МИНЕСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра двигателей летательных аппаратов

В.В. Никонов

АНАЛИЗ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ГТД

КОНТРОЛЬНАЯ РАБОТА И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЕЕ ВЫПОЛНЕНИЮ

по дисциплине

"ОСНОВЫ АВТОМАТИКИ "

для студентов всех форм обучения по специальности 130300

УДК 621.81 (075.8)

Печатается по решению редакционно-издательского совета Московского государственного технического университета ГА

Рецензенты: проф., д.т.н. Умушкин Б.П., МГТУ ГА;

Никонов В.В. АНАЛИЗ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ГТД

Контрольная работа и методические указания к ее выполнению по дисциплине "ОСНОВЫ АВТОМАТИКИ ". - М.: МГТУ ГА, 2004. -с. - Ил. 6, табл. 6, список лит. 4 наим.

ISBN

Методические указания издаются в соответствии с учебной программой для студентов очного и заочного форм обучения по специальности 130300.

Представленные методические указания рассмотрены и одобрены на заседаниях кафедры "Двигатели летательных аппаратов" 18.10.04 г. и методического совета 09.11.04г.

ББК

ISBN с Московский государственный технический университет ГА, 2004

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1.ЗАДАЧА №1: ПРАВИЛА ИСПОЛЬЗОВАНИЯ СТРУКТУРНЫХ СХ	KEM
ДЛЯ МОДЕЛИРОВАНИЯ САР	5
1.1 Цель, исходные данные и последовательность решения задачи	5
1.2.Теоретические сведения к задаче №1	5
1.2.1.Понятие о структурных схемах и их элементах	5
1.2.2.Правила преобразования структурных схем	
2.3АДАЧА №2: ПОСТРОЕНИЕ ДИНАМИЧЕСКИХ МОДЕЛЕЙ ТИП	ОВЫХ
РЕГУЛЯТОРОВ ОБОРОТОВ ГТД	16
2.1. Цель, порядок выполнения и выбор варианта задания	16
2.2.Теоретические сведения к задаче №2	16
2.2.1.Принципиальные схемы простейших систем автоматического ре	сули-
рования оборотов двигателя	16
2.2.2. Общие принципы и пример решения задачи	21
3. ЗАДАЧА №3: ОЦЕНКА УСТОЙЧИВОСТИ РАЗОМКНУТЫХ И	
ЗАМКНУТЫХ САР	23
3.1. Цель, исходные данные и последовательность решения задачи	23
3.2.Выбор варианта задачи и рекомендации по расчетам и оформле-	
нию	23
3.3. Краткие теоретические сведения к задаче №3	26
3.3.1. Понятие об устойчивости.	
3.3.2. Алгебраические критерии Рауса и Гурвица	
3.3.3. Частотные критерии Михайлова и Найквиста	29
ЛИТЕРАТУРА	31

ВВЕДЕНИЕ

Эксплуатация современных летательных аппаратов практически немыслима без наличия автоматизированных систем. Конструкция аэрокосмической техники, военных и гражданских самолетов включает в себя огромное количество автоматически действующих агрегатов и узлов. Пожалуй, ни одно наземное транспортное средство по их количеству не может с ними сравниться.

Существует чрезвычайное разнообразие автоматических систем, выполняющих те или иные функции по управлению физическими процессами. Они содержат множество механических, гидравлических, электронных и других устройств, составляя сложный комплекс взаимодействующих элементов, описание функционирования которых в общем случае представляется довольно сложной проблемой.

Решению этой проблемы и посвящена автоматика, как область теоретических и прикладных знаний об автоматически действующих устройствах и системах. Теоретической основой автоматики служит теория автоматического управления (регулирования), главные положения которой излагаются в курсе «Основы автоматики».

Настоящая контрольная работа позволяет закрепить приобретенные теоретические знания по данной дисциплине и получить необходимые практические навыки в анализе и синтезе систем автоматического регулирования (САР), применяемых в газотурбинных двигателях(ГТД) воздушных судов (ВС).

Контрольная работа включает в себя вопросы, связанные:

- с терминологией и основными понятиями теории автоматического регулирования;
- с особенностями конструктивного исполнения, принципами действия и характеристиками САР, входящих в автоматику ВС и ГТД;
 - с оценкой САР на устойчивость;
 - с методами математического моделирования САР.

Работа включает в себя три блока вопросов, представляющих собой отдельные задания. Каждый блок связан с определенной учебной темой. Краткие теоретические сведения, необходимые для выполнения контрольной работы, приводятся.

- 1. ЗАДАЧА №1: ПРАВИЛА ИСПОЛЬЗОВАНИЯ СТРУКТУРНЫХ СХЕМ ДЛЯ МОДЕЛИРОВАНИЯ САР.
 - 1. Цель, исходные данные и последовательность решения задачи.

Целью выполнения настоящего задания является закрепление полученных знаний по использованию передаточных функций при исследовании сложных САУ и получения их дифференциальных уравнений.

Задание включает в себя следующие этапы.

- 1. Выбрать соответствующую Вашему номеру (последняя цифра) зачетной книжки одну из структурных схем, приведенных на рис.1.1. и изобразить ее.
- 2. Используя правила преобразования структурных схем, привести структурную схему к простейшему виду одному элементу с результирующей передаточной функцией. Каждый этап преобразования должен сопровождаться соответствующими рисунками и формулами.
- 3. Найти выражение для эквивалентных (результирующих) передаточных функций САУ в разомкнутом и замкнутом состояниях W_{CAY}^P (и W_{CAY}^3 ().
- 4. Выбрать по табл.1.1. соответствующие Вашему варианту конкретные значения передаточных функций и подставить их в соотношения для полученных на предыдущем этапе эквивалентных передаточных функций. Выбор варианта осуществляется по предпоследней цифре номера зачетной книжки.
- 5. Записать уравнения динамики САР в операторной форме и в форме линейного дифференциального уравнения
 - 1.2. Теоретические сведения к задаче №1
 - 1.2.1. Понятие о структурных схемах и их элементах.

Составление основных уравнений систем автоматического регулирования во многих случаях может быть значительно облегчено использованием структурных схем.

Часто САР можно рассматривать как комбинацию звеньев с определенными типовыми или нетиповыми передаточными функциями. Изображения САР в виде совокупности динамических звеньев с указанием связи между ними носит название *структурной схемы*. Структурная схема может быть составлена на основе известных уравнений системы, и наоборот, уравнения системы могут быть получены из структурной схемы. Элементы структурных схем приведены в табл.1.2.

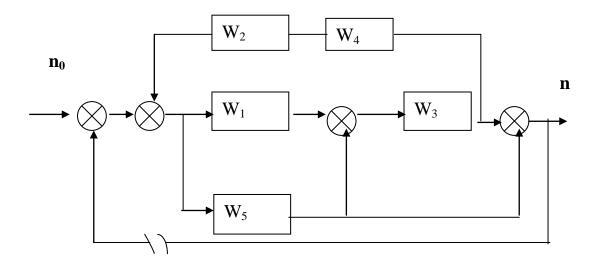
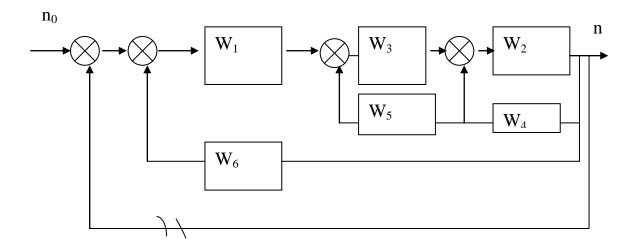



Схема № 2

Схема №3

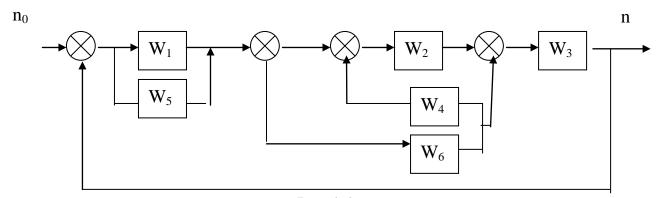
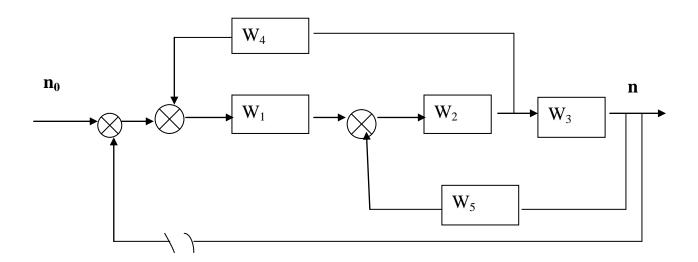
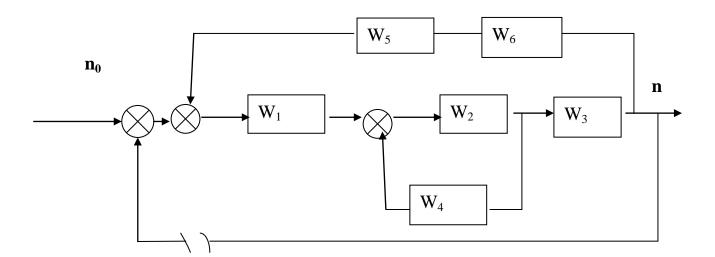
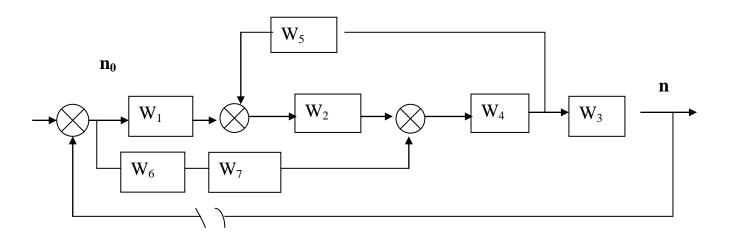




Рис.1.1


Схема №5

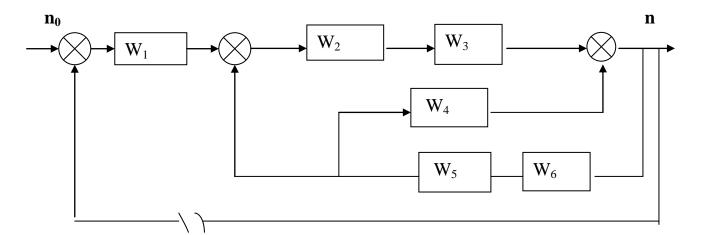

Схема №6

Рис.1.1. (продолжение

Схема №8

Схема №9

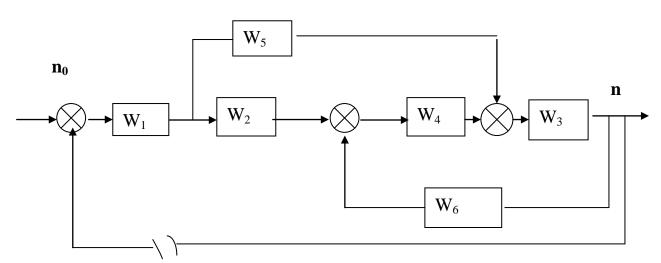


Рис. 1.1. (продолжение)

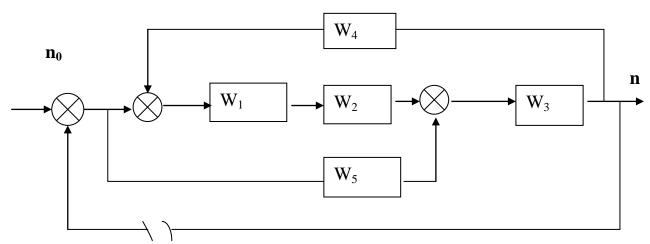


Рис.1.1, (продолжение)

Значения передаточных функций к схемам Рис.1.1

Таблица 1.1

Предпосл. цифра шифра	W_1	W_2	<i>W</i> ₃	W_4	W_5	W_6	W_7
1	$\frac{k_1}{T_2p^2+T_1p+1}$	k_2	1	1	k_{5}	$k_{\scriptscriptstyle 6}p$	k_{7}
2	«	«	«	«	«	«	«
3	«	«	«	$k_4 p$	$k_{5}p$	«	«
4	«	«	«	«	«	k_{6}	«
5	$\frac{k_1}{T_1p+1}$	«	$k_{\scriptscriptstyle 3}$	«	«	$k_{\scriptscriptstyle 6}p$	«
6	«	«	«	p	«	«	«
7	$\frac{k_1p}{T_1p^{+1}}$	«	1	«	«	<i>k</i> ₆	1
8	«	«	«	«	$\frac{k_5}{T_5 p}$	«	*
9	«	«	«	$\frac{p}{T_4p+1}$	k_{5}	«	«
0	$\frac{T_2 p + k_x}{T_2 p^2 + T_1 p + 1}$	«	$\frac{k_3}{p}$	«	«	«	«

Таблица 1.2 Элементы структурных схем

Звено с	Звено с	Узел (раз-	Сумматор	Элемент
одним	двумя выхода-	умя выхода- ветвление)		сравнения
выходом	МИ			
X = W X	X_{2} W_{2} W_{1} $Y = W_{1} X_{1} + W_{2} X_{2}$	X X X X	$X_1 \longrightarrow Y$ $Y = X_1 + X_2$	$X_1 \longrightarrow Y$ X_2 $Y = X_1 - X_2$

1.2.2.Правила преобразования структурных схем.

Рассмотрим вначале простейшие сочетания звеньев.

Последовательное соединение звеньев. Последовательным называют такое соединение звеньев, у которого каждая входная величина последующего звена является выходной предыдущего (Рис.1.2). В этом случае нетрудно показать, что результирующая передаточная функция равна произведению передаточных функций отдельных звеньев.

$$X$$
 W_1 W_2 W_{n-1} W_n Y_{per} W_n Y_{per} Y_{per}

$$W_{pe3} = W_1 W_2 \dots W_{n-1} W_n$$
 (1.1)

Параллельное соединение звеньев. Параллельным называют такое соединение звеньев, у которых имеется общая входная величина, а выходная - представляет собой сумму выходных величин всех звеньев, входящих в соединение (рис.1.3). В этом случае результирующая передаточная функция равна сумме

передаточных функций звеньев.

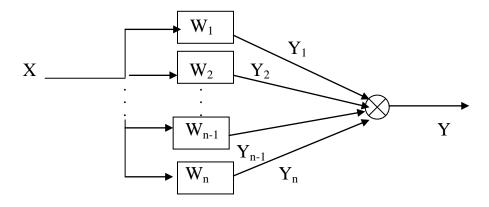
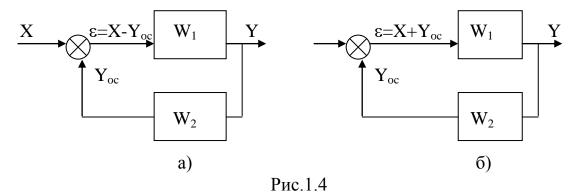



Рис.1.3

$$W_{\text{pe3}} = W_1 + W_2 + \ldots + W_{\text{n-1}} + W_{\text{n}}$$
 (1.2)

Соединения с обратной связью. В этих соединениях два звена соединены так, что входная величина одного звена подается обратно на его вход через другое звено (в частном случае это звено может быть звено с единичной передаточной функцией, т.е. формально отсутствовать). Такое соединение звеньев изображено на рис. 1.4. Звено с передаточной функцией W_1 называют звеном прямого канала, а звено с передаточной функцией W_2 -звеном цепи обратной связи. В зависимости от знака выходной величины звена обратной связи, соединение может быть как с отрицательной (рис.1.4 ,а), так и с положительной (рис.1.4 ,б) обратной связью.

Определим в качестве примера результирующую передаточную функцию для такого сочетания звеньев.

В случае отрицательной обратной связи можно записать

$$Y = W_1 \varepsilon = W_1 X - W_1 Y_{oc} \tag{1.3}$$

в свою очередь,

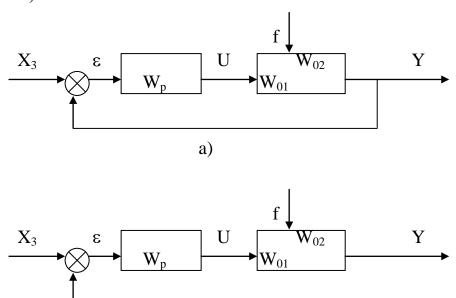
$$Y_{OC} = W_2 Y. \tag{1.4}$$

Подставляя (1.4) в (1.3), получим

$$Y = \frac{W_1}{1 + W_1 W_2} X \tag{1.5}$$

Из (1.5) следует

$$W_{pe3} = \frac{W_1}{1 + W_1 W_2} \tag{1.6}$$


Аналогично определяется передаточная функция для соединений звеньев с положительной обратной связью

$$W_{pe3} = \frac{W_1}{1 - W_1 W_2} \tag{1.7}$$

С помощью соотношений (1.1),(1.2),(1.6),(1.7), данных табл. 1.2 и табл. 1.3, определяющих эквивалентные замены типовых соединений звеньев, можно привести структурные схемы линейных замкнутых цепей САР к одной принципиальной схеме, показанной на рис. 1.5, а. На этой схеме W_{01} передаточная функция объекта регулирования по управляющему воздействию и W_{02} - передаточная функция объекта регулирования по возмущающему воздействию, W_{02} - передаточная функция регулятора, V_{02} - регулируемая величина, V_{02} - ошибка регулирования (рассогласование между командным воздействием и регулируемой величиной), V_{02} - управляющее (регулирующее) воздействие.

В этой структурной схеме элемент сравнения условно вынесен из регулятора. Поскольку регулятор в замкнутых САР всегда включен в отрицательную обратную связь, то на этот факт в обобщенной структурной схеме указывает отрицательный сектор сумматора против входа регулируемой величины У в элемент сравнения. По каждому из входных сигналов (X, f, e) динамика системы может характеризоваться различными передаточными функциями: Wx (пе-

редаточная функция САР относительно регулируемой величины по отношению к задающему воздействию); W_f (передаточная функция САР относительно регулируемой величины по отношению к возмущающему воздействию); W_{ϵ} (передаточная функция САР сигнала ошибки по отношению к командному воздействию)

б)

Рис.1.5.

Найдем соотношения, определяющие каждые из этих передаточных функций, через передаточные функции объекта и регулятора. Соотношение для передаточной функции Wx следует из выражения (1.6).

$$W_{x} = \frac{W_{p} W_{01}}{1 + W_{p} W_{01}}$$
 (1.8)

Для определения передаточной функции выходной величины САР по отношению к возмущающему воздействию f положим $X_3 = 0$.

Тогда

$$W_{x} = \frac{W_{02}}{1 + W_{p} W_{01}}$$
 (1.9)

Передаточная функция ошибки рассогласования выходной величины САР с командным сигналом по отношению к командному воздействию будет иметь вид

$$W_{e} = \frac{1}{1 + W_{p} W_{01}}$$
 (1.10)

Полученные выражения для характерных передаточных функций замкнутых САР можно обобщить в одно

$$W_{_{3aM}} = \frac{W_{_{xy}}}{1 + W_{_{pa3}}} , \qquad (1.11)$$

где $W_{\text{зам}}$ - передаточная функция замкнутой цепи CAP от любого входного до любого выходного сигнала; W_{xy} -передаточная функция участка цепи от места приложения воздействия X до любой величины Y; $W_{\text{раз}}$ - передаточная функция разомкнутой CAP.

Действительно, анализируя выражения (1.9), (1.10), (1.11), легко убедиться, что в числителе всегда стоит передаточная функция участка цепи от входного воздействия до рассматриваемой координаты. В знаменателе всюду стоит сумма $1+W_{pa3}$, в которой второе слагаемое соответствует передаточной функции последовательного соединения объекта с регулятором. Она получается при размыкании САР по линии обратной связи (рис.1.5,б). После операции размыкания соединение объекта с регулятором становится последовательным, для которого выполняется равенство $W_{pa3} = W_p W_{01}$. Итак, обобщенное правило для составления передаточной функции замкнутой системы автоматического регулирования формулируется следующим образом: для нахождения передаточной функции замкнутой САР необходимо в ее числителе записать передаточной функцию соединения звеньев от места приложения воздействия до рассматриваемой координаты, а в знаменателе — $\{1 + \text{передаточная функция соответствующей САР разомкнутой цепи}\}$.

Следует отметить, что иногда составление структурной схемы сопряжено с большими трудностями и может быть сделано только с помощью детального анализа дифференциальных уравнений САР. В этом случае структурная схема не облегчает нахождение основных уравнений системы, но является весьма ценной, так как на ней в наглядной форме представлены все узлы исследуемой системы и все существующие между ними связи. Это может оказаться полезным во всех дальнейших исследованиях.

Правила преобразования структурных схем

Таблица 1.3

Операция	Исходная схема	Эквивалентная схема
Перестановка сумматоров или элементов сравнения	$x_{1} \xrightarrow{\uparrow^{-}} x_{2} \xrightarrow{\downarrow^{x_{4}}} x_{5}$ $\downarrow^{x_{5}}$ $\downarrow^{x_{5}}$ $\downarrow^{x_{5}}$ $\downarrow^{x_{4}}$ $\downarrow^{x_{5}}$ $\downarrow^{x_{5}}$ $\downarrow^{x_{5}}$	$x_{1} \xrightarrow{\downarrow^{x_{4}}} \xrightarrow{-x_{2}} x_{3}$ $x_{2}-x_{1}-x_{2}+x_{3}+x_{4}$
Перестановка звеньев	$x_{i} \xrightarrow{W_{i}} W_{i} \xrightarrow{x_{2}}$	$x_i \longrightarrow W_i \longrightarrow x_2$
Перенос узла с выхода на вход сумматора	$x_i \rightarrow 0$ $x_j \rightarrow 0$ $x_j \rightarrow 0$ $x_j \rightarrow 0$	x_1 x_2 x_3 x_2
Перенос узла с входа на выход сумматора	x_{1} x_{2} x_{3} x_{4}	$x_i \xrightarrow{x_2} \xrightarrow{-1} \xrightarrow{x_3}$
Перенос узла с выхода на вход звена	X_2 X_2	$\begin{array}{c} x_i \\ \hline W_i \\ \hline \forall x_2 \end{array}$
Перенос узла с входа на выход звена	$x_1 \longrightarrow W_2 \xrightarrow{x_2}$	x_1 W_2 X_2 W_2' Y_2
Перенос сумматора с вы- хода на вход звена	x_1 W_1 x_2	w_i w_i x_2
Перенос сумматора с входа на выход звена	x_2 x_2 x_3	$x_1 \longrightarrow W_2 \longrightarrow x_3$ $x_2 \longrightarrow W_2 \longrightarrow x_3$
Замена звеньев прямой и обратной цепей	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x_1 w_2 w_1
Переход к единичной обратной связи	x_1 W_1 x_2 W_2	W_1 W_2 W_2 W_2 W_2