ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ" (МГТУ ГА)

УТВЕРЖДАЮ
Проректор по УМР
В.В. Криницин
2008 г.

ATTO POMETA IO

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **МАТЕМАТИКА**, ШИФР ЕН.Ф.01

Специальность - 160903

Специализация - Техническое обслуживание и ремонт авиационных электросистем и пилотажно-навигационных комплексов

Факультет заочный

Кафедра высшей математики

Курсы I, II.

Форма обучения заочная

Общий объем учебных часов на дисциплину- 600 (час).

Объём аудиторных часов - 90 (час)

Лекции

46 (час)

Практические занятия 44 (час)

Самостоятельная работа 510 (час)

Виды самостоятельной работы:

Контрольные работы - 7 (4 на I курсе, 3 на II курсе).

Зачёт - І семестр

Экзамены - I, II курсы.

Рабочая программа составлена на основании примерной учебной программы дисциплины и в соответствии с Государственными требованиями к минимуму содержания и уровню подготовки выпускника по специальности

Рабочую программу составила Ухова В.А.
Рабочая программа утверждена на заседании кафедры высшей математики Протокол № от ""200 г.
Заведующий кафедрой ВМ Самохин А.В., проф., д. т. н
Рабочая программа одобрена методическим советом специальности 160903
Протокол № от200 г.
Председатель методического совета проф. Константинов В.Д.
Рабочая программа согласована с Учебно-методическим управлением (УМУ).
Начальник УМУ Логачев В.П., доц., к.т.н.
Рабочая программа согласована с Заочным факультетом
Декан заочного факультета Ермаков А.Л., доц., к.т.н.

1. Цель и задачи изучения дисциплины.

1.1. Цель преподавания дисциплины.

Дать студентам теоретическую подготовку и практические навыки по высшей математике для успешного усвоения фундаментальных, общетехнических и специальных дисциплин учебного плана, а также для возможности изучения специальной литературы, в случае необходимости, самостоятельного углубления математических знаний после окончания университета. Развить логическое мышление студентов, привить потребность теоретического обоснования различных явлений. Познакомить с достижениями отечественной науки в области математики.

1.2. Задачи изучения высшей математики.

1.2.1. Иметь представление о более глубоких теоретических основах изучаемых в курсе высшей математики разделов, об их тесной взаимосвязи, об общности многих методов решения задач в различных разделах математики.

1.2.2. Знать:

- основные понятия и методы математического анализа, аналитической геометрии, линейной алгебры, теории вероятностей и математической статистики;
- способы построения математических моделей простейших систем и процессов в естествознании и технике.
- 1.2.3. Уметь применять методы математического анализа и других разделов курса высшей математики к решению задач, проводить конкретные расчеты в рамках выполнения аудиторных и домашних заданий.

1.2.4. Иметь опыт:

- употребления математической символики для выражения количественных и качественных соотношений объектов;
- теоретических рассуждений при доказательствах теорем;
- аналитического и численного решения основных задач, излагаемых в курсе высшей математики;
- использования основных приемов обработки экспериментальных данных.

2.ПЕРВЫЙ КУРС

Содержание дисциплины.

Лекции - 24 часа Практические занятия - 22 часа Самостоятельная работа - 254 часа Контрольные работы - 4 Всего - 300 часов

2.1. Наименование разделов,

содержание тем, ссылки на литературу.

<u>Раздел 2-1-1.</u> Матрицы и определители. Системы линейных алгебраических уравнений. ([1], гл.10), ([8], стр.5, 6, 19), ([3], гл. 1).

- Определители 2-го и 3-го порядка, их свойства. Определители n-го порядка, вычисление их.
- Системы линейных уравнений. Правило Крамера, метод Гаусса.
- Матрицы, действия над ними. Обратная матрица. Матричная запись системы линейных уравнений и решение ее.

<u>Раздел 2-1-2.</u> Векторная алгебра. ([1], гл. 9, §§ 1-8), ([3],гл. 2).

- Системы координат на прямой, плоскости, в пространстве.
- Векторы, линейные операции над ними.
- Скалярное, векторное и смешанное произведения, их свойства, вычисление при задании векторов в координатах.

<u>Раздел 2-1-3.</u> Аналитическая геометрия. ([1], гл.3, §§ 6, 7; гл.9, §§ 11-14), ([8], стр.50); ([3], гл.3).

- Прямая на плоскости, различные формы ее уравнения.
- Уравнение плоскости и прямой в пространстве. Взаимное расположение плоскостей и прямых.
- Кривые второго порядка, их свойства.
- Поверхности второго порядка, исследование их методом сечений.

<u>Раздел 2-1-4.</u> Комплексные числа. ([1], гл.14, §6); ([3], гл.6); ([8], стр.54).

- Комплексные числа, действия над ними.
- Тригонометрическая и показательная формы комплексного числа.

<u>Раздел 2-1-5.</u> Введение в математический анализ. ([1], гл. 2, 4); ([3], гл.5); ([9], стр.26, 30).

- Функция. Обзор элементарных функций.
- Числовая последовательность, ее предел. Предел функции б.м. и б.б. величины.
- Теоремы о пределах функций, замечательные пределы, сравнение б.м.
- Непрерывность функций. Точки разрыва. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке.

<u>Раздел 2-1-6.</u> Дифференцирование и его приложения. ([1], гл. 5-6); ([3], гл.5 §§20-25); ([9], стр.39, 56-60).

- Определение производной функции, ее геометрический смысл. Непрерывность функции, имеющей производную. Производная сумы, произведения и частного функций.
- Производная сложной и обратной функции. Таблица производных. Производная функций, заданной параметрически.
- Дифференциал функции, его геометрический смысл.
- Теоремы Ролля, Лагранжа, Коши.
- Правило Лопиталя для различных видов неопределенностей.
- Формула Тейлора. Разложение элементарных функций по формуле Тейлора.
- Исследование функций: условия возрастания и убывания функций, экстремум, выпуклость и вогнутость, точки перегиба, асимптоты.

- <u>Раздел 2-1-7.</u> Интегральное исчисление функции одной переменной. ([1], гл.7-8), ([3], гл.7,8); ([10], стр.31, стр.54).
- Первообразная. Неопределенный интеграл, его свойства. Таблица интегралов. Основные методы интегрирования: непосредственное интегрирование, замена переменного, интегрирование по частям.
- Разложение рациональных дробей на сумму простейших. Интегрирование рациональных дробей.
- Интегрирование иррациональных и тригонометрических выражений.
- Определение определенного интеграла, его свойства.
- Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменного и интегрирование по частям в определенном интеграле.
- Геометрические и физические приложения определенного интеграла.
- Несобственные интегралы на конечном и бесконечном интервалах.

<u>Раздел 2-1-8.</u> Функции нескольких переменных ([1], гл. 12, 13), ([3], гл.9, 11,12), ([11], стр.36 §16).

- Определение функции двух и нескольких переменных. Предел и непрерывность функции двух переменных.
- Частные производные. Полное приращение и дифференциал функции двух переменных. Производная сложной и неявной функции.
- Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности. Экстремум функции двух переменных. Наибольшее и наименьшее значения функции двух переменных.
- Определение двойного интеграла, его свойства. Вычисление двойных интегралов в декартовых и полярных координатах.
- Криволинейные интегралы и их вычисление.

2.2. Содержание лекций

ЛК 2.2.1. Установочная лекция для 1 курса:

Предмет математики. Методика самостоятельного изучения дисциплины. Структура курса. Литература. Выполнение контрольных работ.

Определители 2-го и 3-го порядка, их свойства. Матрицы и действия над ними.

ЛК 2.2.2. Обзорная лекция №1

Системы линейных уравнений. Правило Крамера. Метод Гаусса. Матричная запись системы линейных уравнений и её решения .

ЛК 2.2.3. Обзорная лекция №2

Системы координат на прямой, плоскости, в пространстве. Пространства R^2 и R^3 . Векторы. Линейные операции над векторами. Скалярное и векторное произведение векторов. Их свойства. Смешанное произведение векторов, его геометрический смысл.

ЛК 2.2.4. Обзорная лекция №3

Прямая на плоскости. Различные формы уравнения прямой на плоскости. Расстояние от точки до прямой. Уравнение плоскости и прямой в пространстве. Взаимное расположение прямых и плоскостей.

ЛК 2.2.5. Обзорная лекция №4

Комплексные числа, действия над ними. Тригонометрическая и показательная формы комплексного числа.

ЛК 2.2.6. Обзорная лекция №5.

Обзор элементарных функций. Числовая последовательность, ее предел. Предел функции, б.м. и б.б. величины. Теоремы о пределах функции, замечательные пределы, сравнение б.м. и б.б. величин.

ЛК 2.2.7 Обзорная лекция №6.

Непрерывность функций, действия над непрерывными функциями. Точки разрыва. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке.

ЛК 2.2.8. Обзорная лекция №7.

Производная, ее геометрический смысл. Правила дифференцирования. Производная сложной и обратной функции. Производная функции, заданной параметрически. Дифференциал функции. Теоремы Ролля, Лагранжа, Коши.

ЛК 2.2.9. Обзорная лекция №8.

Формула Тейлора. Разложение элементарных функций по формуле Тейлора. Исследование функций: условия возрастания и убывания функций, экстремум, выпуклость и вогнутость, точки перегиба, асимптоты.

ЛК 2.2.10. Обзорная лекция №9.

Первообразная. Неопределенный интеграл, его свойства. Основные методы интегрирования: замена переменного, интегрирование по частям. Интегрирование рациональных дробей, иррациональных и тригонометрических выражений.

ЛК 2.2.11. Обзорная лекция №10.

Определение определенного интеграла, его свойства. Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменного. Интегрирование по частям. Несобственные интегралы.

ЛК 2.2.12. Обзорная лекция №11.

Определение функции нескольких переменных. Частные производные. Производная по направлению. Градиент. Криволинейные интегралы, их вычисление. Двойные интегралы, их вычисление в декартовых и полярных координатах.

2.3. Перечень тем практических занятий

- ПР 1. Определители и их вычисление. Матрицы и действия над ними.
- ПР 2. Системы линейных уравнений. Правило Крамера, метод Гаусса. Решения систем матричным методом.
- ПР 3. Операции над векторами. Скалярное, векторное, смешанное произведения. Прямая на плоскости. Плоскость и прямая в пространстве.
- ПР 4. Комплексные числа и действия над ними.
- ПР 5. Построение графиков элементарных функций.
- ПР 6. Решение задач на вычисление пределов. Раскрытие неопределенностей. Применение замечательных пределов для раскрытия неопределенностей.
- ПР 7. Дифференцирование функций.
- ПР 8. Исследование функций: возрастание, убывание, экстремум, выпуклость и вогнутость, точки перегиба, асимптоты.
- ПР 9. Неопределенный интеграл. Вычисление неопределенных интегралов методом подведения под знак дифференциала. Интегрирование заменой переменного. Интегрирование по частям. Интегрирование рациональных дробей.
- ПР 10. Интегрирование иррациональных и тригонометрических выражений. Вычисление определенных интегралов.
- ПР 11. Частные производные. Производная по направлению, градиент. Вычисление криволинейных интегралов. Вычисление двойных интегралов в декартовых и полярных координатах.

Тематика контрольных работ.

- 1. Элементы линейной алгебры и аналитической геометрии. Комплексные числа (разделы 2-1-1, 2-1-2, 2-1-3, 2-1-4).
- 2. Введение в математический анализ. Производная и ее приложения (разделы 2-1-5, 2-1-6).
- 3. Неопределенный и определенный интеграл (раздел 2-1-7).
- 4. Дифференциальное и интегральное исчисление функции многих переменных (раздел 2-1-8).

3.ВТОРОЙ КУРС.

Содержание дисциплины.

Лекции - 22 часа Практические занятия - 22 часа Самостоятельная работа - 256 часов Контрольные работы - 3 Всего - 300 часов

3.1. Наименование разделов, содержание тем, ссылки на литературу.

<u>Раздел 3-1-1.</u> Дифференциальные уравнения. ([1], гл.15, [3], гл. 10; [7]).

- Дифференциальные уравнения 1-го порядка. Общее и частное решение.
 Задача Коши. Уравнение с разделяющимися переменными.
- Линейные и однородные уравнения 1-го порядка, методы их решения. Уравнение Бернулли.
- Дифференциальные уравнения высших порядков, допускающие понижение порядка.
- Линейные дифференциальные уравнения высших порядков. Линейнонезависимые частные решения. Структура общего решения.

- Линейные однородные дифференциальные уравнения с постоянными коэффициентами, их решения.
- Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами и специальными правыми частями, их решения.
- Метод вариации произвольных постоянных решения линейных дифференциальных уравнений.
- Системы линейных дифференциальных уравнений с постоянными коэффициентами, их решение.

<u>Раздел 3-1-2.</u> *Операционное исчисление.* ([3], гл. 18; [7]).

- Преобразование Лапласа. Примеры изображений. Функция Хевисайда.
- Основные теоремы об изображениях и оригиналах.
- Приложение операционного исчисления к решению дифференциальных уравнений и их систем.
- Теоремы о свертке.

Раздел 3-1-3. Ряды. ([1], гл. 14; [3] гл. 13, 14; [7]).

- Числовые ряды. Необходимое условие сходимости. Свойства сходящихся рядов.
- Признаки сходимости рядов с положительными членам: признаки сравнения Даламбера, Коши, интегральный признак.
- Знакопеременные ряды. Абсолютная и условная сходимость. Признак Лейбница.
- Степенные ряды. Теорема Абеля и следствие из нее. Интервал сходимости. Свойства степенных рядов.
- Ряд Тейлора. Разложение в ряд Тейлора элементарных функций.

<u>Раздел 3-1-4.</u> *Ряды Фурье.* ([1], гл. 14, [3] гл.15).

- Ряд Фурье. Ортогональность системы тригонометрических функций.
 Условия разложимости в ряд Фурье. Ряды Фурье для четных и нечетных функций.
- Ряд Фурье для функции с произвольным периодом. Комплексная форма ряда Фурье.
- Интеграл Фурье. Преобразование Фурье, синус и косинус преобразования. Спектральные функции.

Раздел 3-1-5. Теория вероятностей. ([4], гл. 1-13; [12]).

- Основные понятия. Случайные события. Алгебра событий. Классическое определение вероятности. Относительные частоты.
- Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.
- Схема повторения опытов Бернулли. Локальная и интегральная формулы Лапласа. Формула Пуассона.
- Случайные величины. Закон распределения дискретной случайной величины. Функция распределения непрерывной случайной величины. Вероятность попадания случайной величины на заданный участок.
- Плотность вероятности и ее свойства. Числовые характеристики случайных величин: математическое ожидание и дисперсия.
- Нормальное распределение и его свойства. Моменты нормального распределения. Функция Лапласа, правило 3-х сигм.
- Законы распределения: равномерный, биномиальный, Пуассона, показательный.

<u>Раздел 3-1-6.</u> Математическая статистика. ([4], гл. 15-19; [12]).

- Типичные задачи математической статистики. Генеральная совокупность и выборка. Вариационный ряд. Эмпирическая функция распределения. Гистограмма.
- Оценка параметров распределения генеральной совокупности (метод моментов, метод наибольшего правдоподобия).
- Доверительные интервалы и доверительные вероятности. Доверительный интервал для математического ожидания при известной дисперсии нормально распределенной величины. Доверительны интервал для математического ожидания при неизвестной дисперсии.
- Статистическая проверка гипотез. Общая постановка задачи. Проверка гипотезы о законе распределения по критерию Пирсона.

3.2. Содержание лекций

ЛК 3.2.1. Установочная лекция. Структура курса. Литература.

Дифференциальные уравнения первого порядка. Задача Коши. Уравнения с разделяющимися переменными. Линейные и однородные уравнения первого порядка. Уравнения Бернулли. Дифференциальные уравнения высших порядков, допускающие понижения порядка.

ЛК 3.2.2.Обзорная лекция №1.

Линейные дифференциальные уравнения высших порядков. Структура общего решения. Линейные однородные дифференциальные с постоянными коэффициентами и их решения. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами и специальными правыми частями, их решения.

ЛК 3.2.3. Обзорная лекция №2.

Преобразование Лапласа. Основные теоремы об изображениях и оригиналах. Приложение операционного исчисления к решению дифференциальных уравнений.

ЛК 3.2.4. Обзорная лекция №3.

Числовые ряды. Необходимые условия сходимости. Свойства сходящихся рядов. Признаки сходимости рядов с положительными членами (Даламбера, Коши, интегральный признак). Знакопеременные ряды. Признак Лейбница.

ЛК 3.2.5. Обзорная лекция №4.

Степенные ряды. Теорема Абеля. Интервал сходимости. Свойства степенных рядов. Ряд Тейлора. Разложение в ряд Тейлора элементарных функций.

ЛК 3.2.6. Обзорная лекция №5.

Ряд Фурье. Условия разложимости в ряд Фурье. Ряды Фурье для четных и нечетных функций. Ряд Фурье для функции с произвольным периодом.

ЛК 3.2.7. Обзорная лекция №6.

Основные понятия. Случайные события. Алгебра событий. Классическое определение вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.

ЛК 3.2.8. Обзорная лекция №7.

Случайные величины. Закон распределения дискретной случайной величины. Функция распределения непрерывной случайной величины. Вероятность попадания случайной величины на заданный

участок. Плотность вероятности и ее свойства. Числовые характеристики случайных величин: математическое ожидание и дисперсия.

ЛК 3.2.9. Обзорная лекция №8.

Нормальное распределение и его свойства. Моменты нормального распределения. Функция Лапласа, правило трех сигм. Законы распределения: равномерный, биномиальный, Пуассона, показательный.

ЛК 3.2.10. Обзорная лекция №9.

Задачи математической статистики. Генеральная совокупность и выборка. Вариационный ряд. Эмпирическая функция распределения. Гистограмма. Оценка параметров распределения генеральной совокупности (метод моментов, метод наибольшего правдоподобия).

ЛК 3.2.11. Обзорная лекция №10.

Доверительные интервалы и доверительные вероятности. Доверительный интервал для математического ожидания при известной дисперсии нормально распределенной величины. Доверительный интервал для математического ожидания при неизвестной дисперсии. Статистическая проверка гипотез. Проверка гипотезы о законе распределения по критерию Пирсона.

3.3.Перечень тем практических занятий

ПР 1. Дифференциальные уравнения с разделяющимися переменными.
Линейные и однородные дифференциальные уравнения первого порядка. Уравнения Бернулли.

- ПР 2. Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами и специальными правыми частями.
- ПР 3. Построение изображений и оригиналов. Решение дифференциальных уравнений.
- ПР 4. Исследование сходимости знакоположительных рядов. Знакопеременные ряды. Признак Лейбница.
- ПР 5. Интервал сходимости степенного ряда. Разложение элементарных функций в ряд Тейлора.
- ПР 6. Разложение функций в ряд Фурье на промежутке.
- ПР 7. Основные понятия. Непосредственный подсчет вероятностей. Основные теоремы теории вероятностей. Формула полной вероятности. Формула Байеса.
- ПР 8. Закон распределения случайной величины, функция распределения. Плотность вероятности. Числовые характеристики случайных величин.
- ПР 9. Нормальное, равномерное, показательное распределения, закон Пуассона.
- ПР 10. Построение эмпирических функций распределения и гистограмм. Точечные оценки параметров. Доверительные интервалы для математического ожидания и дисперсии, для среднего квадратического отклонения.
- ПР 11. Проверка гипотезы о законе распределения по критерию Пирсона.

Тематика контрольных работ.

- 1. Дифференциальные уравнения, операционное исчисление (разделы 3-1-1, 3-1-2).
- 2. Ряды. Ряды Фурье (разделы 3-1-3, 3-1-4).
- 3. Теория вероятностей и математическая статистика (разделы 3-1-5, 3-1-6)

4. Рекомендуемая литература.

Основная литература.

- 1. Шипачёв В.С. Высшая математика. М.: Высшая школа, 2007г.
- 2. Шипачёв В.С. Задачник по высшей математике.- М.: Высшая школа, 1998г. и последующие издания.
- 3. Письменный Д.Т. Конспект лекций по высшей математике: полный курс- М.: Айрис-пресс, 2007г.
- 4. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1998г.
- 5. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 1998г.

Учебно-методическая литература.

- 6. Жукова Е.А., Морозов О.И., Ухова В.А. Математика. Пособие к изучению дисциплины и контрольные задания для студентов 1 курса заочного обучения.-М.: 2008г.
- 7. Козлова В.С., Радковский Г.Н., Савченко А.А. Математика. Пособие к изучению дисциплины и контрольные задания для студентов 2 курса заочного обучения. 2008г.

- 8. Жукова Е.А., Чернова М.Л. Высшая математика. Методические указания по выполнению контрольных работ для студентов 1 курса всех специальностей заочного обучения. 1996.
- 9. Левина С.Н., Чернова М.Л. Методические указания по выполнению контрольных работ по высшей математике. Часть ІІ. Введение в математический анализ, производная и ее приложения для студентов всех специальностей заочного обучения. 1997.
- 10. Кузнечихина Л.Н. Пособие по разделу дисциплины "Интегральное исчисление". 2006г.
- 11. Ухова В.А., Козлова В.С. Функции нескольких переменных. Кратные и криволинейные интегралы. 2005г.
- 12. Савченко А.А., Илларионова О.Г., Ухова В.А. Теория вероятностей и математическая статистика. Пособие к выполнению контрольных работ по высшей математике. 2000г.

5. Рекомендуемые программные средства и компьютерные системы обучения и контроля знаний студентов.

- 1. Контроль в форме тестовых заданий.
- 2. Контроль решения задач с помощью компьютерных программ Maple и MathCad.
- 3. Информация для студентов (в частности, электронные учебные пособия) на сайте кафедры высшей математики vm.mstuca.ru.

Дополнения и измо	енения в ра	бочей программе	учебной дисциплины	
-математики на 200/20	0 учебнь	ій год.		
В рабочую програг	иму вносято	ся следующие изм	енения:	
Рабочая программа высшей математики	а пересмотр	ена и одобрена на	а заседании кафедры	
Протокол №	от "	·	_200r.	
Заведующий кафед	рой			
Изменения в рабоч специальности	ей програм	ме одобрены мето	одическим советом	
Протокол №	от "		_200r.	
Председатель методического совета				