ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

В.В. АНДРИАНОВ

УПРАВЛЕНЧЕСКИЕ РЕШЕНИЯ

ПОСОБИЕ

по выполнению курсовой работы

для студентов IV-курса специальности 061100 дневного обучения

MOCKBA - 2005

ББК 33.05

A65

Рецензент к.э.н. Степанова Н.И.

Андрианов В.В.

Управленческие решения: Пособие по выполнению курсовой работы. -М.: МГТУ ΓA , 2005.-24 с.

Пособие издается в соответствии с учебным планом для студентов IV-го курса специальности 061100 дневного обучения.

Рассмотрено и одобрено на заседаниях кафедры $3.03.05~\Gamma$. и методического совета $28.03.05~\Gamma$.

1. ВВЕДЕНИЕ

1.1. Цели и содержание курсовой работы

В процессе изучения дисциплины "Управленческие решения" (УР) в соответствии с учебным планом подготовки по специальности 061100 студентам заочного обучения предлагается выполнить курсовую работу (КР), основными целями которой являются:

- 1) закрепление теоретических знаний по базовым разделам дисциплины;
- 2) выработка навыков практической реализации ключевых этапов процесса разработки, оценки и принятия УР с использованием принципов системного подхода, а также современных экономико-математических методов моделирования, поиска оптимальных вариантов и оценки последствий реализации УР;
- 3) разработка УР, способных прояснить и улучшить управленческую ситуацию (УС), характеризуемую совокупностью параметров объекта управления (ОУ), процесса его функционирования (ПФ) (выполнения целевого назначения ОУ), а также факторов внешней среды (ВНС).

В КР студентам предлагается по индивидуальному варианту задания, используя теоретические знания и умение реализовывать алгоритмы экономико-математических методов разработки УР [1], решить комплекс взаимосвязанных задач и разработать совокупность УР, необходимых для прояснения и улучшения УС.

В пособии сформулированы словесные постановки задач, даны условные обозначения, указаны исходные данные и искомые величины. Основная часть задач КР решается с использованием компьютерных программ [6], реализующих базовые алгоритмы разработки УР [1]. Более подробная информация о тонкостях реализации алгоритмов методов разработки УР, приведена в [1, 2, 3, 5].

1.2. Определение номера индивидуального варианта задания

КР выполняется по индивидуальному варианту задания, номер которого выдается студенту преподавателем. По номеру варианта студент сам находит в данном пособии исходные данные, необходимые для решения задач КР.

1.3. Требования к оформлению пояснительной записки

КР оформляется в виде записки, начинающейся с титульного листа с указанными на нем: названиями - университета, кафедры и дисциплины, ф.и.о.- лектора и автора работы, номером зачетной книжки и варианта, а также темой КР. В начале КР необходимо привести табл.1.1.

УР, разработаны	ые в КР Таблица 1.1.
УР ₁ : в х ₂ ложной информации нет	VP_5 : расчетные $\lambda_{BC} = 13$ вс/ч и $\lambda_{MACC} = 1413$ пасс/ч.
$УР_2$: прогноз $x_2 = 144$;	УР ₆ : СМО факт орt число
$УP_3$: прогноз Q_7 = 180 млн.ткм.;	ΤΓΑ 3 4 MCT 25 20
УР ₄₁ : потенциал рынка = 1162 млн.ткм. Фактический парк ВС	FOT 10 12
Ил-96м(3); Ту-214(6); Ту-204м(12); Ту-334(10) мах Пр факт парка BC = 2347 млн.руб.	СТР 50 52 МОЖ 350 359
Ил-96м(3); Ту-214(6); Ту-204м(12); Ту-334(10) мах Пр факт парка BC = 2347 млн.руб. при расходах $P_p = 16297$ млн.руб. Стоимость факт.ПВС = 25.048 млрд.руб. Ren $_{\phi} = 2347/16297 = 0.144$;	УР ₇ : т керосинамлн.руб. обор.ср-вамлн.руб. инвестиции
${ m YP_{42}}$: ${ m max}$ прибыль рынка = 6711 млн. руб. при расходах ${ m P_p}$ = 12755 млн.руб.	
УР ₄₃ : ПВС, способный удовлетворить спрос Ил-96м(5);Ту-214(5);Ту-204м(10);Ту-334(6) Стоимость ПВС = 22.379 млрд.руб. дает тах прибыль = 6412 млн. руб. при та расходах = 13054 млн. руб. Ren ₆ =6412/13054 = 0.491	Ил-96м 3 5 24 Ту-214 6 5 49 Ту-204м 12 10 64 Ту-334 10 6 52

При выполнении КР рекомендуется:

- 1) в записке привести исходные данные, экономико-математические модели, промежуточные и итоговые результаты решения задач, выводы о сути разработанных УР, перечень использованной литературы;
- 2) пронумеровать арабскими цифрами страницы, таблицы, модели, рисунки и графики.

2. Методические рекомендации к выполнению курсовой работы

2.1. Словесное описание постановки задачи КР

Управленческая ситуация (УС), для которой необходимо разработать взаимосвязанные УР, имеет следующие особенности:

- 1. Объектом управления (ОУ) является авиакомпания (АК), выполняющая авиаперевозки на парке ВС (ПВС), состав и структура которого заданы в табл.1 Приложения І. Летно-технические характеристики типов ВС приведены в табл.2 Приложения І.
- 2. АК выполняет полеты по 7-ми воздушным линиям (ВЛ). Прогнозы спроса на авиаперевозки по 1-6-й ВЛ заданы в табл.3 Приложения I. Протяженность каждой из 7-ми ВЛ приведена в табл.4 Приложения I.
- 3. Прогноз спроса на авиаперевозки по 7-й ВЛ Q7 формируется под влиянием 2-х критических факторов внешней среды x_1 и x_2 . Для многофакторного прогнозирования Q7 необходимо использовать: а) подробную информацию о динамике фактора x_2 за 10 лет (на основании которой формируется его однофакторный прогноз на 11-й год), приведенную в табл.5. Приложения I, б) информацию о динамике Q7 и критическом факторе x_2 за 7 лет (3-10-й г.г.), приведенную в табл.6, в) информацию о динамике и прогнозе критического фактора x_1 , приведенную в табл.6
- 4. Доходы d_{ij} , расходы c_{ij} и прибыль p_{ij} , получаемые от перевозки 1 ткм. на i-м типе BC на заданную j-ю дальность полета заданы в табл. 7 Приложения I.
- 5. Сезонная, недельная и суточная неравномерности перевозок известны и приведены соответственно в табл.8, 9, 10 Приложения I.
- 6. Количества багажных тележек (БГТ), стоек регистрации пассажиров (СТР) и мест ожидания (МОЖ) в базовом АП приведены в табл.11 Приложения I.

- 7. Количества аэродромных тягачей (ТГА), мест стоянки ВС (МСТ) и бригад оперативного обслуживания ВС (БОТ) в базовом АП приведены в табл.12 Приложения I.
- 8. Промежутки времени (мин) между посадками ВС в базовом аэропорту в час пик приведены в табл.13 Приложения I, а времена обслуживания ВС в табл.14 Приложения I.

Суть проблемы УС в несоответствии потенциалов ПВС и рынка авиаперевозок, в недостаточности имеющегося ПВС и ресурсов для полного удовлетворения спроса на перевозки, а также в наличии "узких мест", которые мешают реализации потенциалов рынка и ПВС АК.

2.2. Декомпозиция проблемы КР

Декомпозиция - деление проблемы УС на совокупность взаимосвязанных задач, имеет своей целью обеспечить ее эффективное решение. Декомпозиция проблемы КР на комплекс задач III-VI-го этапов разработки УР [7], имеет следующий вид:

Этап III. Моделирование и прогнозирование параметров УС:

- **Задача 1.** Поиск ложной информации в данных о критическом факторе x_2 , определяющем объем перевозок по 7-й ВЛ (Q7).
- **Задача 2.** Однофакторное регрессионное моделирование как функции t и прогнозирование критического фактора x_2
- **Задача 3.** Многофакторное регрессионное моделирование и прогнозирование Q7 объема перевозок по 7-й ВЛ, как функции критических факторов внешней среды x_1 и x_2 .
 - Этап IV. Оценка потенциала основных производственных фондов АК:
 - Задача 4. Оценка потенциала сети ВЛ и фактического ПВС АК.
 - Этап V. Формирование оптимального облика УС:
 - Задача 5. Формирование оптимального облика ПВС АК.

Задача 6. Оптимизация облика элементов ОУ: поиск "узких мест" и оценка потребности в БГТ, СТР, МОЖ, ТГА, МСТ и БОТ в базовом АП.

Этап VI. Оценка достаточности и потребности в ресурсах:

Задача 7. Оценка достаточности и потребности в ресурсах.

По итогам решения задач 1-7 в заключение, исходя из имеющихся ресурсов, необходимо сформировать предложения по улучшению УС.

2.3. Моделирование и прогнозирование параметров УС

2.3.1. Оценка наличия ложной информации в критическом факторе х2

Задача 1 посвящена оценке наличия ложной информации в данных о критическом факторе x_2 , характеризующем УС и определяющем объем перевозок по 7-й ВЛ (Q7). Исходные данные со значениями величин критического фактора x_2 приведены в табл.2.1.

Пример решения задачи 1 Таблица 2.1. Значения величин критического фактора х₂

t_{i}	1	2	3	4	5	6	7	8	9	10
X ₂	61	70	79	88	97	105	112	121	129	137

Наличие ложной информации в x_2 определяем по результатам оценки гипотезы о распределении x_2 по нормальному закону алгоритмом [1, c.13-15]. В случае, когда гипотеза о нормальности распределения x_2 не отвергается, можно считать, что ложной информации в x_2 нет, в противном случае необходимо использовать процедуру отсева ложной информации [1, c.17].

Пример решения задачи 1

По данным табл.2.1 по алгоритму [1, с.10-15] программой fu_ras.pas [6, с.45-54] вычисляем:

- 1) количество наблюдений случайной величины х₂ n=10;
- 2) математическое ожидание случайной величины x_2

$$\mu = \frac{1}{1} \sum_{i=1}^{n} x_{2i} = (61+70+79+88+97+105+112+121+129+137) = 99.90; \quad (2.1)$$

3) среднеквадратическое отклонение случайной величины х₂

$$\sigma = /$$
 ----- $\sum (x_{2i} - \mu)^2 = 25.46;$ (2.2) $\sqrt{n-1}$ 4) число интервалов разбиения N ин= $5 \log 10 = 5;$ (2.3)

(2.3)

5) шаг разбиения
$$\Delta x_2 = \frac{X \text{max} = 137 - x \text{mi} = 61}{\text{NuH} = 5} = 15.20; \tag{2.4}$$

6) формируем границы интервалов и оцениваем количества попаданий случайной величины x2 в каждый интервал ni записывая результаты в табл.2.2.

Таблица 2.2. Оценка гипотезы о нормальности распределения х2

Ī	N	1	2	3	4	5
Γ	Гр	61.00- 76.21-		91.42-	106.63-	121.84-
		76.20	91.41	106.62	121.83	137.04
	n _i	2	2	2	2	2
	$\begin{matrix} F_{\scriptscriptstyle T} \\ p_{\scriptscriptstyle T} \end{matrix}$	0.179 0.179	0.371 0.192	0.617 0.247	0.813 0.195	0.930 0.117

- 7) выдвигаем гипотезу о распределении случайной величины x_2 по нормальному закону и определяем теоретические $F_{\tau i} = \Phi(Z_i)$, где $Z_i = (x_i - \mu)/\sigma$ (см. табл.4 Приложения I и табл.5 Приложения II [1]); результаты оценки F_{ті} записываем в табл.2.2;
- 8) определяем теоретические вероятности p_{Ti} по формуле (1.13) [1] и записываем их величины в табл. 2.2;
 - 9) вычисляем статистику χ^{2}_{p} как

$$\chi^2_p = \sum_{i=1}^{N_{\rm MH}} \frac{(n_i - n p_{\rm Ti})^2}{n p_{\rm Ti}} = 0.70;$$
 (2.5)
10) сравниваем $\chi^2_p = 0.70$ с $\chi^2_{\rm T}_{(v,p)} = 5.99$ при v= Nин- $n_p - 1 = 5 - 2 - 1 = 2$

 $(n_p\,$ - число параметров в законе распределения) и $\,p$ =1 - p_d = 1 - 0.95=0.05 (p_{d-} доверительная вероятность);

11) принимаем $\mathbf{yP_1} \rightarrow \{$ в $\mathbf{x_2}$ ложной информации нет $\}$, так как гипотеза о нормальности распределения x_2 не отвергается ($X_p^2 = 0.70 < X_T^2 = 5.99$).

2.3.2. Однофакторное моделирование и прогнозирование фактора х₂

Задача 2 посвящена моделированию и оценке точечного и интервального прогнозов одного из критических факторов внешней среды х₂, оказывающего влияние на спрос на перевозки по 7-й ВЛ.

Исходные данные примера прогнозирования x_2 приведены в табл.2.1.

Считая фактор х₂ функцией фактора времени t, в задаче 2 необходимо:

1. Рассчитать параметры моделей y = f(t)

a)
$$x_2 = a + b * t;$$
 (2.6)

б)
$$x_2 = a^*t^b$$
; (2.7)
в) $x_2 = a^*b^t$; (2.8)

$$x_2 = a * b^t; (2.8)$$

$$r$$
) $x_2 = a + b * t + c * t^2$. (2.9)

- Оценить адекватность моделей (2.6)-(2.9) и выбрать модель, пригодную для прогнозирования х2.
 - 3. Сформировать по выбранной модели прогноз х₂.

Алгоритм решения задачи 2 приведен в [1, с.27 - 32, 38 - 40] и реализуется на ЭВМ с помощью программы mono reg.pas [6, c.66 - 76].

Пример решения задачи 2

1. По данным табл.2.1 по алгоритму [1, с.27 - 32, 38 - 40] с помощью компьютерной программы mono reg.pas были вычислены математические модели зависимости $x_2 = f(t)$:

1)
$$x_2 = 53.67 + 8.41 * t;$$
 (2.10)

1)
$$x_2 = 53.67 + 8.41 * t;$$
 (2.10)
2) $x_2 = 56.16 * t^{0.361};$ (2.11)

3)
$$x_2 = 59.72*1.092^t$$
; (2.12)
4) $x_2 = 51.83+9.32*t-.083*t^2$ (2.13)

4)
$$x_2 = 51.83 + 9.32 * t - .083 * t^2$$
 (2.13)

- 2. По моделям (2.10 2.13) по [1, с.27 32, 38 40] вычисляем:
- среднюю ошибку $\Delta \acute{\epsilon}$ %;
- остаточную дисперсию σ_{2oct} ;
- расчетную оценку F-критерия Фишера F_{kr}^* ;

- прогнозное значение x_2 для t=11 Пр;
- отклонение прогнозных значений $\Delta \prod p = (x_{2(t=11)} x_{2(t=10)}).$

Результаты решения задачи 2 приведены в табл. 2.3. По $F_{kr\ max} = 2784$ отбираем для прогнозирования наиболее адекватную модель

$$x_2 = 51.83 + 9.32 * t - .083 * t^2$$
,

при $\Delta \dot{\epsilon}$ %min=0.3; σ_{2oct} = 0.5; F_{kr} = 2783.7; Πp = 144:

Таблица 2.3. Результаты моделирования и прогнозирования x₂

Модель	Δέ%	σ_{2oct}	F^*_{kr}	Пр	ΔПр
$x_2 = 53.67 + 8.41 * t$	0.7	0.8	979	146	9
$x_2 = 56.16 * t$	4.0	4.8	28	133	-4
$x_2 = 59.72 * 1.092 t$	3.1	3.9	43	157	20
$x_2 = 51.83 + 9.32 * t083 * t^2$	0.3	0.5	2784	144	7

Из табл.2.3 формируем прогноз критического фактора $\mathbf{YP_2} \rightarrow \{\mathbf{x_2} = \mathbf{144}\}$.

2.3.3. Многофакторное моделирование и прогнозирование Q7

Задача 3 посвящена формированию многофакторной регрессионной модели и прогноза спроса на авиаперевозки по 7-й ВЛ- Q7, как функции x_1 и

$$Q7 = a_0 + a_1 * x_1 + a_2 * x_2,$$
 (2.14)

где x_1, x_2 - критические факторы, определяющие дисперсию Y.

 a_{0}, a_{1}, a_{2} - расчетные коэффициенты уравнения регрессии.

В задаче 3 необходимо:

- 1) рассчитать параметры модели (a_0, a_1, a_2) (2.14);
- 2) оценить адекватность модели;
- 3) сформировать многофакторный прогноз Q7, используя заданный прогноз фактора x_1 (табл.6 Приложения I) и прогноз x_2 =144 из задачи 2.

Пример решения задачи 3

Исходные данные для примера решения задачи 3 приведены в табл.2.4. Для расчета уравнения регрессии используем алгоритм метода наименьших квадратов [1,с.33-38, 47-49], реализуемый программой mn_reg.pas [6, c.76-87].

 Таблица 2.4.

 Исходные данные для примера решения задачи 3

Q7 млн.ткм	Свободный член	Фактор х1	Фактор х2
102 109 110 113 116 118 160 Q7=?	1 1 1 1 1 1 1	3 6 8 10 12 14 21 Прогноз -> 25	88 97 105 112 121 129 137 YP2 -> 144

1. По алгоритму [1, с.35] и данным табл.2.4 с помощью программы mn_reg.pas [6,c.76-87] вычисляем многофакторную модель

$$Q7 = 230.65 + 8.05x_1 - 1.75x_2. (2.15)$$

2. Подставляя прогнозы x_{1i} , x_{2i} в (2.15), находим прогноз Q7 . Результаты анализа модели (2.15) приведены в табл.2.5.

Таблица 2.5. Анализ многофакторной регрессионной модели (2.15)

X ₁	X ₂	Q7 ф	Q7 p	ΔQ7= Q7р- Q7ф	%откл Q7
3	88	102.00	100.63	-1.37	1.35
6	97	109.00	109.01	0.01	0.01
8	105	110.00	111.10	1.10	1.00
10	112	113.00	114.94	1.94	1.71
12	121	116.00	115.27	-0.73	0.63
14	129	118.00	117.36	-0.64	0.55
21	137	160.00	159.70	-0.30	0.19

3. Вычисляем критерии адекватности модели (2.15) по [1],

- остаточную дисперсию

$$\sigma_{2oct} = 1.970;$$

- среднюю ошибку аппроксимации

$$\Delta \dot{\varepsilon} = 0.776\%;$$

- F*- критерий Фишера

$$F_{KP}^* = 185.607;$$

- коэффициент множественной корреляции R = 0.997;

- коэффициент множественной детерминации D = 0.995;

- статистические оценки значимости коэффициентов регрессии

$$t_{a1} = 20.621$$
, $t_{a2} = 19.972$ и $t_{a3} = 12.94020.621$.

Модель (2.10) адекватна, поскольку все аі значимы, а

$$F_{\kappa p}^* = 185.607 > F_{\tau a6 \, k1 \, k2}^* = 4.05$$
, где k1=n-1=7-1=6 и k2=n-p-1=7-3-1= 3.

Прогноз Q7 находим, подставляя в (2.15) прогнозы x_1 =25 и x_2 =144.

$$Q7 = 230.65 + 8.05 x_1 - 1.75 x_2 = 230.65 + 8.05 *25 - 1.75 *144 = 180 млн.ткм.$$

По итогам решения задачи 3 принимаем прогноз авиаперевозок по 7-й $\mathbf{VP}_3 \rightarrow \{\mathbf{Q7} = 180 \text{ млн.ткм.}\}.$

2.4. Оценка экономического потенциала парка ВС и сети ВЛ

2.4.1. Оптимальная расстановка заданного парка ВС на сети ВЛ

Задача 4 посвящена оценке экономических потенциалов заданного ПВС и рынка авиаперевозок, а также поиску облика оптимального ПВС, способного полностью удовлетворить спрос и дать тах возможную прибыль.

Экономический потенциал ПВС оцениваем по максимуму прибыли, получаемой с заданного объема перевозок на заданных ВЛ как функция оптимальных величин x_{ij} млн.ткм. - объемов перевозок на ВС i-го типа по j-м ВЛ, тах суммарную прибыль (P) или min убытки (-P) (2.16)

$$P = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} x_{ij} --> \max \text{ или } -P = \sum_{j=1}^{n} \sum_{j=1}^{m} -p_{ij} x_{ij} ---> \min$$
 (2.16)

при ограничениях: 1.
$$\sum_{j=1}^{m} x_{ij} = a_i;$$
 для $i=1,n; j=1,m;$ (2.17)

2.
$$\sum_{i=1}^{n} x_{ij} = b_{j}$$
; для $i=1,n$; $j=1,m$; (2.18)

3.
$$\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j$$
 для $i=1,n; j=1,m;$ (2.19)

4.
$$x_{ij}>=0$$
; для $i=1,n$; $j=1,m$, (2.20)

где ріі - прибыль от перевозки 1 ткм. на і-м ВС по ј-й ВЛ;

аі - годовой потенциал провозной способности і-го ВС (млн.ткм);

b_i - спрос на перевозки по j-й ВЛ (млн.ткм).

Ограничение (2.19) уравнивает годовую производительность ПВС и спрос на перевозки.

Исходными данными для задачи 4 являются:

- 1. Типы и численность заданного ПВС (табл.1 Приложения I).
- 2. Прогноз спроса b_j млн. ткм. по j=1,6 ВЛ и протяженность всех 7-ми ВЛ (Свл км.) (табл.3 Приложения I).
 - 3. Параметры типов ВС АК (табл.2 Приложения I):

 A_{r} - годовая экономическая производительность BC(млн.ткм.);

 G_{klm} - коммерческая загрузка при полете на max дальность (т);

 T_{no} - время наземной подготовки BC к выполнению рейса (ч);

 ϕ_{κ_3} - прогноз % коммерческой загрузки (%);

 H_r - плановый годовой налет часов одного BC(y);

 $G_{\scriptscriptstyle T}$ - часовой расход топлива (т);

 G_{kmx} - тах коммерческая загрузка (т);

 V_{eko} - экономическая скорость BC (км/ч);

 $V_{\mbox{\tiny kp}}$ - крейсерская скорость BC (км/ч);

 $n_{\mbox{\scriptsize kp}}$ - количество кресел в салоне BC (шт);

 $C_{\text{вс}}$ – стоимость BC (млн.\$);

4. Доходы, расходы и прибыль от перевозок 1 ткм на i-м типе ВС по j-й ВЛ на дальность Lвл в табл.5 Приложения I.

Алгоритм решения задачи приведен в [1, с. 74-82].

Пример решения задачи 4

В примере фактический (заданный) ПВС АК состоит из: 3-х Ил-96м, 6-ти Ту-214м, 12-ти Ту-204м и 10-ти Ту-334, которые должны перевезти b_j млн. ткм. по 7-ми ВЛ (j= 1,7) протяженностью Lвл км. Ответ задачи 3 - **Q7=180** млн.ткм. является прогнозом объема перевозок по 7-й ВЛ.

Параметры сети ВЛ АК

Таблица 2.7.

Порядковый номер ВЛ АК	1	2	3	4	5	6	7
Прогноз спроса b_i /млн.ткм/ Протяженность ВЛ $L_{\rm BЛ}$ /км/					245 4100		180 3580

По данным табл.2 Приложения I оцениваем стоимость фактического ПВС $C_{\text{пвс}}=\sum Nbc*C_{\text{вс}}=3*45+6*30+12*28+10*25=901$ млн.\$ * 27.8 = 25.048 млрд.руб.

Годовой потенциал провозной способности ВС і-го типа равен

$$a_i = A_{\Gamma} = A_{\Im} \kappa + H_{\Gamma} * \varphi \kappa_3.$$
 (млн. ткм.) (2.21)

По 2.16 и табл.2 Приложения I находим a_i всех типов ВС. Так, потенциал 5-ти ВС Ил-96м равен: a_1 =Nвс*Аэк_ч*Нг* ϕ кз=3*34000*4200* *0.65 = 278 млн.ткм. Аналогично a_i 6-ти Ту-214м, 12-ти Ту-204м и 10-ми Ту-334 соответственно равны 332, 376 и 183 млн. ткм. Записываем a_i и b_i в табл.2.8.

 Таблица 2.8.

 Исходные данные для оптимизации расстановки заданного парка ВС

ПАРК ВС		Во	здушн	ые ли	инии					ai
Тип ВС	Nшт.	1	2	3	4	5	6	7	8	(млн. ткм.)
Ту-214 (ту-204м(1	3 шт.) 6 шт.) 2шт.) 0 шт.)	-11.0 10.0 50.0 83.3	-11.0 10.0 50.0 83.3	17.7 2.3 -5.0 11.7	-7.0 4.0 41.0 60.7	4.7 -2.7 1.3 24.3	31.0 18.3 4.7 -3.3	10.0 -1.3 -1.7 20.7	0 0 0 0	278 332 376 183
bj(млн.ткм	1.)	183	135	137	173	245	109	180	6	1162+6\ \1168
Г Влј(км.)		7500	7500	3000	6600	4100	2000	3580	0	

По табл.7 Приложения I находим точечные оценки себестоимости c_{ij} (руб.) , доходов d_{ij} (руб.) и прибыли p_{ij} (руб.) от перевозки 1 т на 1 км. на i-м типе BC по j-й BЛ. Умножаем p_{ij} на (-1) и записываем их в табл.2.8.

Алгоритм решения задачи 3 приведен в [1, с. 75 – 84]. Оптимальный план расстановки заданного ПВС на сети ВЛ приведен в табл.2.9. Мах прибыли, которая может быть получена на заданной сети ВЛ и заданном ПВС равен $Pmax = -\sum \sum -p_{ij} x_{ij} = 2347$ млн.руб. Просуммировав $d_{ij}*x_{ij}$ и $c_{ij}*x_{ij}$ в занятых клетках табл.2.9, находим доходы $Д_p=18644$ млн.руб., расходы

 P_p =16297 млн.руб. и потенциал прибыли \mathcal{A}_p - P_p = 18644-16297= 2347 млн.руб. заданного ПВС.

Таблица 2.9. Оптимальный план расстановки заданного парка ВС

1	-11	95 -11	17.7	-7	4.7	31.0	10.0	2 0	278
	10	40 10	2.3	173 4	-2.7 119	18.3	-1.3	0	332
	50	50	70 -5	41.0	1.3 126	4.7	180 ^{-1.7}	0	376
1	83.3	83.3	11.7 67	60.7	24.3	-3.3 109	20.7	6 0	183
	183	135	137	173	245	109	180	6	1168

Вычислив суммы расходов для каждого типа ВС в отдельности, находим себестоимости 1 ткм. для каждого типа ВС. Результаты расчетов в табл.2.10.

Таблица 2.10. Экономические характеристики перевозки 1 ткм. по типам ВС

JIOHON	m iceniie Aupunie	истики перевозки т тг	tim no innam be
Тип ВС	Сумма расходов	Сумма Суммарный объем расходов авиаперевозок	
	Млн. руб.	Млн. ткм.	1 ткм руб./ткм.
Ил-96	2780	278	10.0
Ty-214	5933	332	17.9
Ty-204	5133	376	13.6
Ty-334	2472	183	13.5
Итого	16297		

2.4.2. Оценка экономического потенциала рынка авиаперевозок

Экономический потенциал рынка авиаперевозок можно оценить по тах прибыли Пр, которую можно получить от перевозки прогнозируемого объема млн.ткм. на оптимальном по типам и численности ПВС, сформированном из доступных АК типов ВС, оптимально расставленном на сети ВЛ, функционирующем без отказов и задержек, при полном и своевременном ресурсном обеспечении, необходимой оснащенности аэропортов, оптимальном расписании и т.д.

Оптимальный ПВС формируем при следующих допущениях:

- 1. ВС выполняют только беспосадочные рейсы.
- 2. Фактический годовой налет часов 1 BC не может быть больше 2 % от планового годового налета. Например, при плане 4200 часов фактический годовой налет Ил-96м не должен превысить 4284 часа.

В примере оптимальный ПВС формируем из доступных АК типов ВС:

- 1. По данным табл.7 Приложения I для всех ВЛ в зависимости от их дальности находим самые выгодные типы ВС (дающие max (p_{ij})). Записываем в табл.2.11 под каждой ВЛ выбранный тип ВС.
- 2. В столбец "Типы ВС" записываем (по одному разу) все выбранные типы ВС (в том же порядке, что и в табл.2.9).
 - 3. В столбцы табл.2.11. "Воздушные линии" записываем - p_{ij} .
- 4. Суммируем прогнозы объемов перевозок на ВЛ по типам ВС: Ил-96м (183+135+173)=491; Ту-204м(137+180)=317; Ту-214м =(245); Ту-334=(109).

Поскольку $\sum a_i=1162=\sum b_j=1162$ в табл.2.11 - транспортная задача "закрытая", решая которую получаем оптимальное решение (табл.2.12). Оптимальный план дает предельно тах прибыль, которую может получить ПВС, сформированный из доступных АК типов ВС

Pmax= - $\sum \sum -p_{ij} x_{ij}$ = - (-6711) = 6711 млн. руб.

Таблица 2.11. Исходные данные для оценки экономического потенциала рынка

теходиве даниве для оценки экономи теского потенциала рынка										
		Воздушные линии								
Тип ВС	1	2	3	4	5	6	7	МЛН. ТКМ.		
Ил-96м Ту-214м Ту-204м Ту-334	-11.0 10.0 50.0 83.3	-11.0 10.0 50.0 83.3	17.7 2.3 -5.0 11.7	-7.0 4.0 41.0 60.7	4.7 -2.7 1.3 24.3	31.0 18.3 4.7 -3.3	10.0 -1.3 -1.7 20.7	491 245 317 109		
b_i /млн.ткм.	183	135	137	173	245	109	180	1162		
Lвлј(км.) Орt Тип	7500 Ил-96	7500 Ил-96	3000 Ту-204м	6600 Ил-96м	4100 Ту-214м	2000 Ty-334	3580 Ту-204м			

Просуммировав произведения $d_{ij}x_{ij}$ и $c_{ij}x_{ij}$ в занятых клетках табл.2.12, вычисляем доходы от перевозок $Д_p = 19466$ млн.руб. и сопутствующие им

расходы P_p =12755 млн.руб. Разность \mathcal{A}_p - P_p = 19466 – 12755 = 6711 млн.руб., равна потенциалу прибыли рынка авиаперевозок.

Оптимальное решение Таблица 2.12.

183 -11	135 ⁻¹¹	17.7	173 ⁻⁷	4.7	31.0	10.0	491
10	10	2.3	4	245 -2.7	18.3	-1.3	245
50	50	137 ⁻⁵	41.0	1.3	4.7	180 -1.7	317
83.3	83.3	11.7	60.7	24.3	-3.3 109	20.7	109
183	135	137	173	245	109	180	1162

Вычислив суммы расходов для каждого типа ВС в отдельности, находим себестоимости 1 ткм. для каждого типа ВС. Результаты в табл.2.13.

Расчет себестоимости 1 ткм. по типам ВС Таблица 2.13.

Тип ВС	Сумма	Суммарный объем	Себестоимость
	расходов	авиаперевозок	1 ткм
	Млн. руб.	Млн. ткм.	руб./ткм.
Ил-96	4910	491	10.0
Ty-214	2695	245	11.0
Ty-204	3878	317	12.2
Ty-334	1272	109	11.7
Итого	12755		

Сравнивая себестоимости 1 ткм. в табл. 2.10 и 2.13, а также тах возможную прибыль 6711 млн.руб. и прибыль 2347 млн.руб., которую можно получить на фактическом ПВС, делаем вывод о наличии резерва повышения эффективности деятельности АК за счет изменения структуры ПВС и снижения себестоимости 1 ткм.

Оцениваем возможность реализации плана табл.2.12 с учетом ограничений (2.12-2.15). С этой целью вычисляем и записываем в табл.2.14:

а) годовые производительности всех типов BC $Ar_1ci = Au_1C_i*Hr$, где Au_1C_i - часовая экономическая производительность i-го типа BC;

Нг - плановый годовой налет часов і-го типа ВС;

б) дробную численность ПВС і-го типа, способного выполнить прогнозный объем перевозок с учетом $\phi_{\kappa 3 i}$

$$nBC_{i} = Qp_{i}/(A\Gamma_{1}c_{i}*\phi_{K3i}), (для Ил-96м $nBC_{i} = 491(143*0.65)=5.3 \text{ шт.})$ (2.22)$$

- в) дробные части нецелых BC ΔnBC_{i} (для Ил-96м dnc1=0.30 шт.);
- г) целые части BC : Ил-96м $nBC_1=5$; Ty-214м $nBC_2=4$, Ty-204м $nBC_3=10$; Ty-334 $nBC_4=6$);
- д) доли дробных частей BC приходящиеся на каждое целое BC $\Delta H_1 c_i = \Delta B C \sim_i / n B C \sim_i ;$ (для Ил-96м $\Delta H_1 c_i = 0.30/5 = 0.06$ или +6.0%), (2.23)
- е) дополнительный налет часов приходящийся на каждое целое ВС

 Δ Hг1_{вс} $i = \Delta$ H1с $_i$ * Нг $_i$, (для Ил-96м Δ Hг1_{вс}1 = 0.06 * 4200 = 243 часа).

Из табл. 2.14 видно, что Δ Нг каждого Ил-96м на 243 часа (+6.0%) и каждого Ту-214м на 462 ч. на +11% превышает 2%-е ограничение и объем перевозок 1162 млн. ткм. для ПВС: 5 Ил-96м, 4 Ту-214м, 10 Ту-204м, 5 Ту-334 недоступен.

Исходя из полученных результатов формулируем $\mathbf{YP_{41}} \rightarrow \{$ потенциал рынка=1162 млн.ткм., мах прибыль, которую может дать фактический ПВС ВС=2347 млн.руб. при расходах $P_p=16297$ млн.руб.; рентабельность фактического ПВС равна $\mathrm{Ren}_{\phi}=2347/16297=0.144\}$ и $\mathrm{YP_{42}} \rightarrow \{$ тах прибыль, которая может быть получена ПВС, составленным из имеющихся типов ВС = 6711 млн. руб. при расходах $P_p=12755$ млн.руб.}.

Поиск параметров оптимального парка ВС Таблица 2.14.

Тип ВС	Спрос	φкз	Аг1	nBC~	ΔΒС	ΔΗ1c	%	ΔΗ	Нг	N1	A 1	N2	A2
	млн.	%	МЛН	ШТ.	ШТ.	доля		Г	план ч.		млн.		млн.
	ТКМ.		TKM			1BC		BC	1.		ткм.		ткм.
Ил-96м	491	0.65	143	5.30	0.30	0.06	6.0	243	4200	5	491	6	557
Ту-154м		0.65		4.40		0.11	11.0		4250	4	245	5	276
Ту-204м	317 109	0.65	48 28	10.10	$0.10 \\ 0.001$	0.01	1.0		2800 2800	10	317 109	11	345 109
Ту-334 Итого:	1162	0.03	28	3.99	0.001	0.01	1.0	334	2800	3	1162	O	1287
111010.	1102										1102		1207

Для поиска целочисленного ПВС, который не превысит более чем на 2% плановый налет Hг, воспользуемся предельными численностями ВС i-го

типа N1 и N2 из табл.2.14. Сформируем из них все возможные варианты ПВС (см. табл.2.15).

Возможные варианты парка ВС Т											абли	ца 2.1	15.			
ВС\Вар-т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ил-96м	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6
Ту-214м	4	4	4	4	5	5	5	5	4	4	4	4	5	5	5	5
Ту-204м	10	10	11	11	10	10	11	11	10	10	11	11	10	10	11	11
Ty-334	5	6	5	6	5	6	5	6	5	6	5	6	5	6	5	6
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\sum a_i$	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
_	8	0	2	3	4	6	7	9	8	0	1	3	3	5	6	8
	9	7	1	9	4	2	6	4	2	0	4	2	7	5	9	7
$\nabla \mathbf{h}, \nabla \mathbf{a}$	73	55	41	23	18	0	-	-	-	-	-	-	-	-	-	-
$\sum b_j$ - $\sum a_i$							14	32	20	38	52	70	75	93	107	125

Как показали расчеты, полностью удовлетворяют спрос на авиаперевозки, варианты ПВС, дающие min модуля разности $|\sum b_j - \sum a_i|$. Анализ величин $|\sum b_j - \sum a_i|$. Табл.2.15 показывает, что в нашем примере это 6-й, либо 7-й варианты ПВС. Рассмотрим 6-й вариант ПВС стоимостью 22379 млрд.руб., в состав которого входят: 5 Ил-96м, 5 Ту-214м, 10 Ту-204м и 6 Ту-334. Решаем задачу методом потенциалов и находим оптимальный план (табл.2.16), дающий прибыль Пр6=6412 млн. руб. при расходах 13054 млн.руб. и доходах 19466 млн.руб.

Опти	мальное	решение	для 6-го	варианта па	рка ВС	Таблица 2.1	6.

	III.VICCUIDI	TOC PCL	1011110	40121 O 1	o bapna	11114114	price DC	1 40011111	<u> </u>
ВЛ 1	ВЛ 2	ВЛ 3	ВЛ 4	ВЛ 5	ВЛ 6	ВЛ 7	3.67777	Расходы млн.руб.	Себ. ткм/ руб.
183 -11	135 ⁻¹¹	17.7	-7 146	4.7	31.0	10.0	464	4640.0	10.0
10	10	2.3	27 4	245	18.3	4 -1.3	276	3315.0	12.0
50	50	137 ⁻⁵	41.0	1.3	4.7	-1.7 176	313	3827.7	12.2
83.3	83.3	11.7	60.7	24.3	-3.3 109	20.7	109	1271.7	11.7
183	135	137	173	245	109	180	1162	13054	

7-й вариант ПВС стоимостью 22462 млрд.руб. состоит из: 5 Ил-96м, 5 Ту-214м, 11 Ту-204м и 5 Ту-334. Оптимальный план расстановки 7-го варианта

ПВС в табл.2.17. Прибыль 7-го варианта равна Пр7=6270 млн. руб. расходы P7=13139 млн.руб. и доходы Д7=19409 млн.руб.

Оптимальное решение для 7-го варианта парка ВС Таблица 2.17.

ВЛ 1	ВЛ 2	ВЛ 3	ВЛ 4	ВЛ 5	ВЛ 6	ВЛ 7	ВЛф	_	Расходы млн.руб.	Себ. ткм. руб.
183 -11	-11 135	17.7	146 ⁻⁷	4.7	31.0	10.0	0	464	4640.0	10.0
10	10	2.3	27 4	245 ^{-2.7}	18.3	-1.3	4 0	276	3271.0	12.03
50	50	137 ⁻⁵	41.0	1.3	18 4.7	-1.7 180	10 0	345	4166.3	12.4
83.3	83.3	11.7	60.7	24.3	109 ^{-3.3}	20.7	0	91	1061.7	11.7
183	135	137	173	245	109	180	14	1162/ 1176	13139	

Сравнивая 6-й и 7-й варианты, находим, что:

- 1) прибыль Пр6=6412 млн. руб. > Пр7=6270 млн. руб.;
- 2) расходы Р6=13054 млн. руб. < Р7=13139 млн. руб.
- 3) рентабельность 6412/13054 = 0.491 > 6270/13139 = 0.476.

Сравнивая по табл.2.18 итоги использования ПВС, делаем следующие выводы:

- 1. Фактический парк ВС не может выполнить прогноз объема перевозок.
- 2. 6-й вариант: Ил-96м(5);Ту-214(5);Ту-204м(10);Ту-334(6) превосходит фактический: Ил-96м(3);Ту-214(6);Ту-204м(12);Ту-334(10) и
- 7-й вариант: Ил-96м(5);Ту-214(5);Ту-204м(11);Ту-334(5) по всем показателям (см.табл.2.18).

Исходя из выводов формируем $\mathbf{YP}_{43} \rightarrow \{\text{парк BC}, \text{способный полностью}$ удовлетворить спрос, имеет вид:Ил-96м(5);Ту-214(5);Ту-204м(10);Ту-334(6); дает тах прибыль = 6412 млн. руб. при тах прибыль весей или. руб. и $\text{Ren}_6 = 6412/13054 = 0.491$.

Таблица 2.18. Сравнение использования вариантов парков ВС на заданной сети ВЛ

Показатель	Ед.изм.	Факт.ПВС	Bap. 7	Bap. 6	Потен-
Стоимость ПВС	млрд. руб.	25.048	22.462	22.379	
Доходы	млн. руб.	18644	19409	19466	19466
Расходы	млн. руб.	16297	13139	13054	12755
Прибыль	млн. руб.	2347	6270	6412	6711
Прибыль/Расходы	-	0.144	0.477	0.491	0.526
Фондоотдача ПВС	-	0.094	0.279	0.287	
$\sum b_j$ - $\sum a_i$	млн. ткм.	-6	- 14	0	0
$\sum a_i$	млн. ткм.	1168	1176	1162	1162
$\sum b_j$	млн. ткм.	1162	1162	1162	1162

2.5. Формирование оптимального облика УС

Функционирование ПВС АК обеспечивается наземным комплексом

$$HK=A\Pi+YBД+AP3+ATЦ$$
 (2.24)

где АП - аэропорты, УВД - средства управления воздушным движением, AP3 - авиаремонтные заводы; АТЦ - авиационно-технических центры.

Эффективность парных рейсов (ΠP) зависит соответствия интенсивностям поступления на обслуживание BC - λ_{BC} пассажиров - λ_{nacc} груза λ_{rp} багажа λ_{6r} параметров облика ОУ, характеризуемого параметрами ПВС, сети ВЛ, численности экипажей (ЭК) и элементов НК: взлетнопосадочных полос (ВПП), бригад перронного обслуживания (БОТ), мест стоянки (МСТ), радиолокаторов, средств доставки пассажиров в АП, мест ожидания в аэровокзале (МОЖ), числа билетных касс, стоек регистрации аэродромных тягачей (ТГА), багажных телег (БГТ), заправщиков (CTP), ГСМ и т.д.

Недостаток элементов НК ведет к возникновению "узких мест", в которых замедляется движение потоков заявок - BC, пассажиров, грузов и

багажа. Простои ВС и пассажиров, задержки и отмены ПР, снижают экономические показатели АК, регулярность и безопасность полетов.

Для использования потенциала рынка перевозок и ПВС АК необходимо оценить и обеспечить потребные количества элементов ОУ.

Потребные количества элементов АК и НК определяются в зависимости от вида и $\lambda_{\rm BC}$ и $\lambda_{\rm пасс}$ по алгоритмам [1]. Так, оптимизация числа ВС, ЭК и БПП выполняется путем решения комплекса задач, в который входят: оптимизация расстановки ВС по ВЛ, задача "о назначениях", оптимизация графиков оборота ВС, ЭК и БПП, оценка риска реализации планов и графиков оборотов [1, с.93-95]. Оптимизацию элементов НК может быть выполнена алгоритмами и математическими моделями теории массового обслуживания [1] или компьютерными имитационными моделями [2].

Общность АК и НК должна способствовать полной реализации потенциалов рынка перевозок и ПВС, путем обеспечения выполнения всех ПР в течение всего года и особенно в период интенсивных перевозок.

Задача 5 посвящена поиску наиболее интенсивного периода работы базового АП, обслуживающий фактический ПВС, который берется в качестве расчетного. Искомыми в ней являются пиковые $\lambda_{\rm BC}$ и $\lambda_{\rm пасс}$, необходимые для оценки достаточности ресурсов, оптимизации облика и поиска "узких мест". Исходными данными для решения задачи 5 является план табл.2.16 и другие результаты решения задачи 4.

Методика оптимизации числа элементов НК зависит от вида системы массового обслуживания, к которым они относятся.

Предварительно оценим тах $\lambda_{\rm BC}$ поступления BC в аэропорт базирования. Для этого оценим количество ПР за которое можно выполнить, например, 183 млн.ткм. на ИЛ-96м по ВЛ 1 длиной 7500 км.

Время полета до конечного аэропорта і-го ВС по ј-й ВЛ равно

$$tp_{ij} = L_{B\Pi_j}/Vp_{ij} = 7500/896 = 8.63 \,\mathrm{ч}$$
, (2.25)

где Vp_{ij} - рейсовая скорость і-го типа BC на j-й BЛ.

Рейсовую скорость Vp_{ij} определяем с учетом числа посадок и потерь времени на взлет и посадку

$$Vp_{ij} = \frac{L_{B\Pi_{j}} V_{K}p_{i}}{L_{B\Pi_{j}} + N_{\Pi_{j}} * dt_{j} * V_{K}p_{i}} = \frac{7500 * 900}{7500 + 1*0.3*900} = 869 \text{ km/y}. \quad (2.26)$$

где Укрі - крейсерская скорость ВС і-го типа;

Nn_i - число посадок при выполнении рейса по ј-й ВЛ;

 $dt_i \sim 0.3$ - время набора высоты и снижения при взлете-посадке.

Поскольку время парного рейса $tпp_{ij}=2tp_{ij}=8.63*2=17.27$ ч., а производительность ВС за парный рейс $Aпp=Aэκч_i*f_{κ3i}*tпp_{ij}==34000*0.65*17.27=381593$ ткм., то количество ПР, необходимых для выполнения 183 млн.ткм равно

$$N\pi p_{12} = \frac{Q\pi p_{ij}}{A\pi p} = \frac{183000000}{381593} \sim 480 \ (\pi.p.). \tag{2.27}$$

Аналогично находим количества ПР каждого і-го типа ВС по каждой ј-й ВЛ Nnpr_{ij} и записываем их в табл.2.19.

Аэропортам РФ характерна неравномерность распределения объемов работы в течение года, недели и суток, индивидуальные для каждого АП. Предлагаемые для расчетов в табл.6, 7, 8 Приложения I неравномерности одинаковы во всех вариантах КР.

Таблица 2.19. Головой план парных рейсов фактическим парка ВС

	т одог	DOM III.	1411 114	лиыл р	CHCOD	wani	n icci	THINH HEEL	pra DC		
ВС \ВЛ	1	2	3	4	5	6	7	ПР	Нг	Νэк	N ₁ Bc
Ил-96м (3) Ty-214 (6) Ty-204м(12) Ty-334 (10)	480 0 0 8	249 169 0	0 0 798 1317	825 0 0	0 893 1073 0	0 0 0 3094	$\begin{bmatrix} 0\\0\\1741\\0 \end{bmatrix}$	729 1887 3612 4419	12590 25541 33631 27227	24 49 64 52	-8 -8 5 5
Lвл _і	7500	7500	3000	6600	4100	2000	3580	-			
Всего								17789			

Используя данные табл.2.19, определяем годовой налет часов H_{Γ_j} и потребную численность экипажей N_{j} по всем j=1,m типам BC, а также число экипажей N_{j} на 1 BC j-го типа. Так налет часов Ил-96м равен

$$H_{\Gamma_{j=\mu,\pi-96v}} = \sum_{i=1}^{N_{B\pi}} N_{\pi} p_i * t_{\pi} p_i$$
 480*17.27 + 249*17.27 = 12590 ч (2.28)

где N_{npij} - количество парных рейсов на j-м типе BC по i-й ВЛ;

 $t_{\text{пр ij}}$ - продолжительность парного рейса на j-м типе BC по i-й BЛ.

Количество экипажей для ВС ј-го типа Ил-96м определяется как

$$N_{9}$$
К_j = $\frac{K_1 * H_{\Gamma_j}}{H_s} = \frac{1.15 * 12590}{600} \approx 24$ экипажей (2.29)

Количество экипажей для 1-го ВС ј-го типа определяется как

$$N_{j1BC} = \frac{N \Im \kappa_j}{N1BC} = \frac{24}{3} \approx 8$$
 экипажей (2.30) Аналогично найденные $H \Gamma_j$, $N \Im \kappa_j$, N_{j1BC} для остальных типов BC

Аналогично найденные H_{Γ_j} , $N_{\mathfrak{I}_{1BC}}$, $N_{\mathfrak{I}_{1BC}}$ для остальных типов ВС приведены в табл.2.29.

Умножив Nпрг_{іј} табл.2.19 на %% неравномерности табл.6 Приложения I, получаем план ПР по месяцам года, приведенный втабл.2.20.

Таблица 2.20. Месячный план выполнения парных рейсов фактическим парком ВС

Месяц	1	2	3	4	5	6	7	8	9	10	11	12	Итого
%% г.	6	5	6	8	9	10	11	14	11	8	6	6	ПР
Ил-96м Ту-214 Ту-204м Ту-334	44 113 217 265	36 94 181 221	44 113 217 265	58 151 289 354	66 170 325 398	73 189 361 442	80 208 397 486	102 264 506 619	80 208 397 486	58 151 289 354	44 113 217 265		729 1887 3612 4419
Итого:	639	532	639	852	958	1065	1171	1491	1171	852	639	639	10647

Таким образом, согласно табл.2.20 в месяц-пик АК должна выполнить **1491** ПР. Далее распределяем ПР между ВС и ВЛ, умножая $Nnpr_{ij}$ табл.2.20 на 0.14 и записывая $Nnpm_{ij}$ = $Nnpr_{ij}$ *0.14 в табл.2.21. Так, например, число ПР в месяц-пик на Ил-96 по 1-й ВЛ равно $Nnpm_1$ =480*0.14~ 67.

Таблица 2.21. План парных рейсов в месяп-пик

			іан па	рных р	сисов в	месяц-пі	11	
ВС∖ВЛ	1	2	3	4	5	6	7	ПР
Ил-96м Ту-214 Ту-204м Ту-334	67 0 0 1	35 24 0 0	0 0 112 184	116 0 0	125 150 0	0 0 0 433	0 0 244 0	102 264 506 619
Всего								1491

Число ПР в неделю-пик находим, исходя из того, что недельные объемы работ \sim равны друг другу и Nпрн=Nрмп/4 (см. табл.2.22. Так, Nпрн в неделю-пик для Ил-96м по 1й ВЛ равно Nпрн= $67*0.25\sim17$.

Таблица 2.22. План парных рейсов в нелелю-пик

	110141	ւուաթ	IIDIA	pene	יוו ע עי	дели	11111	_
ВС∖ВЛ	1	2	3	4	5	6	7	ПР
Ил-96м Ту-214 Ту-204м Ту-334	17 0 0 0	9 6 0 0	0 0 28 46	0 29 0 0	0 31 38 0	0 0 0 108	0 0 61 0	26 66 126 155
Всего								377

Число ПР в сутки-пик (пятницу, субботу и воскресенье) согласно табл.7 Приложения I равно 20% недельного объема работ. Записываем их в табл.2.23.Так, на Ил-96м по ВЛ1 в сутки-пик будет выполнено 17*0.20~3 ПР.

Таблица 2.23. План папных пейсов в сутки-пик

_		LIJIAII	парі	IDIA	JUNCUD	D Cy I	IZ 11 - 11 11	IX
ВС∖ВЛ	1	2	3	4	5	6	7	ПР
Ил-96м Ту-214 Ту-204м Ту-334	3 0 0 0	2 1 0 0	0 0 6 9	0 6 0 0	0 6 8 0	0 0 0 22	0 0 12 0	5 13 25 31
Всего								74

Число ПР, убывающих из АП на i-м ВС по j-й ВЛ в час-пик определяем по табл.8 Приложения I, равным 18% от объема работы в сутки-пик. Результаты в табл.2.24.

Таблица 2.24.

парные реисы в час-пик													
ВС∖ВЛ	1	2	3	4	5	6	7	ПР					
Ил-96м Ту-214 Ту-204м Ту-334	1 0 0 0	0 0 0 0	0 0 1 2	0 1 0 0	0 1 1 0	0 0 0 4	0 0 2 0	1 2 4 6					
λbc								13					

Число пассажиров, убывающих из АП на і-м ВС по ј-й ВЛ в час-пик равно $Nnac_{ii}=0.18*Np_{ii}*Nkp_i*\phi_{k3i}$ Результаты в табл.2.25.

Таблица 2.25.

1413

пассажиры, вылетающие в час-пик													
ВС \ ВЛ	1	2	3	4	5	6	7	Пасс					
Ил-96м Ту-214 Ту-204м Ту-334	195 0 0 0	0 0 0 0	0 0 139 130	137 0 0	0 137 137 0	0 0 0 260	$\begin{bmatrix} 0 \\ 0 \\ 278 \\ 0 \end{bmatrix}$	195 274 554 390					

Итог решения задачи 5: \mathbf{YP}_5 >{расчетные λ_{BC} =13 вс/ч и λ_{macc} =1413 пасс/ч}.

2.6. Оптимизация облика ОУ

λ пасс

Задача 6 посвящена формированию УР об оптимальном количестве в базовом АП: багажных тележек (БГТ), стоек регистрации (СТР), мест ожидания (МОЖ), тягачей аэродромных (ТГА), мест стоянки ВС (МСТ) и бригад оперативного обслуживания ВС (БОТ).

Задача решается при условии рассмотрения их как систем массового обслуживания (СМО) и использования для оптимизации их численностей моделей теории массового обслуживания. По итогам ее решения, формируется УР по улучшению УС. Например, при нехватке одного из видов каналов СМО, исходя из имеющихся запасов ресурсов, необходимо оценить расходы и результаты ликвидации нехватки. Для оптимизации СМО рекомендуется использовать алгоритмы [1, с.96-105].

Пример решения задачи 6

В качестве примера рассмотрим задачу оптимизации количества аэродромных тягачей. Исходными данными для решения задачи являются: интенсивность поступления ВС на обслуживание в СМО $\lambda_{\rm BC}$ (в примере $\lambda_{\rm BC}$ =13 (ВС/час)); среднее время обслуживания заявки $t_{\rm o6}$ =0.167 ч (10 мин.); средние потери от простоя ВС за час $c_{\rm o3}$ =10 ден.ед.; средние потери от простоя канала за час $c_{\rm o\kappa}$ =5 ден.ед.; часовые эксплуатационные расходы канала $c_{\rm o3}$ =2 ден.ед. Стоимости, а также величины $c_{\rm o3}$, $c_{\rm o\kappa}$ и $c_{\rm o3}$ для вышеуказанных видов СМО приведены в табл.13. Приложения I. Оптимальное количество каналов

в СМО обеспечивает min затраты-потери C_s (Nк) - функции параметров СМО и заданного числа каналов $n = N_{\kappa}$:

Шаг 1. Интенсивность обслуживания одной заявки

$$\lambda = 1 / \text{tof} = 1/0.16666 = 6$$
. (2.31)

где tоб=0.16666 (~10 мин) - среднее время обслуживания заявки.

Шаг 2. Коэффициент загрузки канала $\alpha = \lambda / \mu = 13/6 = 2.167$, (2.32)

где $\lambda = 13$ - интенсивность потока заявок;

 $\mu = 6$ - интенсивность обслуживания заявок.

Шаг 3. Начальное количество каналов должно обеспечивать выполнение условия $(n-\alpha)>0$ $n=\inf(2.167+0.5)=|2.667|=3$. (2.33)

Шаг 4. коэффициент загрузки СМО

$$\rho = \lambda/(n \,\mu) = 13/(3*6) = 0.722. \tag{2.34}$$

Шаг 5. Вероятность того, что все каналы свободны и ждут ВС

$$Po = \frac{1}{\alpha^{\kappa}} = 0.085$$
, (2.35)
 $\sum_{\kappa=0}^{n-1} \frac{\alpha^{\kappa}}{\kappa!} = 0.085$, (при al/n<1)

где к - текущее количество занятых каналов СМО.

Шаг 6. Вероятность занятости всех каналов обслуживанием (к>n)

$$\pi = \frac{\alpha^{n} \text{ Po}}{(n-1)! (n-\alpha)} = 0.528 . \tag{2.36}$$

Шаг 7. Среднее время ожидания начала обслуживания каждым ВС

$$t_{\text{ож}} = \pi \frac{t_{\text{об}}}{(n - \alpha)} = 0.11$$
 (2.37)

Шаг 8. Среднее количество ВС, ожидающих обслуживание равно

$$N_0 = \pi \alpha / n(1 - \alpha/n)^2 = 5.0$$
 (2.38)

Шаг 9. Вероятность нахождения на обслуживании п ВС

$$p_n = \alpha^n * p_o / \kappa ! = 0.079 \ . \tag{2.39}$$

Шаг 10. Среднее количество BC на обслуживании

$$n_{BC} = N_o + \frac{n p_n}{(1-\alpha/n)} + p_0 \sum_{\kappa=1}^{n-1} \frac{\alpha^{\kappa}}{(\kappa - 1)!} = 6.28$$
 (2.40)

Шаг 11. Среднее число не работающих каналов СМО

$$N_{\pi} = po \sum_{\kappa=0}^{n-1} \frac{n - \kappa}{\kappa!}$$
 (2.41)

Шаг 12. Среднее количество занятых каналов $N_3 = n - N_{\Pi} = 2$. (2.42)

Шаг 13. Суммарные затраты-потери

$$c_s(n) = (c_{o3} \lambda t_{oж} + c_{ok} N_{\Pi} + c_{o} n) t = 22$$
 ден.ед. (2.43)

где t=1 – длина расчетного периода (ч).

Увеличиваем n на 1 единицу и повторяем Шаги 5-13, пока $c_s(n)$ не начнет возрастать. Результаты расчетов в табл.2.28. Міп величина $c_s(n)$ =17.7 соответствует оптимальному числу каналов в СМО n=6.

Таблица 2.28.

				(Эптимі	изаци	я CM(•	
p _o	π	p _n	t _{ож}	No	n_{BC}	n	N_{π}	N_3	$c_s(n)$
0.085	0.528	0.079	0.11	5.0	6.28	3	0.8	2	22
0.108	0.219	0.043	0.02	0.6	2.25	4	1.8	2	16
0.113	0.080	0.016	0.00	0.1	2.03	5	2.8	2	19
0.114	0.094	0.005	0.00	0.0	2.09	6	3.8	2	19

График $c_s(n) = F(n)$ показан на рис.2.1. На рис.2.1 и в табл.2.28 видно, что первоначальная величина $c_s(n)$ =22 для n=3 уменьшилась до $c_s(n)$ =17 для n=4, а затем начала увеличиваться $c_s(n)$ =19 для n=5. Это означает , что min $c_s(n)$ имеет место при n=3. Число каналов n=3 - оптимальное число аэродромных тягачей (каналов).

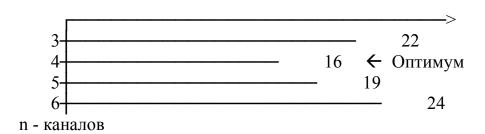


Рис.2.1 График $c_s(n) = F(n)$ для оптимального числа ТГА

Аналогичным образом оптимизируются количества БГТ, СТР, МОЖ, МС и БОТ. Результаты оптимизации численности БГТ, СТР, МОЖ, ТГА, МС и БОТ записаны в табл.2.29.

Таблица 2.29. Итоги оптимизации СМО

	Усл.об.	Цена	Nопт	Νф	ΔN_i	ΔC_i
Вид СМО		тыс. \$	ШТ.	ШТ.	ШТ.	тыс.\$
Тягачи аэродромные Места стоянки ВС Бригады оперативного ТО	ТГА МСТ БОТ	500 500 300	4 20 12	3 25 10	1 0 2	500 0 600
Багажные тележки Стойки регистрации Места в зале ожидания	БГТ СТР МОЖ	0.3 3.0 0.5	712 52 359	600 50 350	112 2 9	33.6 6.0 4.5
Итого						1144.1

Из табл. 2.29 формируется **УР**₆>{необходимо позаботиться об увеличении численности ТГА, БОТ, БГТ, СТР, МОЖ в базовом АП на ΔN_i (табл.2.29) общей стоимостью 1144.1 млн.\$ }.

2.7. Оценка потребности в ресурсах и формирование итогового УР

Задача 7 посвящена оценке потребности в ресурсах и достаточности их запасов, необходимых для полного удовлетворения спроса на авиаперевозки.

Решая задачу 7, необходимо оценить достаточность для выполнения заданного объема перевозок:

- 1) парка ВС;
- экипажей;
- 3) каналов СМО в базовом АП;
- 4) оборотных средств;
- 5) инвестиций.

По окончании решения задач 1 – 7 **формируется итоговое УР**. С этой целью необходимо:

а) обобщить итоги решения задач 1-7;

б) сформулировать итоговое, творческое комплексное, нетиповое УР, способное улучшить УС.

Итоговое УР должно быть основано на результатах расчетов, выполненных в КР. В него, например, могут быть включены предложения об изменении парка ВС, о численности экипажей, об облике НК базового АК и т.д.

Каждое предложение должно сопровождаться указанием:

- 1) расходов запасов ресурсов АК, связанных с его реализацией;
- 2) результатов, которые могут быть получены в результате его реализации;
- 3) расходов необходимых ресурсов из запасов АК;
- 4) денежной выгоды от его реализации.

В итоговом УР должен быть указан оптимальный состав парка ВС, способный дать более высокую прибыль, чем фактический парк ВС. Например, по итогам решения задач 1-7 примеров можно сделать вывод что парк, состоящий из 5-ти Ил-96м, 5-ти Ту-214м, 10-ти Ту-204м и 6-ти Ту-334 даст прибыли 6412 млн. руб., что в 2.73 раза больше, чем 2347 млн.руб., прибыли которую даст на той же сети ВЛ фактический парк ВС, состоящий их 3-х Ил-96м, 6-ти Ту-214м, 12-ти Ту-204 и 10-ти Ту-334.

Как известно, для изменения структуры парка ВС необходимо неоптимальные типы ВС и поменять на оптимальные. Для этой операции необходимы лицензии, инвестиции и субъекты, готовые продать, купить или взять в лизинг ВС. В качестве продавцов или лизингодателей выступают студенты, чьи варианты КР имеют избыток одних и потребность в других ВС, которые имеют активы на своих счетах, лишние экипажи и другие необходимые ресурсы.

приложение і

Исходные данные к выполнению КР

Таблица 1. Количество (в шт.) и типы самолетов в парке ВС АК

				В	ариа	НТ					
Типы ВС	1	2	3	4	5	6	7	8	9	10	11
Ил-96-300 Ту-214 Ту-204м Ту-334	4 6 18 10	5 4 9 9	2 10 19 11	2 4 28 6	4 6 11 8	3 7 18 6	3 6 13 1	6 7 20 4	1 4 18 14	5 11 6 7	3 8 19 1
	12	13	14	15	16	17	18	19	20	21	22
Ил-96-300 Ту-214 Ту-204м Ту-334	1 2 33 14	1 9 13 5	6 5 11 14	1 8 17 8	3 22 18	2 4 19 6	1 5 29 2	1 4 23 2	1 6 34 16	4 4 21 21	1 4 22 3
	23	24	25	26	27	28	29	30	31	32	33
Ил-96-300 Ту-214 Ту-204м Ту-334	2 4 14 29	1 9 11 3	2 5 11 17	3 6 15 13	6 1 7 22	3 5 20 8	2 16 10 10	8 5 11 7	5 6 12 6	1 4 12 4	1 11 4 6

Таблица 2. Летно-технические характеристики ВС

Тип ВС	А эк/ч	Нг	Αг	Свс	Gто	Gкмx	Gklm	Veko	Nкр	Тпод	Vкр
	ткм/ч	Ч	млн. ткм	Млн \$	т/ч	Т	Т	км/ч	шт.	Ч.	км/ч
Ил-96-300м Ту-214 Ту-204м Ту-334 Ил-114	34000 20000 17200 10000 2820	4200 4250 2800 2800 2000	142.8 85.0 48.2 28.0 5.6	45 30 28 25 10	7.7 5.0 4.2 2.0 1.2	40.0 25.2 21.0 9.0 6.0	20.0 20.0 13.0 3.0 1.5	850 850 810 800 470	300 210 214 100 64	2.0 2.0 1.0 1.0 1.0	900 850 828 830 500

В примере курс \$ принят по данным на 21.04 2005 равным 27.8 руб за 1 \$.

Таблица 3. Прогнозы спроса на авиаперевозки (млн.ткм.) по (1-6)-й ВЛ

		Варианты 1 2 3 4 5 6 7 8 9 10 11													
ВЛ	1	2	3	4	5	6	7	8	9	10	11				
1 2 3 4 5 6	183 135 118 173 238 109	83 154 126 108 191 146	218 295 119 180 134 292	237 153 220 145 254 91	37 179 50 127 295 22	245 305 64 91 21 185	66 196 36 109 232 158	239 45 234 75 339 217	134 48 197 21 40 204	146 170 172 79 219 109	53 101 158 436 36 158				
				-	Вари	анты									
ВЛ	12	13	14	15	16	17	18	19	20	21	22				
1 2 3 4 5 6	74 186 239 204 171 167	44 195 113 36 196 137	191 169 70 144 194 177	77 250 227 177 104 84	170 26 245 107 113 192	30 142 109 117 100 110	164 60 157 134 131 177	165 60 163 138 130 118	114 282 146 243 256 221	158 408 208 251 21 260	20 44 107 120 293 244				
					Вари	анты									
ВЛ	23	24	25	26	27	28	29	30	31	32	33				
1 2 3 4 5 6	210 263 110 139 240 193	32 52 30 28 294 65	195 44 118 167 98 177	197 210 140 115 211 122	27 179 149 192 156 118	130 201 90 249 323 120	121 441 203 171 177 190	109 218 130 234 118 124	109 177 140 199 118 215	105 45 28 63 79 118	183 42 33 64 79 118				

Таблица 4. Протяженность (1-7)-й воздушных линий (км)

ВЛ					Ва	рианты	Ы				
1	1	2	3	4	5	6	7	8	9	10	11
1 2 3 4 5 6 7	7500 7500 3000 6600 4100 2000 3580	7500 7500 3000 6600 4100 2000 3580	7510 7510 3000 4151 2501 2010 4900	2020 7520 3500 4913 4109 2540 4980	2530 4659 7500 4650 3008 2130 3570	3040 4410 3500 2114 7506 4136 3060	4600 6510 2500 2000 3503 7500 2550	3080 4620 2100 3051 7401 7550 3560	4699 2530 7000 2000 3502 3040 7070	2150 2040 7500 2561 3503 4647 3080	2040 7560 4699 3500 4094 3302 7090

								Про	долже	ние таб	5л.4.
ВЛ					Ва	рианть	Ы				
2	12	13	14	15	16	17	18	19	20	21	22
1 2 3 4 5 6 7	2650 4655 4700 7564 2105 4701 2780	2000 7540 3500 4640 3006 2020 3070	2040 2530 7500 2065 7500 2530 4060	7230 4220 2500 6500 2007 4540 6550	2020 6250 2500 4644 7580 3555 2570	6010 7330 2000 4200 4208 7520 3060	3020 3040 3500 2042 7500 2503 4220	7530 2070 3500 2500 7508 4203 3080	7500 2100 3520 2513 7509 4220 3060	4250 7550 4190 2500 2008 3010 3050	4170 4700 7500 2700 2180 3330 2160
ВЛ					Ва	рианты	Ы				
3	23	24	25	26	27	28	29	30	31	32	33
1 2 3 4 5 6 7	1536 1500 2500 4150 7500 3500 2580	3263 5000 4100 2500 2080 7500 2070	2000 3000 3500 2000 7508 2523 4160	7500 3400 3800 3500 7500 4130 2130	4130 7510 2500 3400 2100 3530 7570	2040 6010 3500 7000 2506 4120 2060	3090 5510 2120 7000 3503 4100 3550	2080 4120 5500 3051 3401 7550 4160	2130 2530 3500 7500 4092 7740 7870	2150 3440 3500 7361 4073 7503 7680	4040 2160 3600 2300 7004 5002 3590

Таблица 5. Динамика критического фактора $\, x_2 \,$

					F	Вариан	ТЫ				
Годы	1	2	3	4	5	6	7	8	9	10	11
1 2 3 4 5 6 7 8 9	18 35 53 71 89 107 125 143 161 179	26 37 47 58 69 80 90 101 112 122	88 89 91 92 93 95 96 97 99 100	105 115 127 139 153 168 185 204 224 247	29 58 88 119 150 180 211 243 274 305	33 42 52 61 71 80 90 99 109 118	101 102 103 104 105 106 108 109 110 111	132 144 157 171 186 203 221 241 263 287	13 27 41 57 72 88 104 121 137 154	32 43 55 66 77 89 100 112 123 134	93 95 97 99 102 104 106 108 110
	I				В	ариан	ТЫ				
Годы	12	13	14	15	16	17	18	19	20	21	22
1 2 3 4 5 6 7 8 9 10	120 131 143 155 169 185 201 219 239 261	23 51 83 117 153 190 228 267 307 348	48 56 63 71 79 87 94 102 110	82 83 84 86 87 88 90 91 92 94	24 28 34 40 48 57 68 81 96 114	32 73 119 168 219 272 326 382 440 499	59 68 76 85 94 103 111 120 129 137	71 73 74 75 77 78 79 81 82 83	36 43 51 60 72 85 102 121 144 171	42 86 129 174 218 262 307 352 397 442	100 110 119 129 139 149 158 168 178 187

								Прод	олжен	ие таб	бл.5.
					В	ариан	ТЫ				
Годы	23	24	25	26	27	28	29	30	31	32	33
1 2 3 4 5 6 7 8 9	52 53 54 56 57 59 60 61 63 64	55 60 65 71 77 84 92 100 109 119	32 67 102 138 174 211 248 286 323 361	18 22 27 33 41 50 61 74 90 110	22 58 102 152 208 268 332 400 471 545	50 58 65 73 80 88 96 103 111 118	62 63 64 65 67 68 70 71 72 74	40 52 67 86 111 144 185 239 309 398	16 34 52 71 91 110 130 150 170 190	25 37 48 60 72 83 95 107 118 130	58 59 60 62 63 64 65 67 68

Таблица 6. Динамика Q_7 (млн.ткм.) и критических факторов x_1 и x_2

\mathbf{Q}_7	-	\mathbf{x}_1	X ₂	\mathbf{Q}_7	-	X ₁	X ₂	\mathbf{Q}_7	-	\mathbf{x}_1	X ₂
Вариант	1			Вариант	r 2			Вариант	3		
401 405 409 412 417 421 467 .?.	1 1 1 1 1 1 1	6 8 10 12 14 16 23 27	71 89 107 125 143 161 179	213 234 256 265 287 294 305	1 1 1 1 1 1 1	10 12 13 14 13 12 11 10	58 69 80 90 101 112 122 .?.	210 220 240 260 270 280 294	1 1 1 1 1 1 1	30 32 35 37 36 34 33 32	91 92 93 95 96 99 100
Вариант	4			Вариант	5			Вариант	6		
211 222 233 245 255 267 278 .?.	1 1 1 1 1 1 1	32 34 36 38 36 34 32 30	127 139 153 168 185 204 247 .?.	412 424 436 448 450 462 475 .?.	1 1 1 1 1 1 1	35 44 46 48 46 49 52 50	119 150 180 211 243 274 305	331 344 357 369 382 393 408	1 1 1 1 1 1 1	48 46 44 42 40 38 34 32	52 61 71 80 99 109 118 .?.
Вариант	7			Вариант	8		1	Вариант	9		
202 204 208 213 216 221 233	1 1 1 1 1 1 1	24 25 26 27 27 26 25 24	104 105 106 108 109 110 111	412 424 434 446 454 466 478 .?.	1 1 1 1 1 1 1	20 20 19 19 20 19 19 20	157 171 186 203 241 263 287	412 424 438 443 456 461 472 .?.	1 1 1 1 1 1 1	19 24 27 29 31 29 27 23	57 72 88 104 121 137 154 .?.

								Продо	лже	ние т	абл.6.
Вариант	10			Вариант	r 11			Вариант	12		
408 414 421 430 446 461 480 .?.	1 1 1 1 1 1 1	22 24 26 28 33 28 25 23	66 77 89 100 112 123 134 .?.	308 314 321 330 346 361 380 .?.	1 1 1 1 1 1 1	22 24 29 28 30 28 23 27	97 99 102 104 106 110 113	561 545 529 513 496 480 466 .?.	1 1 1 1 1 1 1	22 24 26 28 29 28 25 23	155 169 185 201 219 239 261 .?.
Вариант				Вариант				Вариант			
459 447 435 423 411 398 386 .?.	1 1 1 1 1 1	18 22 25 28 30 33 35 37	83 117 153 190 228 267 307	559 547 534 521 512 506 499 .?.	1 1 1 1 1 1	21 22 23 20 19 12 12	71 79 87 94 102 110 117	229 237 240 251 262 276 280	1 1 1 1 1 1 1	17 20 28 22 28 20 28 32	84 86 87 88 90 92 94
Вариант	16		1	Вариант 17			Вариант	18			
512 524 532 544 562 575 587	1 1 1 1 1 1 1	14 17 16 16 12 11 13	34 48 57 68 81 96 114	412 424 432 444 462 474 483 .?.	1 1 1 1 1 1 1	10 12 13 15 18 20 20 23	168 219 272 326 382 440 499	420 430 440 450 460 470 480 .?.	1 1 1 1 1 1 1	36 41 44 45 47 50 51 52	85 94 103 111 120 129 137 .?.
Вариант	19		1	Вариант	20	I	1	Вариант	21		
380 370 360 350 340 330 315 .?.	1 1 1 1 1 1 1	22 25 27 29 30 31 26 24	75 77 78 79 81 82 83	590 580 570 560 550 540 530	1 1 1 1 1 1 1	28 30 32 36 38 41 44 47	60 72 85 102 121 144 171 .?.	397 388 379 361 352 343 334 .?.	1 1 1 1 1 1 1	28 30 32 36 37 35 33	174 218 262 307 352 397 442 .?.
Вариант	22			Вариант	23		1	Вариант	24		
295 286 273 262 253 244 232	1 1 1 1 1 1 1	28 30 32 36 37 35 33 31	119 129 139 149 158 178 187	295 286 273 262 253 244 232	1 1 1 1 1 1 1	27 25 23 21 20 19 17 15	56 57 59 60 61 63 64 .?.	401 405 409 412 417 421 467 .?.	1 1 1 1 1 1 1	6 8 10 12 14 16 23 27	71 77 84 92 100 109 119 .?.

								Прод	олже	ние т	габл.6
Вариант	25			Вариант	26			Вариант	27		
213 234 256 265 287 294 305 .?.	1 1 1 1 1 1 1	10 12 13 14 13 12 11 10	138 174 211 248 286 323 361 .?.	213 234 256 265 287 294 305 .?.	1 1 1 1 1 1 1	9 13 19 22 22 18 13 12	33 41 50 61 74 90 110	311 332 353 364 382 393 406 .?.	1 1 1 1 1 1 1	9 12 14 15 16 12 11 9	152 208 268 332 400 471 545 .?.
Вариант	7 28			Вариант				Вариант	30		
112 134 154 166 188 195 203	1 1 1 1 1 1 1	10 12 13 14 16 14 12 10	73 80 88 96 103 111 118 .?.	113 134 151 175 189 218 234 .?.	1 1 1 1 1 1 1	30 32 33 35 36 28 33 29	65 67 68 70 71 72 74 .?.	413 434 456 475 497 514 535 .?.	1 1 1 1 1 1 1	10 12 13 14 13 12 11 10	86 111 144 185 239 309 398 .?.
Вариант	r 31	i .	1	Вариант	32		1	Вариант	33		
213 234 256 265 287 294 305	1 1 1 1 1 1 1	10 12 13 14 13 12 11 10	71 91 110 130 150 170 190	213 234 256 265 287 294 306	1 1 1 1 1 1 1	10 12 13 14 13 12 11 10	60 72 83 95 107 118 130	313 334 356 365 387 394 405	1 1 1 1 1 1 1	10 12 13 14 13 12 11 10	62 63 64 65 67 68 69

Таблица 7. Доходы, расходы и прибыль, получаемые от перевозки 1 ткм.

	500 км.	1000 км.	1500 км.	2000 км.	2500 км.	3000 км.	3500 км.
Доходы Ил-96-300 Ту-214 Ту-204м Ту-334 Ил-114	0.0 0.0 0.0 3.3 4.0	0.3 0.3 6.7 8.0 8.3	1.7 3.0 9.3 11.7 10.0	2.3 6.7 12.0 15.0 6.7	4.0 9.3 15.3 8.3 2.7	9.0 12.7 16.7 5.0 0.0	12.3 14.3 15.3 0.0 0.0
Расходы Ил-96-300 Ту-214 Ту-204м Ту-334 Ил-114	66.7 50.0 26.7 11.7 10.0	50.0 33.3 23.3 10.0 8.3	41.7 30.0 18.3 8.3 8.3	33.3 25.0 16.7 11.7 10.0	30.0 20.0 10.0 13.3 13.3	26.7 15.0 11.7 16.7 23.3	23.3 13.3 13.3 20.0 30.0
Прибыль Ил-96-300 Ту-214 Ту-204м Ту-334 Ил-114	-66.7 -50.0 -26.7 -8.3 -6.0	-49.7 -33.0 -16.7 -2.0 0.0	-40.0 -27.0 -9.0 3.3 1.7	-31.0 -18.3 -4.7 3.3 -3.3	-26.0 -10.7 5.3 -5.0 -10.7	-17.7 -2.3 5.0 -11.7 -23.3	-11.0 1.0 2.0 -20.0 -30.0

	4000 км.	4500 км.	5000 км.	5500 км.	6500 км.	7500 км.	8000 км.
Доходы Ил-96-300 Ту-214 Ту-204м Ту-334 Ил-114	14.7 15.0 16.0 0.0 0.0	15.0 15.7 10.0 0.0 0.0	16.3 16.3 5.0 0.0 0.0	17.7 17.7 0.7 0.0 0.0	18.3 18.3 0.0 0.0 0.0	21.0 13.3 0.0 0.0 0.0	22.0 2.3 0.0 0.0 0.0
Расходы Ил-96-300 Ту-214 Ту-204м Ту-334 Ил-114	20.0 11.7 16.7 23.3 40.0	16.7 15.0 13.3 28.3 50.0	13.3 18.3 33.3 33.3 66.7	15.7 20.0 36.7 50.0 83.3	11.7 21.7 40.0 58.3 91.7	10.0 23.3 50.0 83.3 100.0	13.3 26.7 66.7 100.0 116.7
Прибыль Ил-96-300 Ту-214 Ту-204м Ту-334 Ил-114	-5.3 3.3 -0.7 -23.3 -40.0	-1.7 0.7 -3.3 -28.3 -50.0	3.0 -2.0 -28.3 -33.3 -66.7	2.0 -2.3 -36.0 -50.0 -83.3	6.7 -3.3 -40.0 -58.3 -91.7	11.0 -10.0 -50.0 -83.3 -100.0	8.7 -24.3 -66.7 -100.0 -116.7

Таблица 8. Сезонная неравномерность распределения объемов перевозок

Месяц	1	2	3	4	5	6	7	8	9	10	11	12	Итого
% Q	6	5	6	8	9	10	11	14	11	8	6	6	100%

 Таблица 9.

 Недельная неравномерность распределения объемов работ

День недели	Понедельник	Вторник	Среда	Четверг	Пятница	Суббота	Воскресенье
%% Qн	11	9	9	11	20	20	20

Таблица 10. Суточная неравномерность распределения объемов работ

Время	0 6	6 8	8 10	10 12	12 14	14 16	16 18	¹⁸ 20	20 22	²² 24
%% Qc	0	5	5	18	13	15	13	18	7	6

Таблица 11. Количество багажных тележек (БГТ), стоек регистрации пассажиров (СТР) и мест ожидания (МОЖ) в базовом АП

Bap	1	2	3	4	5	6	7	8	9	10	11
БГТ СТР МОЖ	900 70 400	700 50 300	1000 70 500	1000 80 500	800 60 400	900 60 400	700 50 300	900 70 500	900 60 400	700 50 400	800 60 400
Bap	12	13	14	15	16	17	18	19	20	21	22
БГТ СТР МОЖ	1000 80 400	700 50 300	800 60 400	60	1000 70 500	700 50 350	$1000 \\ 60 \\ 400$	700 50 300	1400 90 500	1000 80 600	800 60 400
Bap	23	24	25	26	27	28	29	30	31	32	33
БГТ СТР МОЖ	1000 50 400	500 40 200	700 50 300	800 60 400	900 70 500	800 60 400	900 60 400	800 50 400	700 50 400	500 40 200	500 40 300

Таблица 12. Количество тягачей аэродромных (ТГА), мест стоянки ВС (МСТ), бригад оперативного обслуживания ВС (БОТ) на перроне базового АП

Bap	1	2	3	4	5	6	7	8	9	10	11
ТГА	4	4	5	4	5	3	2	3	4	3	3
МСТ	25	20	25	25	20	25	20	25	25	25	25
БОТ	15	15	15	15	15	15	10	10	15	15	10
Bap	12	13	14	15	16	17	18	19	20	21	22
ТГА	5	5	5	5	5	5	3	3	5	5	3
МСТ	30	25	25	20	25	20	20	25	35	30	25
БОТ	20	15	13	12	15	10	13	10	20	25	10
Bap	23	24	25	26	27	28	29	30	31	32	33
ТГА	5	5	3	3	5	3	4	3	4	2	5
МСТ	25	20	20	20	25	20	25	15	15	20	20
БОТ	17	10	15	10	20	10	15	10	10	10	15

Таблица 13. Технико-экономические параметры СМО

	Усл.об.	Цена	c ₀₃	Сок	c ₃	t _{oő}
Вид СМО		тыс. \$		ден.	ед.	Ч
Тягачи аэродромные Места стоянки ВС Бригады оперативного ТО	ТГА	500	10	5	2	0.167
	МСТ	500	150	5	1	1.000
	БОТ	300	15	5	5	0.667
Багажные тележки	БГТ	0.3	15	2	1	0.500
Стойки регистрации	СТР	3.0	15	5	3	0.033
Места в зале ожидания	МОЖ	0.5	15	2	1	0.250

Таблица 15.

Запасы ресурсов АК

Вари-ант	Запас ГСМ	оборотные средства	Вари-	Запас ГСМ	Наличие оборотных средств
1	800000	20000	11	487950	8415
2	705000	14210	12	600000	12000
3	590000	7800	13	630000	10500
4	650000	10000	14	589000	12000
5	550000	12000	15	505000	10800
6	550000	11000	16	650000	15000
7	560000	10000	17	480000	10000
8	520000	9500	18	790000	13000
9	670000	11000	19	472000	8100
10	850000	11800	20	543600	7850

ЛИТЕРАТУРА

- 1. Андрианов В.В. Алгоритмы методов разработки управленческих решений. Учебное издание. М.: МГТУ ГА, 2001. 124 с.
- 2. Андрианов В.В. Имитационное моделирование сложных систем и процессов ГА: Учебное пособие. М.: МГТУ ГА, 1995. 120 с.
- 3. Андрианов В.В. Многофакторное экономико-математическое моделирование систем и процессов ГА: Учебное пособие. М.: МГТУ ГА,1996. 104с.
- 4. Андрианов В.В. Организация, планирование и управление производством гражданской авиации. Часть І. "Научные основы управления": Учебное пособие. - М.: МГТУ ГА, 1994. - 92 с.
- 5. Андрианов В.В. Экономико-математические методы и модели. Часть I: Учебное пособие. М.: МИИГА, 1993. 137 с.
- 6. Андрианов В.В. Экономико-математические методы и модели. Часть II. Компьютерная реализация: Учебное пособие. М.: МГТУ ГА, 1998. 104с.

СОДЕРЖАНИЕ

1. Введение
1.1. Цели и содержание курсовой работы
1.2. Определение номера варианта
1.3. Требования к оформлению пояснительной записки
2. Методические рекомендации к выполнению курсовой работы
2.1. Словесное описание постановки задачи КР
2.2. Декомпозиция проблемы КР
2.3. Моделирование и прогнозирование параметров УС
2.3.1.Оценка наличия ложной информации в критическом факторе x_2 7
2.3.2. Однофакторное моделирование и прогнозирование фактора х ₂ 9
2.3.3. Многофакторное моделирование и прогнозирование Q7
2.4. Оценка экономического потенциала парка ВС и сети ВЛ
2.4.1.Оптимальная расстановка заданного парка ВС на сети ВЛ 12
2.4.2. Оценка экономического потенциала рынка авиаперевозок 15
2.5. Формирование оптимального облика УС
2.6. Оптимизация облика ОУ
2.7. Оценка потребности в ресурсах и формирование итогового УР 28
Приложение I. Исходные данные к выполнению КР
Литература