ОТЧЕТ

по лабораторной работе №1 «Изучение частотного метода криптоанализа симметричных криптосистем»

дисциплина: «Криптографические методы защиты информации»

Выполнил(а) студент(ка)
группы БИ-4
Дата проведения занятия:
Дата зачета:
Преподаватель:
Подпись преподавателя:

1. Индивидуальное задание на лабораторную работу:

 $Y = \Phi$ РЕТКЧБ ЙРД ЫНЗНРНМЕЫНО ЗЦК ХЕЗТУ ЭЧУ ХКПН ЙРД РУЦУЦД – СКЦЧЕ ТКХКЦЧЕ. ХВО ЦЧВТЩУХЙ.

Мощность алфавита $|A_N| = m = 31$, (E=Ë, Ь=Ъ).

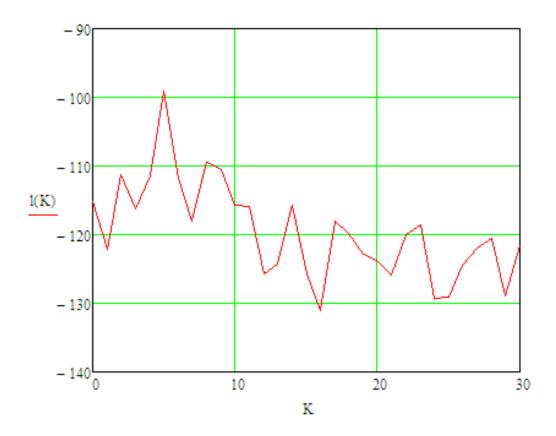
2. Основные расчетные соотношения:

- логарифм функции правдоподобия: $l(K) = \sum_{j=0}^{N-1} \nu_{(j+k) \bmod N} \log p_1(j);$
- оценка ключа: $K^* = \arg\max_K \sum_{j=0}^{N-1} \nu_{(j+k) \bmod N} \log p_1(j)$.

3. Результаты расчетов.

Таблица 1

Буква	a	б	В	Γ	Д	e	ж	3	И	й
$j \in A_N$	0	1	2	3	4	5	6	7	8	9
$p_1(j)$	0.062	0.014	0.038	0.013	0.025	0.072	0.007	0.016	0.062	0.01
$\nu_j(Y)$	0	1	2	0	3	5	0	3	0	3


Продолжение таблицы 1

К	Л	M	Н	0	П	p	c	T	y	ф
10	11	12	13	14	15	16	17	18	19	20
0.028	0.035	0.026	0.053	0.09	0.023	0.04	0.045	0.053	0.021	0.002
6	0	1	5	2	1	5	1	4	5	1

Продолжение таблицы 1

X	Ц	Ч	Ш	Щ	Ь	Ы	3	Ю	Я
21	22	23	24	25	26	27	28	29	30
0.009	0.004	0.012	0.006	0.003	0.016	0.014	0.003	0.006	0.018
5	6	5	0	1	0	2	1	0	0

5. Графическая зависимость значения логарифма функции правдоподобия от значения ключа l(K).

Оценка ключа - $K^* = 5$.

6. Дешифрованная криптограмма:

X=ПЛАНЕТЫ ДЛЯ ЦИВИЛИЗАЦИЙ ВСЕ РАВНО, ЧТО РЕКИ ДЛЯ ЛОСОСЯ — МЕСТА НЕРЕСТА. РЭЙ СТЭНФОРД.

ОТЧЕТ

по лабораторной работе №2

«Изучение методов криптоанализа криптосистем гаммирования с периодической гаммой»

дисциплина: «Криптографические методы защиты информации»

Выполнил(а) студент(ка)	
группы БИ-4	
Дата проведения занятия	•
Дата зачета:	
Преподаватель:	
Подпись преподавателя:	

Первая часть лабораторной работы

- А. Априорные вероятности символов ключевой последовательности известны.
- 1. Индивидуальное задание на лабораторную работу.

Дана криптограмма, полученная шифром Виженера:

$$Y = ЭЭЭЮЦК.$$

Априорно известно, что вероятности символов ключевой последовательности равны

$$P(\mathcal{I}) = 0.2$$
; $P(M) = 0.2$; $P(O) = 0.2$; $P(\Phi) = 0.2$.

значения вероятностей остальных символов существенно меньше 0,2 и в рамках данного задания ими можно пренебречь.

- 2. Основные расчетные соотношения для определения периода ключевой последовательности (первый метод Фридмана):
 - индекс совпадения

$$IC(\mathfrak{F}) = \sum_{i=1}^{m} \frac{F_i(F_i - 1)}{N(N-1)},$$

- математическое ожидание индекса совпадения

$$M RC(Y) = \frac{(k+1)kr + k(k-1)(d-r)}{N(N-1)} \sum_{i} p_i^2 + \left(1 - \frac{(k+1)kr + k(k-1)(d-r)}{N(N-1)}\right) \frac{1}{m}.$$

- 3. Период ключевой последовательности d=3 .
- 4. Таблица результатов анализа

Таблица 1

k_i/y_i	Э	Э	Э	Ю	Ц	К
Л	С	С	C	T	Л	Я
M	P	P	P	C	К	В
О	О	О	О	П	И	Д
Φ	И	И	И	Й	В	X

4. Дешифрованная криптограмма и ключ

$$X = \text{РОССИЯ}, K = \text{МОЛ}.$$

- Б. Априорные вероятности символов ключевой последовательности неизвестны.
- 1. Индивидуальное задание на лабораторную работу.

Дана криптограмма, полученная шифром Виженера:

 $Y = \Gamma E H Ж С У Ю Л А.$

- 2. Основные расчетные соотношения для определения периода ключевой последовательности (первый метод Фридмана):
 - индекс совпадения

$$IC(\mathfrak{I}) = \sum_{i=1}^{m} \frac{F_i(F_i - 1)}{N(N-1)},$$

- математическое ожидание индекса совпадения

$$M \Re(Y) = \frac{(k+1)kr + k(k-1)(d-r)}{N(N-1)} \sum_{i} p_{i}^{2} + \left(1 - \frac{(k+1)kr + k(k-1)(d-r)}{N(N-1)}\right) \frac{1}{m}.$$

3. Период ключевой последовательности d = 3.

4. Таблица анализа результатов

$\frac{\Gamma}{\mathcal{K}}$	$\frac{E}{C}$	$\frac{H}{Y}$	$\frac{\mathcal{K}}{\mathcal{W}}$	$\frac{C}{JI}$	$\frac{y}{A}$
$\frac{\mathcal{E}}{A}$	$\frac{E}{C}$	$\frac{H}{Y}$	$\frac{\mathit{M}}{\mathit{9}}$	$\frac{C}{JI}$	$\frac{\mathcal{Y}}{A}$
$\frac{B}{E}$	$\frac{O}{\Pi}$	$\frac{K}{E}$	$\frac{E}{\Im}$	$\frac{T}{B}$	$\frac{\Phi}{O}$
	•••	•••	•••	•••	•••
$\frac{P}{b}$	$\frac{q}{\mathcal{I}}$	$\frac{BI}{\mathcal{A}}$	$\frac{\mathcal{L}}{\mathcal{U}}$	$\frac{BO}{\Phi}$	$\frac{B}{\breve{M}}$

5. Дешифрованная криптограмма X = BEHECYЭЛА.

Вторая часть лабораторной работы

1. Индивидуальное задание

Дана криптограмма, полученная шифром Виженера:

Y =ЪУУХУЦОЪИЮГФХШХХЮЪКЫПЧАЮАПСХЭЕЫТМЩППЖГЯРЛЕПКУЮЩППЮЗЫВЗЩШРОЩЪЬЕМЗОЩЪМФТЭШОЭУХХШХЭЦДЛЫПЧВ.

Криптограмма представляет собой зашифрованное четверостишие А.С. Пушкина, которое начинается с имени известного литературного персонажа.

- 2. Расчетный период ключевой последовательности d = 5.
- 3. Множество вероятных слов начала криптограммы: РУСЛАН, ОНЕГИН, ЛЮДМИЛА, МОЦАРТ, ОЛЬГА, ЛЕНСКИЙ, САЛЬЕРИ, САЛТАН, ГВИДОН.
- 4. Результаты применения метода протяжки «вероятного слова»: Ключевая последовательность – ЛЕНСКИЙ.

Период ключевой последовательности - d = 7.

5. Дешифрованная криптограмма

 $X = \underline{\text{ОНЕГИН}}$ ДОБРЫЙ МОЙ ПРИЯТЕЛЬ РОДИЛСЯ НА БРЕГАХ НЕВЫ ГДЕ МОЖЕТ БЫТЬ РОДИЛИСЬ ВЫ ИЛИ БЫВАЛИ МОЙ ЧИТАТЕЛЬ.