}}\omega_{_{X}}$

Передаточные числа для исследуемого закона управления определяем по выражениям:

$$k_{\omega_{X}} = \frac{18 - a_{m_{X}}^{\delta_{9}} \cdot t_{per\gamma}}{a_{m_{Y}}^{\delta_{9}} \cdot t_{per\gamma}} , \qquad (3-9)$$

$$k_{\gamma} = \frac{25 \div 50}{a_{m_{\chi}}^{\delta_{9}} \cdot T_{\mu}} , \qquad (3-10)$$

2. Знакомство с программой «MARS»

Лабораторная работа выполняется на персональном компьютере любой конфигурации с использованием программы «MARS».

Рабочими файлами для проведения исследования по программе лабораторной работы являются файлы:

- AP_JOS для исследования автопилота с законами управления вида $\delta_{_{\rm B}} = k_{_{9}}(\vartheta \vartheta_{_{3}}) + k_{_{\varpi_{_{7}}}}\omega_{_{z}};$
- AP_PDI для исследования автопилота с законами управления вида $\delta_{_{\rm B}} = k_{_{\rm 9}} \frac{T_{_{\rm 9}}\,p{+}1}{p}(\vartheta-\vartheta_{_{\rm 3}}) + k_{\omega_{_{\rm Z}}}\omega_{_{\rm Z}}$
- AP_SOS для исследования автопилота с законами управления вида $p\delta_{_B} = k_{_9}(9-9_{_3}) + k_{_{\varpi_z}}\omega_{_z} + k_{_{\overset{\circ}{\alpha}}}p^2\,9$
- AP_IOS для исследования автопилота с законами управления вида $\frac{T_u p}{T_u p+1} \delta_{_B} = k_9 (9-9_3) + k_{\omega_z} \omega_z$

3. Экспериментальное исследование системы «самолет-автопилот».

В экспериментальной части лабораторной работы необходимо, с использованием программы «Mars», получить серии графиков переходных процессов для системы «самолет-автопилот» с исследуемым законом управления.

Исходными данными для проведения экспериментального исследования являются передаточные функции продольного и бокового движений самолета, а также величины передаточных чисел законов управления, полученные при выполнении пункта1 настоящего пособия.

В процессе экспериментального исследования снять переходные процессы для АП тангажа по параметрам $\vartheta(t), \omega_Z(t), \delta_B(t)$, для случаев:

1.Для закона управления $\delta_{_{\rm B}} = k_{_{\vartheta}}(\vartheta - \vartheta_{_{3}}) + k_{_{\varpi_{_{\bf Z}}}}\omega_{_{\bf Z}}$ при:

- $\vartheta_3 = 1$ при исправном автопилоте;
- $\theta_3 = 1 \cdot t$ (автопилот исправен);
- $M_z = 1$ (автопилот исправен);
- $\alpha_B = 1$ (автопилот исправен);
- $M_z = 1$ при отказе ДУС ($K\omega_z = 0$);
- $M_z = 1$ при отказе ГВ ($K_9 = 0$).

2.Для закона управления $\delta_{_{\rm B}} = k_{_{\vartheta}} \, \frac{T_{_{\vartheta}} \, p{+}1}{p} (\vartheta - \vartheta_{_{3}}) + k_{\omega_{_{\rm Z}}} \omega_{_{\rm Z}}$ при:

- $\vartheta_3 = 1$ (автопилот исправен);
- $\vartheta_3 = 1 \cdot t$ (автопилот исправен);
- $M_z = 1$ (автопилот исправен);
- $M_z = 1(K\omega_z = 0);$
- $M_z = 1(K_\vartheta = 0)$.

3.Для закона управления $p\delta_{_B}=k_{_{9}}(\vartheta-\vartheta_{_{3}})+k_{_{\varpi_{_Z}}}\omega_{_Z}+k_{_{\ddot{9}}}p^2\vartheta$, при:

- $M_z = 1$ (автопилот исправен);
- $M_z = 1(K\omega_z = 0);$
- $M_z = 1 (K_\vartheta = 0);$
- $M_Z = 1$ при отказе ДУУ ($K_{\bullet \bullet} = 0$).

4.Для закона управления
$$\frac{T_{_{\rm II}}p}{T_{_{\rm II}}p+1}\delta_{_{\rm B}}=k_{_{\vartheta}}(\vartheta-\vartheta_{_{3}})+k_{\omega_{_{\rm Z}}}\omega_{_{\rm Z}},$$
 при:

- $M_z = 1$ (автопилот исправен);
- T_и = var (влияние постоянной времени изодрома).

По аналогии провести исследования для автопилотов курса и крена, фиксируя при этом соответственно переходные процессы $\phi(t), \omega_y(t), \delta_H(t)$ для автопилота курса и

 $\gamma(t), \omega_{_{X}}(t), \delta_{_{9}}(t)$ для автопилота крена.

4. Анализ полученных результатов, выводы.

Анализ полученных результатов включает в себя описание полученных при моделировании переходных процессов и их сравнительный анализ для различных законов управления. Выводы по результатам анализа.

5. Оформление отчета.

Отчет по работе оформляется на отдельных листах формата А4 или в обычной ученической тетради.

В отчете должны быть представлены:

- наименование работы;
- цель работы;
- исходные данные, выданные преподавателем;
- таблицы табл. 3-5 с результатами расчетов параметров законов управления и расчетные формулы;
- структурные схемы контуров угловой стабилизации самолета, математические модели системы «самолет-автопилот» для рассмотренных законов управления, и графики переходных процессов соответствующие этим структурам;
- выволы.

6. Вопросы для самопроверки.

- 1. Каково назначение автопилота угловой стабилизации?
- 2. Для чего в закон управления вводится сигнал угловой скорости (углового ускорения)?
- 3. Для чего в закон управления вводится сигнал угла тангажа (курса, крена)?
- 4. Каково назначение сигнала интеграла от угла в законах управления автопилотов?
- 5. Какие типы сервоприводов используются в структурах автопилотов?
- 6. Как сказывается на переходном процессе величина постоянной времени в структуре сервопривода с изодромной обратной связью?
- 7. Как влияют величины передаточных чисел автопилота на установившееся значение стабилизируемого параметра при воздействии на систему «самолет автопилот» управляющего воздействия?
- 8. Определите величину статической ошибки в системе «самолетавтопилот» по заданию преподавателя?

7. <u>Литература.</u>

- 1. Воробьев В.Г., Кузнецов С.В. Автоматическое управление полетом самолетов. М.: Транспорт. 1995
- 2. Михалев И.А., Окоемов Б.Н.,и др. Системы автоматического управления самолетом. М.: Машиностроение. 1974