

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

А.А. Ицкович, И.А. Файнбург, Г.Д. Файнбург

УПРАВЛЕНИЕ СИСТЕМАМИ И ПРОЦЕССАМИ ЭКСПЛУАТАЦИИ

Учебно-методическое пособие по выполнению курсовой работы

«Управление системами и процессами технической эксплуатации летательных аппаратов»

для студентов направления 25.04.01 очной формы обучения

> Москва 2019

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ (МГТУ ГА)»

Кафедра технической эксплуатации летательных аппаратов и авиадвигателей

А.А. Ицкович, И.А. Файнбург, Г.Д. Файнбург

УПРАВЛЕНИЕ СИСТЕМАМИ И ПРОЦЕССАМИ ЭКСПЛУАТАЦИИ

Учебно-методическое пособие по выполнению курсовой работы

«Управление системами и процессами технической эксплуатации летательных аппаратов»

для студентов направления 25.04.01 очной формы обучения

Москва 2019

Рецензент: Найда В.А. – канд. техн. наук, доцент

Ипкович А.А.

И-96 Управление системами и процессами эксплуатации: учебнометодическое пособие по выполнению курсовой работы «Управление системами и процессами технической эксплуатации летательных аппаратов»./ А.А. Ицкович, И.А. Файнбург, Г.Д. Файнбург. – Воронеж: ООО «МИР», 2019. – 36 с.

Данное учебно-методическое пособие издается в соответствии с рабочей программой учебной дисциплины «Управление системами и процессами эксплуатации» по учебному плану для студентов направления 25.04.01 очной формы обучения.

Рассмотрено и одобрено на заседании кафедры 05.07.2019 г. и методического совета 02.07.2019 г.

В авторской редакции.

Подписано в печать 08.07.2019 г. Формат 60х84/16 Печ.л. <mark>3</mark> Усл. печ. л. <mark>3,49</mark> Заказ 494/ Тираж 30 экз.

Московский государственный технический университет ГА 125993 Москва, Кронштадтский бульвар, д.20

Отпечатано ООО «МИР»

394033, г. Воронеж, Ленинский пр-т 119А, лит. Я, оф. 215 Тел.: 8 (958) 649-53-31 Email: 89586495331@mail.ru

© Московский государственный технический университет ГА, 2019

1. ОБЩИЕ ПОЛОЖЕНИЯ

Выполнение курсовой работы (КР) является завершающим этапом изучения дисциплины «Управление системами и процессами эксплуатации» и предусматривает анализ процессов изменения технического состояния и эффективности процессов технической эксплуатации, управление процессами технической эксплуатации изделий летательных аппаратов (ЛА).

Цель КР: приобретение студентами навыков проведения анализа процессов изменения технического состояния и эффективности процессов технической эксплуатации, управления процессами технической эксплуатации изделий ЛА [1-3].

Исходные данные для выполнения КР приведены по вариантам. Выбор варианта задания студентами производится по числу, состоящему из двух последних цифр шифра зачетной книжки. Например, для шифра М73578, вариант 78.

Объектами исследования являются ЛА и их изделия.

При выполнении КР автор несет ответственность за правильность расчетов, принятые проектные решения.

Преподаватель обеспечивает руководство работой студента, уточняет объем и глубину проработки отдельных частей и вопросов, проводит консультации и осуществляет текущий контроль.

При оформлении КР необходимо соблюдать определенные требования. Изложение материалов КР должно быть конкретным и четким. Заимствованные цитаты, таблицы и другие материалы должны иметь ссылку на источник. В тексте необходимо соблюдать единую техническую терминологию, принятую в учебных пособиях и стандартах.

Оформление материала, изложенного в КР, производится в соответствии со Стандартами «Единой системы конструкторской документации»: ГОСТ 2.105-95. «Общие требования к текстовым документам» и ГОСТ 2.106-96 «Текстовые документы». Титульный лист КР должен быть в соответствии с требованиями настоящего пособия (приложение 2). За ним следует «Содержание», на котором выполняется основная надпись.

Текст КР должен быть написан разборчиво на одной стороне листа формата A4 (297х210 мм). При оформлении КР на компьютере текст набирается шрифтом Times New Roman, размер шрифта – 14 пт., интервал – 1,5. Текст КР должен быть отформатирован по «ширине», отступ первой строки абзаца – 1,25. Числовые значения в формулах объясняются. Окончательный результат приводится с указанием размерности. Таблицы, помещенные в тексте должны иметь номера и названия. При приведении результатов расчетов в табличной форме даются примеры расчетов с подстановкой исходных данных в расчетные формулы. Рисунки должны иметь номера и подрисуночные подписи. На графиках указывать масштаб и размерность изображаемых величин. На все таблицы и рисунки в тексте должны быть ссылки.

В тексте необходимо выделить заголовки отдельных частей КР, их разделов и подразделов в соответствии с «Содержанием». В конце пояснительной записки приводится литература, используемая при выполнении КР.

2. СТРУКТУРА КУРСОВОЙ РАБОТЫ

При выполнении КР необходимо решить следующие задачи:

- 1. Анализ процесса изменения технического состояния изделий ЛА.
- 1.1. Характеристика объекта управления.
- 1.2. Выбор модели процесса изменения параметров изделий ЛА.
- 1.3. Оценка и прогнозирование параметров изделий ЛА.
- 2. Управление режимами технической эксплуатации изделий, заменяемых по состоянию.
- 2.1. Характеристика модели управления режимами диагностирования и замены изделий ЛА.
- 2.2. Определение связи периодичности проверок с упреждающим допуском на параметр изделия ЛА.
- 3. Управление процессами технической эксплуатации изделий ЛА, заменяемых по состоянию.
- 3.1. Выбор модели процесса технической эксплуатации изделий, заменяемых по состоянию
- 3.2. Оценка параметров модели процесса технической эксплуатации изделий, заменяемых по состоянию
- 3.3. Оценка показателей эффективности процесса технической эксплуатации изделий ЛА, заменяемых по состоянию.

Содержание пояснительной записки КР.

Введение.

- 1. Анализ процесса изменения технического состояния изделий ЛА.
- 1.1. Характеристика объекта управления.
- 1.2. Выбор модели процесса изменения параметров изделий ЛА.
- 1.3. Оценка и прогнозирование параметров изделий ЛА.
- 2. Управление режимами технической эксплуатации изделий, заменяемых по состоянию.
- 2.1. Характеристика модели управления режимами диагностирования и замены изделий ЛА.
- 2.2. Определение связи периодичности проверок с упреждающим допуском на параметр изделия ЛА.
- 3. Управление процессами технической эксплуатации изделий ЛА, заменяемых по состоянию.
- 3.1. Выбор модели процесса технической эксплуатации изделий, заменяемых по состоянию.

- 3.2. Оценка параметров модели процесса технической эксплуатации изделий, заменяемых по состоянию.
- 3.3. Оценка показателей эффективности процесса технической эксплуатации изделий ЛА, заменяемых по состоянию.

Выводы.

Список литературы.

Приложения.

3. АНАЛИЗ ПРОЦЕССА ИЗМЕНЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ИЗДЕЛИЙ ЛА

3.1. Характеристика объекта управления

Объектом управления является изделие ЛА, техническое состояние которого определяется параметрами $\eta_i, i = \overline{1,k}$, изменения которых во времени представляет собой монотонную случайную функцию $\eta_i(t), i = \overline{1,k}$ времени t (рис. 3.1). Установлены предельно допустимые значения параметров $\eta_i^{**}(t), i = \overline{1,k}$, пересечение которых реализациями случайной функции означает отказ. С учетом предъявленных требований по надежности могут быть определены минимальные предотказовые значения параметров $\eta_i^{*}(t), i = \overline{1,k}$, пересечение которых реализациями случайной функции означают повреждение. Интервал $\Delta \eta = \eta^{**} - \eta^{*}$ образует упреждающий допуск. Область $\overline{0,\eta_i^{*}}$ назовем исправным состоянием (состояние 1), область $\overline{\eta_i^{*},\eta_i^{**}}$ - состоянием профилактических замен (состояние 2), область $\overline{\eta_i^{**},\infty}$ - неработоспособным состоянием (состояние 3).

В качестве объекта выбран аксиально-поршневой насос регулируемой подачи гидравлической системы самолета, для оценки технического состояния которого определяются значения контролируемых параметров (табл. 3.1):

объемный КПД - η_{ν} (блок подачи);

максимальное давление - η_p (регулятор подачи);

суммарный осевой люфт - η_{δ} (шарнирные соединения поршневых пар); параметр вибрации - η_{k} (подшипники);

параметр внешней герметичности - η_s (корпус).

3.2. Выбор модели процесса изменения параметров изделий ЛА

Известно, что наиболее полным описанием случайной функции является n – мерный закон или n – мерная плотность распределения $\phi(\eta_1, \eta_2, ..., \eta_n, t_1, t_2, ..., t_n)$ случайной функции $\eta(t)$. Зная эту плотность распределения, можно достаточно точно решать задачи надежности, диагностики и технической эксплуатации. Однако, на практике строгое решение задач с использованием n – мерных характеристик (n > 2) связано с значительными математическими трудностями.

Таблица 3.1 Характеристика аксиально-поршневого гидронасоса

№	Наименование	Наименование	Основные отказы	Контролиру-
Π/	блоков	узлов	и повреждения	емые
П	OHOROB	узлов	и повреждения	параметры
1	Блок привода	•Вал с втулкой	•Повреждения	•Параметр
1	і і і і і і і і і і і і і і і і і і і	•Подшипники	подшипников	вибрации
		•Карданный	ПОДШИПНИКОВ	корпуса
		валик		насоса
2	Качающий		•Повышенный	
2	качающии блок	•Блок поршней		•Суммарный
		•Блок цилиндров	люфт в	осевой люфт в
	(блок подачи)		шарнирных	шарнирных
			соединениях	соединениях
			поршневых пар	поршневых
			•Износ	пар
			поршневых пар	
			•Повышенные	
			утечки	
3	Блок	•Блок цилиндров	•Кавитационный	•Объемный
	распределю-	•Золотник	износ золотника	КПД
	ния	•Узел оси	•Повышенные	
			утечки	
4	Корпусные	•Корпус	•Повреждения	•Параметр
	детали и	•Крышка	уплотнений	внешней
	каналы	•Люлька	•Наружная	негерметич-
	высокого	•Втулка	негерметичность	ности
	давления	•Сальник		
		•Корпус		
		регулятора		
		•Уплотнительное		
		кольцо		
5	Регулятор	•Золотник с	•Износ золотника	•Максималь-
	подачи	гильзой		ное давление
		•Силовой		в линии
		цилиндр		нагнетания
		•Серьга		
		•Пружины		
	1		1	

Наиболее простой характеристикой случайной функции является одномерная плотность распределения $\phi(\eta, t_r)$, которая характеризует распределение случайной величины $\eta(t)$ в любой произвольный момент времени t. (рис. 3.2).

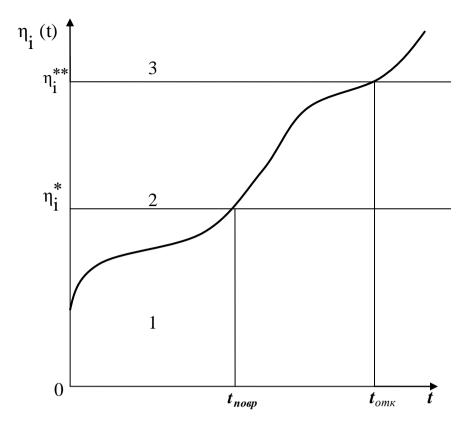


Рис. 3.1. Схема процесса изменения технического состояния

Это означает, что известны плотности распределения $\phi(\eta, t_r)$, в любые фиксированные моменты времени t_r , но одномерная функция распределения не описывает зависимости между значениями случайной функции в различные моменты времени t. Будем полагать, что реализации случайного процесса изменяются во времени монотонно, т.е. после пересечения границы поля допуска значение параметра η уже в поле допуска не входит.

Плотность нормального распределения параметра $\phi(\eta,t_i)$ определяется по формуле

$$\varphi(\eta, t_i) = \frac{1}{\sigma_{\eta}} \varphi_0 \left(\frac{\eta - m_{\eta}(t)}{\sigma_{\eta}(t)} \right), \tag{3.1}$$

где $m_{\eta}(t)$, $\sigma_{\eta}(t)$ — математическое ожидание и среднее квадратическое отклонение параметра в фиксированный момент времени t_i , соответственно;

 $\phi_0\left(\frac{\eta-m_\eta(t)}{\sigma_\eta(t)}\right)$ - плотность нормированного, центрированного нормального распределения по табл.П.3.1; η — значение параметра в интервале $m_\eta(t)\pm 3\sigma_\eta(t)$.

3.3. Оценка и прогнозирование параметров изделий ЛА

Для случая, когда закон распределения значений η в вертикальных сечениях t с течением времени не меняется, аппроксимируются некоторыми функциями не реализации $\eta(t)$, а параметры плотности распределения $\phi(\eta, t_i)$, т.е. начальные и центральные моменты. Например, математические ожидания и

дисперсии (средние квадратические отклонения) аппроксимируются некотрыми функциями $\mathbf{m}_{\eta}(\mathbf{t}) = \xi_{\mathbf{m}}(\mathbf{t}), \ \sigma_{\eta}(\mathbf{t}), \ \phi(\eta, t_i), = \xi_{\sigma}(\mathbf{t}).$ Такие функции обычно называют моментными функциями (рис. 3.2.).

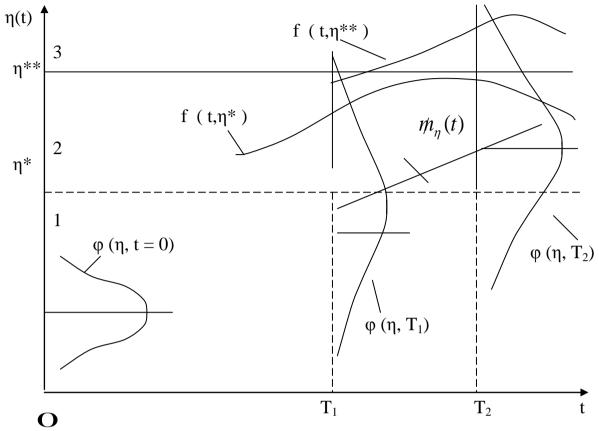


Рис. 3.2. Модель процесса изменения параметров: одномерные плотности распределения параметров $\phi(\eta, t_r)$ и плотностей распределения наработки до отказа $f(t, \eta^{**})$ и до предотказового состояния $f(t, \eta^{*})$, моментная функция $m_n(t)$.

Пусть для нормального распределения $\phi(\eta, t_i)$, моментные функции: математическое ожидание $m_n(t)$ и среднее квадратичное отклонение $\phi(\eta, t_i)$, аппроксимированы линейной зависимостью

$$\begin{cases}
 m_{\eta}(t) = m_a + m_b t \\
 \sigma_{\eta}(t) = \sigma_a + \sigma_b t
\end{cases}$$
(3.2)

где m_a , m_b – коэффициенты моментной функции $m_\eta(t)$,

 σ_a , σ_b - коэффициенты моментной функции $\sigma_n(t)$.

Коэффициенты моментной функции $m_{\eta}(t)$ определяются по формулам:

$$m_{a} = \frac{t_{i+1}m_{\eta}(t_{i}) - t_{i}m_{\eta}(t_{i+1})}{t_{i+1} - t_{i}}, \quad (3.3)$$

$$m_{a} = \frac{t_{i+1}m_{\eta}(t_{i}) - t_{i}m_{\eta}(t_{i+1})}{t_{i+1} - t_{i}}, ,$$

$$m_{b} = \frac{m_{\eta}(t_{i+1}) - m_{\eta}(t_{i})}{t_{i+1} - t_{i}}, .$$
(3.3)

Коэффициенты моментной функции $\sigma_{\eta}(t)$. определяются по формулам:

$$\sigma_a = \frac{t_{i+1}\sigma_{\eta}(t_i) - t_i\sigma_{\eta}(t_{i+1})}{t_{i+1} - t_i}, \,\, (3.5)$$

$$\sigma_b = \frac{\sigma_{\eta}(t_{i+1}) - \sigma_{\eta}(t_i)}{t_{i+1} - t_i}, \,. \tag{3.6}$$

4. УПРАВЛЕНИЕ РЕЖИМАМИ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ ИЗДЕЛИЙ, ЗАМЕНЯЕМЫХ ПО СОСТОЯНЮ

4.1. Характеристика модели управления режимами диагностирования и замены изделий ЛА

Для изделия, техническое состояние которого определяется значениями контролируемых параметров $\eta_i(t), i = \overline{1,n}$ представляющих собой монотонную случайную функцию времени t и заданы предельно допустимые значения параметров $\eta_i^{**}(t), i = \overline{1,k}$ доказана теорема, устанавливающая связь периодичности проверок $\Delta \eta_i = \eta^{**} - \eta^*$ и упреждающего допуска на контролируемый параметр T_1 , следующего содержания: для монотонного случайного процесса $\eta(t)$ с заданными T_1 (момент первой проверки) и η^{**} очередной срок диагностики T и минимальное предотказовое значение параметра η^* , удовлетворяют следующему уравнению (рис.4.1):

$$\int_{T_1}^{T_2} f(t, \eta^*) dt = \int_{\eta^*}^{\eta^{**}} \varphi(\eta, T_2) d\eta, \qquad (4.1)$$

где $f(t, \eta^*)$ - плотность распределения времени (наработки) достижения параметром минимального предотказового значения параметра η^* ,

 $\phi(\eta, T_2)$ - плотность распределения параметра η в момент T_2 .

Момент первой проверки T_1 определим из условия заданного уровня надежности $\mathbf{q}_{\partial on} = 1 - \mathbf{P}_{\!\scriptscriptstyle 3\mathrm{A}\mathrm{Z}}$

$$P\{\eta^{**} \le \eta(t) \le \infty, T_1\} = \int_{\eta^{**}}^{\infty} \varphi(\eta, T_1) \, d\eta \le q_{\partial on}, \,, \tag{4.2}$$

Поясним физический смысл теоремы (4.1) с использованием представлений о горизонтальных η^* , η^{**} и вертикальных T_1 , T_2 экранах. Будем называть отрезок $\Delta \eta_i = \eta^{**} - \eta^*$, означающий упреждающий допуск, вертикальным поглощающим экраном, а отрезок $\Delta T = T_{i+1} - T_i$ горизонтальным экраном, который может быть как поглощающим так и прозрачным. При периодических проверках (рис.4.1) горизонтальный экран (ab) становится прозрачным и траектории случайного процесса достигают вертикального поглощающего экрана (bc).

Выполнение условий теоремы (4.1) обеспечивает такое расположение экранов, при котором все траектории процесса, прошедшие через горизонтальный экран (ab) попадают на вертикальный (bc). Математическую модель (рис.4.1) назовем моделью экранов.

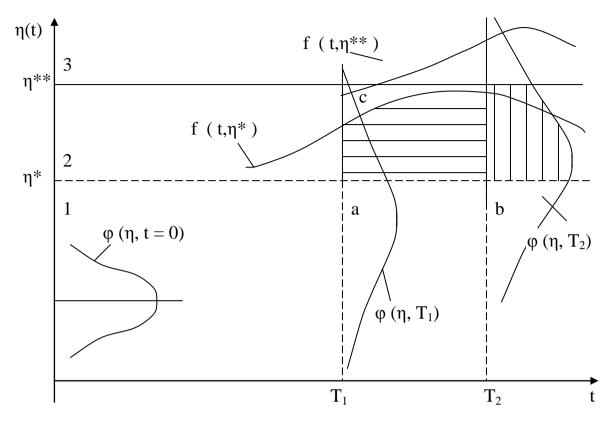


Рис. 4.1. Связь периодических проверок $\tau = T_2 - T_1$ с упреждающим допуском на диагностический параметр $\hat{\Delta \eta_i} = \eta^{**} - \eta^*$ (модель экранов).

4.2. Определение связи периодичности проверок с упреждающим допуском на параметр изделия ЛА

Для нормального распределения $\varphi(\eta, t_i)$ на основании выражений (3.2, 4.1,4.2) получим:

2) получим:
$$T_{1} = \frac{\eta^{**} - m_{a} - U_{1-q_{\partial on}} \sigma_{a}}{m_{b} + U_{1-q_{\partial on}} \sigma_{b}},$$

$$\eta^{*} = \frac{\eta^{**} (\sigma_{a} + \sigma_{b} T_{1}) + (m_{a} \sigma_{b} - m_{b} \sigma_{a}) \tau}{\sigma_{a} + \sigma_{b} T_{1} + \sigma_{b} \tau},$$

$$T_{cp} = \frac{\eta^{**} - m_{a}}{m_{b}},$$

$$(4.3)$$

$$\eta^* = \frac{\eta^{**}(\sigma_a + \sigma_b T_1) + (m_a \sigma_b - m_b \sigma_a)\tau}{\sigma_a + \sigma_b T_1 + \sigma_b \tau},\tag{4.4}$$

$$T_{cp} = \frac{\eta^{**} - m_a}{m_b},\tag{4.5}$$

где $U_{1-q_{\partial on}}$ - квантиль нормального распределения, отвечающий вероятности $P_{\text{зад}} = 1 - q_{\partial on}$,

 T_{cp} - среднее время периода проверок.

параметров $\eta(t)$ по наработке:

При принятых предположениях о нормальном распределении $\phi(\eta, t_i)$ (3.1) параметров, линейных зависимостях моментных функций $m_n(t)$, $\sigma_n(t)$. (3.2) определим момент первой проверки T_1 , минимальное предотказовое значение параметра η^* для двух возможных случаев изменения диагностических

1) монотонно возрастающей зависимости диагностического параметра от времени $\eta(t)$ (верхнее расположение η^{**} и η^{*} , что соответствует, например, изменению суммарного осевого люфта $\delta(t)$ в поршневых парах аксиальнопоршневого гидравлического насоса;

2) монотонно убывающей зависимости диагностического параметра от времени $\eta(t)$ (нижнее расположение η^{**} и η^{*} , что соответствует, например, изменению объемного КПД $\gamma(t)$ и максимального давления P(t) в линии нагнетания аксиально- поршневого гидравлического насоса.

При монотонно возрастающей зависимости диагностического параметра по времени $\eta(t)$ (верхнее расположение η^{**} и η^* :

$$T_{1} = \frac{\eta^{**} - m_{a} - U_{1 - q_{\partial on}} \sigma_{a}}{m_{b} + U_{1 - q_{\partial on}} \sigma_{b}},$$

$$\eta^{*} = \frac{\eta^{**} (\sigma_{a} + \sigma_{b} T_{1}) + (m_{a} \sigma_{b} - m_{b} \sigma_{a}) \tau}{\sigma_{a} + \sigma_{b} T_{1} + \sigma_{b} \tau},$$
(4.6)

$$\eta^* = \frac{\eta^{**}(\sigma_a + \sigma_b T_1) + (m_a \sigma_b - m_b \sigma_a)\tau}{\sigma_a + \sigma_b T_1 + \sigma_b \tau},\tag{4.7}$$

где $U_{1-q_{\partial on}}$ - квантиль нормального распределения, соответствующий вероятности безотказной работы $1-q_{\partial on} = P_{3an}$,

При монотонно убывающей зависимости диагностического параметра по времени $\eta(t)$ (нижнее расположение η^{**} и η^* :

$$T_{1} = \frac{m_{a} - \eta^{**} - U_{1 - q_{\partial on}} \sigma_{a}}{m_{b} + U_{1 - q_{\partial on}} \sigma_{b}},$$

$$\eta^{*} = \frac{\eta^{**} (\sigma_{a} + \sigma_{b} T_{1}) + (m_{a} \sigma_{b} + m_{b} \sigma_{a}) \tau}{\sigma_{a} + \sigma_{b} T_{1} + \sigma_{b} \tau},$$
(4.8)

$$\eta^* = \frac{\eta^{**}(\sigma_a + \sigma_b T_1) + (m_a \sigma_b + m_b \sigma_a)\tau}{\sigma_a + \sigma_b T_1 + \sigma_b \tau},\tag{4.9}$$

В качестве объекта выбран аксиально-поршневой насос регулируемой подачи гидравлической системы самолета. Для оценки технического состояния гидронасоса определяются значения следующих параметров:

объемный КПД - η_{γ} (блок подачи); η_{γ} , η_{p} , η_{δ} максимальное давление - η_p (регулятор подачи); суммарный осевой люфт - η_{δ} (шарнирные соединения).

ТЕХНИЧЕСКОЙ УПРАВЛЕНИЕ ПРОЦЕССОМ ЭКСПЛУАТАЦИИ ИЗДЕЛИЙ, ЗАМЕНЯЕМЫХ ПО СОСТОЯНЮ

5.1. Выбор модели процесса технической эксплуатации изделий, заменяемых по состоянию

Летательный аппарат как объект технического обслуживания и ремонта может быть представлен совокупностью изделий, заменяемых в процессе Съемные технической эксплуатации. изделия, относящиеся к классу восстанавливаемых или ремонтируемых, образуют свой процесс технической эксплуатации, который включает следующие состояния:

 M_i , $i = \overline{1, m}$ - использование изделия на ЛА в исправном состоянии;

 H_{i} , $j = \overline{1, m}$ - ожидание ремонта в неработоспособном состоянии;

 Π_l , $l = \overline{1,m}$ - диагностические проверки;

 H_q , $q = \overline{1,m}$ - профилактические замены;

 B_k , $k = \overline{1,m}$ - восстановление (ремонт);

 C_{s} , $s = \overline{1, m}$ - хранение на складе в исправном состоянии.

Классификация моделей диагностирования и замены элементов и изделий выполнена по следующим признакам (табл. 5.1).

По признаку стратегии замены элементов и изделий:

- 1) замена по ресурсу,
- 2) замена при отказе,
- 3) профилактическая замена при непрерывном контроле,
- 4) профилактическая замена при дискретном контроле.

По признаку вида элементов (изделий):

- а) неремонтируемые элементы,
- б) ремонтируемые элементы,
- в) ремонтируемые изделия.

Для формального описания процесса технической эксплуатации изделий используется математический аппарат полумарковских процессов.

Совокупность матрицы вероятностей переходов $P = \|P_{ij}\|$ и вектора абсолютных частот $\pi = (\pi_1, \pi_2, \pi_2, ..., \pi_N)$ попадания в -е состояние $i = \overline{1,N}$ определяют процесс переходов, а совокупность функций распределения времени пребывания в состояниях $F_i(t), i = \overline{1,N}$ определяет процесс пребывания изделия в i-ом состоянии.

Для управления процессами технической эксплуатации изделий ЛА, заменяемых по состоянию и подверженных износу и старению, используется полумарковская модель, включающая следующие состояния (рис. 5.1):

 M_i , $i = \overline{1, m}$ - использование изделия на ЛА в исправном состоянии;

 $H_{i}, j = \overline{1, m}$ - ожидание ремонта в неработоспособном состоянии;

 Π_l , $l = \overline{1,m}$ - диагностические проверки;

 H_q , $q = \overline{1,m}$ - профилактические замены;

 B_k , $k = \overline{1,m}$ - восстановление (ремонт);

 C_s , $s = \overline{1,m}$ - хранение на складе в исправном состоянии.

Для изделий, подверженных износу и старению вероятность замены зависит от наработки t_i . Для фиксированных значений периодичности τ_i и номера проверки r вероятность замены будет постоянной. Это свойство наблюдаемого случайного процесса, вытекающее из модели экранов. (рис. 4.1), можно использовать при построении модели процесса технической эксплуатации с заменой изделий по состоянию с дискретным контролем параметров.

Таблица 5. 1

Схемы моделей диагностирования и замены элементов и изделий

Стратегии	Модели "М" замены	Модели "М" замены	Модели "М" замены
замены	неремонтируемых	ремонтируемых "б"	ремонтируемых "в"
Замены по ресурсу M ₁	$\eta(t)$ M_1a T_p T_p	элементов M_1	изделий M ₁ H ₁ H _i
Замены при отказе M ₂	$\eta_{\pi p}$ t	M ₂	M ₂ H ₁ H _i
Профилактические замены при непрерывном контроле M_3	η(t) M ₃ a η _{πp} η _{доп} t	М ₃ б	M_{3B} M_{3B}
Профилактические замены при дискретном контроле M_4	$\eta(t)$ M_4a $\eta_{\pi p}$ $\eta_{\pi p}$ $\eta_{\pi q}$	M_4 6 H Π 3	$\begin{array}{c} \overline{\text{M}} \\ \overline{\text{M}} \\$

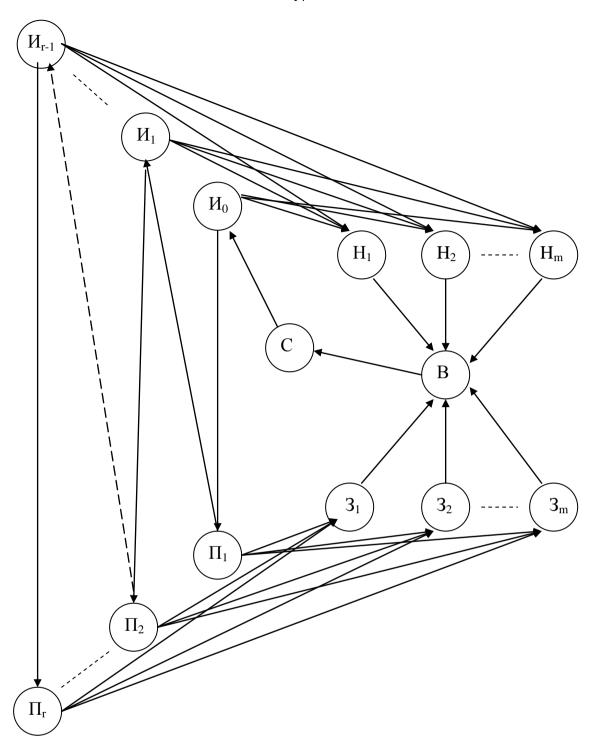


Рис.5.1. Схема модели замены ремонтируемых изделий, подверженных износу и старению

Для сохранения марковского свойства процесса в модели М4в (табл. 5.1) введены дополнительные исправные состояния H_i , $i=\overline{0,r-1}$ и соответствующие им состояния проверок Π_i , $i=\overline{0,r}$, различаемые по номеру межпроверочного периода при фиксированной периодичности проверок τ_i . (рис. 5.1).

При принятых предложениях 0 полном восстановлении работоспособности изделий при ремонте, а также о замене на новые изделия, в случае необходимости, процесс будет регенерирующим; точками регенерации являются моменты возвращения процесса в состояние $И_0$ (рис. 5.1).

5.2. Оценка параметров модели процесса технической эксплуатации изделий, заменяемых по состоянию

При монотонно возрастающей зависимости диагностического параметра по времени η (t) (верхнее расположение η^{**} и η^* .

$$T_{r} = \frac{\eta^{*} - m_{a} + U_{P_{3H}} \sigma_{a}}{m_{b} - U_{P_{2H}} \sigma_{b}},$$
(5.1)

$$P_{k}(\bar{A}) = F_{0}\left(\frac{\eta^{**} - m_{a} - m_{b}T_{K}}{\sigma_{a} + \sigma_{b}T_{K}}\right), k = \overline{1, r}$$

$$P_{k}(\bar{B}) = F_{0}\left(\frac{\eta^{*} - m_{a} - m_{b}T_{K}}{\sigma_{a} + \sigma_{b}T_{K}}\right), k = \overline{1, r}$$

$$(5.2)$$

$$P_k(\overline{B}) = F_0\left(\frac{\eta^* - m_a - m_b T_K}{\sigma_a + \sigma_b T_K}\right), k = \overline{1, r}$$
(5.3)

где $U_{P_{3H}}$ - квантиль нормального распределения, соответствующий вероятности P_{3H} того, что к моменту T_r все реализации η (t) - достигли уровня η^{**} .

При монотонно убывающей зависимости диагностического параметра по времени η (t) (нижнее расположение η^{**} и η^* :

$$T_r = \frac{m_a - \eta^* + U_{P_{3H}} \sigma_a}{m_b + U_{P_{3H}} \sigma_b},\tag{5.4}$$

$$T_{r} = \frac{m_{a} - \eta^{*} + U_{P_{3H}} \sigma_{a}}{m_{b} + U_{P_{3H}} \sigma_{b}},$$

$$P_{k}(\bar{A}) = F_{0} \left(\frac{\eta^{**} - m_{a} - m_{b} T_{K}}{\sigma_{a} + \sigma_{b} T_{K}} \right), k = \overline{1, r}$$

$$P_{k}(\bar{B}) = F_{0} \left(\frac{\eta^{*} - m_{a} - m_{b} T_{K}}{\sigma_{a} + \sigma_{b} T_{K}} \right), k = \overline{1, r}$$
(5.4)
$$(5.5)$$

$$P_k(\bar{B}) = F_0\left(\frac{\eta^* - m_a - m_b T_K}{\sigma_a + \sigma_b T_K}\right), k = \overline{1, r}$$
(5.6)

где T_r - момент последней $(r - \mathbf{H})$ проверки.

Количество проверок определяется по формуле

$$r = \frac{T_r - T_1}{\tau} + 1, (5.7)$$

Граф состояний и переходов процесса технической эксплуатации изделий, подверженных износу и старению, представлен на рис. 5.1. Вероятности переходов $H_i \rightarrow H_i$ $\mathbb{M}_i \to \Pi_{i+1}, \quad \Pi_{i+1} \to \mathbb{G}_a, \, \Pi_{i+1} \to \mathbb{M}_{i+1}$ определяются моделью экранов (рис.4.1):

$$P_k(C) = P_k(\bar{A}) - P_k(\bar{B}), \tag{5.8}$$

$$P_{k}(C/\bar{A}) = \frac{P_{k}(\bar{A}) - P_{k}(\bar{B})}{P_{k}(\bar{A})},$$
(5.9)

$$P_{U_iH_i} = 1 - P(\bar{A}), \quad , \tag{5.10}$$

$$P_{U_i\Pi_{i+1}} = P(\bar{A}) = 1 - \sum_{j=1}^{m} P_{U_iH_j}, \tag{511}$$

$$P_{\Pi_{i+1}3_q} = \frac{P(\bar{A}) - P(\bar{B})}{P(\bar{A})}, \quad , \tag{5.12}$$

$$P_{\Pi_{i+1}H_{i+1}} = 1 - \sum_{q=1}^{m} P_{\Pi_{i+1}3_q},$$
(5.13)

где \bar{A} - событие «изделие не было заменено вследствие отказа до момента i -ой проверки»,

 $ar{B}$ - событие «изделие не было заменено профилактически до момента і- ой проверки",

C - событие «изделие подлежит замене при i -ой проверке»,

 C/\bar{A} - событие «замена изделия произойдет при і-ой проверке при условии, что оно не было заменено до момента t_i ».

Вероятности попадания изделия в -е состояние $\pi_i(t)$ могут быть определены из системы дифференциальных уравнений Колмогорова, для составления которых имеется удобное мнемоническое правило:

- 1) производная $d\pi_i(t)/dt$ вероятности пребывания системы в i-м состоянии равна алгебраической сумме, число слагаемых которой равно числу ребер на графе состояний и переходов, соединяющих это состояние с другими состояниями;
- 2) если ребро направлено в -е состояние, то слагаемое в сумме берется со знаком «+», если направлено из i-го состояния, то со знаком «-»;
- 3) каждое слагаемое равно произведению вероятности того состояния, из которого направлено ребро на вероятность перехода по данному направлению;
- 4) число отрицательных слагаемых равно числу ребер, направленных из іго состояния, число положительных числу ребер направленных в -е состояние.

Пользуясь этим правилом, составим систему дифференциальных уравнений вида:

$$-\sum_{j=1}^{N} P_{ij} \pi_i(t) + \sum_{j=1}^{N} P_{ij} \pi_j(t) = \frac{d\pi_i(t)}{dt},$$
 (5.14)

Для эргодического процесса, учитывая что

$$lim_{t\to\infty}\frac{d\pi_i(t)}{dt}=0,$$

$$\lim_{t\to\infty}\pi_{\rm i}(t)=\pi_{\rm i}$$

система уравнений (5.14) превращается в систему алгебраических уравнений вида:

$$-\sum_{j=1}^{N} P_{ij} \pi_i(t) + \sum_{j=1}^{N} P_{ij} \pi_j(t) = 0,.$$
 (5.15)

Такие уравнения составляются для каждого состояния и добавляется уравнение нормировки

$$\sum_{i=1}^{N} \pi_i(t) = 1,. \tag{5.16}$$

Одно из уравнений (5.15) может быть исключено.

5.3. Оценка показателей эффективности процесса технической эксплуатации изделий ЛА, заменяемых по состоянию

На основе полученных из системы алгебраических уравнений вероятностей попадания в j-е состояние $\pi_j(t)$ и средних значений времени пребывания в j-м состоянии μ_j , определяются показатели эффективности процесса технической эксплуатации изделий ЛА:

коэффициент пребывания в ј -м состоянии

$$K_{j} = \frac{\pi_{j} \cdot \mu_{j}}{\sum_{k=1}^{N} \pi_{k} \cdot \mu_{k}},\tag{5.17}$$

коэффициент использования

$$K_{\mathcal{U}} = \frac{\pi_i \cdot \mu_i \cdot H_c}{\sum_{k=1}^{N} \pi_k \cdot \mu_k \cdot 24}, i \in \mathcal{U}$$

$$(5.18)$$

коэффициент удельных простоев

$$K_{\Pi} = \frac{\sum_{l} \pi_{l} \cdot \mu_{l} \cdot 24}{\pi_{l} \cdot \mu_{l} \cdot H_{c}}, l \in H, \Pi, 3, B, C, i \in U,$$
(5.19)

где Н_с- суточный налет, ч/сутки.

Для выбора управляющих воздействий по повышению эффективности процесса технической эксплуатации изделий ЛА необходимо определить доминирующие состояния, ранжируя по убыванию значения величин

$$\pi_l \cdot \mu_l \ l \in H, \Pi, 3, B, C,$$
(5.20)

Для анализа влияния организационных и технических факторов, воздействующих на характеристики доминирующих состояний определяются относительные показатели среднего времени пребывания в доминирующих состояниях

$$\bar{\mu}_{i\,\partial o\mu} = \frac{\mu_{i\,\partial o\mu}}{\mu_{i\,\partial \delta}},\tag{5.21}$$

среднее время пребывания в і-м доминирующем где $\mu_{i \partial o u}$, $\mu_{i \partial o}$ состоянии: оцениваемое и базовое, соответственно.

Зависимости относительных эффективности показателей OT относительных затрат времени в і-м доминирующем состоянии определяется по формулам:

$$K_{\mathsf{H}}=1+K_{\mathsf{H}\partial}*K_{\mathsf{\Pi}i\partial}(1-\bar{\mu}_{i\partial}), \tag{5.22}$$

$$\overline{K}_{\text{M}} = 1 + K_{\text{H}\partial} * K_{\Pi i\partial} (1 - \overline{\mu}_{i\partial}),$$

$$\overline{K}_{\Pi_i} = 1 - \frac{K_{\Pi_{i\partial}} (1 - \overline{\mu}_{i\partial})}{K_{\Pi_{\text{B}}}},$$
(5.22)

где $\overline{K}_{\mathsf{U}}$, \overline{K}_{Π_i} - относительные показатели: коэффициент использования и коэффициент удельных простоев соответственно

$$\overline{K}_{\text{M}} = \frac{K_{\text{Mou}}}{K_{\text{Me}}},$$
 $\overline{K}_{\Pi} = \frac{K_{\Pi ou}}{K_{\Pi e}},$

базовые показатели эффективности: коэффициент использования и коэффициент удельных простоев соответственно:

 $K_{\Pi id}$ - коэффициент удельных простоев в і–м доминирующем состоянии.

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ

КУРСОВОЙ РАБОТЫ

6.1. Задание по выполнению курсовой работы

Подлежат решению следующие задачи:

- 1. Анализ процесса изменения технического состояния изделий ЛА.
- 1.1. Характеристика объекта управления.

- 1.2. Выбор модели процесса изменения параметров изделий ЛА.
- 1.3. Оценка и прогнозирование параметров изделий ЛА.
- 2. Управление режимами технической эксплуатации изделий, заменяемых по состоянию.
- 2.1. Характеристика модели управления режимами диагностирования и замены изделий ЛА.
- 2.2. Определение связи периодичности проверок с упреждающим допуском на параметр изделия ЛА.
- 3. Управление процессами технической эксплуатации изделий ЛА, заменяемых по состоянию.
- 3.1. Выбор модели процесса технической эксплуатации изделий, заменяемых по состоянию.
- 3.2. Оценка параметров модели процесса технической эксплуатации изделий, заменяемых по состоянию.
- 3.3. Оценка показателей эффективности процесса технической эксплуатации изделий ЛА, заменяемых по состоянию.

6.2. Вопросы, рекомендуемые к рассмотрению

- 1) Что представляет собой упреждающий допуск на диагностический параметр изделия?
- 2) Изложите содержание теоремы, устанавливающей связь периодических проверок с упреждающим допуском на диагностический параметр?
 - 3) Как определить момент первой проверки?
 - 4) Какой зависимостью аппроксимируются моментные функции?
- 5) Что представляет собой монотонно возрастающая и монотонно убывающая зависимости диагностического параметра от времени?
- 6) Как обосновывается сохранение марковского свойства процесса в модели эксплуатации ремонтируемых изделий, подверженных износу и старению?
- 7) При каких предположениях определяются характеристики модели эксплуатации ремонтируемых изделий, подверженных износу и старению?

6.3. Получение исходных данных

При выполнении курсовой работы используются следующие исходные данные:

- математические ожидания $m_{\eta_j}(t_i)$, средние квадратические отклонения $\sigma_{\eta_j}(t_i)$ значений параметров $\eta_{j,j}=1,2,3,i=0,1,2$, предельно допустимые значения параметров $\eta^{**}_{j,j}$, (табл. $\Pi.1.2$);
- вероятность безотказной работы $P_{3a\partial} = 1 q_{\partial on}$ и вероятности P_{3H} того, что к моменту T_r все реализации $\eta(t)$ достигли уровня η^{**} определяются по табл.П.1.3.

• среднее время $M_{k,}$ K=1,2,...,N пребывания изделия в к-м состоянии процесса технической эксплуатации изделий и средний суточный налет Нс одного самолета (табл. Π .1.4);

Вариант задания формируется в соответствии с данными табл. П.1.1 – П.1.4. Выбор варианта задания студентами производится в следующем порядке:

- вариант задания определяется по числу, состоящему из двух последних цифр шифра зачетной книжки студента;
- по варианту задания по табл. П.1.1 определяется 3-х значный шифр параметров изделия;
- по шифру параметров по табл. П.1.2 определяются варианты каждого параметра: 1-я цифра шифра параметров максимальное давление нагнетания η_p , 2-я цифра объемный КПД η_γ , 3.я цифра суммарный осевой люфт в шарнирном соединении поршневых пар η_δ .
- по варианту задания по табл. $\Pi.1.4$ определяется вариант среднего времени пребывания в состояниях M_i и суточного налета H_i

Например:

- шифр зачетной книжки студента М73578, вариант задания 78;
- по варианту задания по табл П.1.1 находим шифр параметров изделий 413;
- по шифру параметров изделий по табл.П.1.2 находим варианты каждого параметра: максимальное давление нагнетания η_p 4-й вариант, объемный КПД η_{γ} -1-й вариант, суммарный осевой люфт в шарнирном соединении поршневых пар η_{δ} -3-й вариант.
- по варианту задания по табл. П.1.4 определяем вариант 77-80 среднего времени пребывания в состояниях M_i и суточного налета H_i

6.4. Порядок решения задач

Задача № 1. Анализ процесса изменения технического состояния изделий ЛА

1.1). Характеристика объекта управления

Выполнить анализ аксиально-поршневого насоса гидравлической системы самолета регулируемой подачи как объекта управления и обосновать выбор состояний и контролируемых параметров.

1.2). Выбор модели процесса изменения параметров изделий ЛА

Обосновать выбор модели на основе одномерных плотностей распределения $\phi(\eta,t_r)$, которые характеризуют распределение случайной величины $\eta(t)$, в любой произвольный момент времени t. Это означает, что известны плотности распределения $\phi(\eta,t_r)$, в любые фиксированные моменты времени t_r .

Выполнить оценку значений плотностей распределения $\phi(\eta, t_r)$, для t_r .=0, 500, 1000 ч с использованием формулы (3.1) и табл. П.3.1 плотности

стандартного нормального распределения. Построить зависимости $\phi(\eta, t_r)$, в виде рис. 3.2. Для построения зависимостей можно также использовать функцию НОРМ.РАСП программы Excel.

1.3). Оценка и прогнозирование параметров изделий ЛА

Выполнить оценку коэффициентов m_a , m_b моментной функции $m_\eta(t)$, и коэффициентов σ_a , σ_b моментной функции $\sigma_\eta(t)$ по формулам (3.2-3.6). Осуществить прогноз значений моментных функций $m_\eta(t)$ и $\sigma_\eta(t)$ для наработки изделия t_r = 1500ч. Построить зависимости $m_\eta(t)$ и $\sigma_\eta(t)$ в интервале от 0 до 1500 ч.

Задача № 2. Управление режимами технической эксплуатации изделий, заменяемых по состоянию

2.1). Характеристика модели управления режимами диагностирования и замены изделий ЛА

Обосновать выбор модели управления режимами диагностирования и замены изделий ЛА. Дать математическое описание и физическую интерпретацию модели, устанавливающей связь периодичности проверок $\tau = T_2 - T_1$ и упреждающего допуска $\Delta \eta_i = \eta^{**} - \eta^*$ на параметр $\eta_i(t)$, $i = \overline{1.n}$

- 2.2). Определение связи периодичности проверок с упреждающим допуском на параметр изделия ЛА
- а). При монотонно возрастающей зависимости параметра от времени $\eta(t)$ (верхнее расположение η^{**} и η^{*}), расчет выполняется в следующем порядке:
- определение момента первой проверки T_1 по формуле (4.6); квантиль нормального распределения по табл. П.3.2 или в программе Excel с использованием функции HOPM.CT.OБP;
- определение зависимости $\eta^*_{i}(\tau)$, i=3 минимального предотказового значения параметра η^* от периодичности проверок τ по формуле (4.7); построение зависимости $\eta^*_{i}(\tau)$, i=3 в интервале от 0 до 2000 ч в виде рис. 3.2;
- расчет минимального предотказового значения параметра η^* по формуле (4.7) при $\tau = 300, 900, 1800;$
 - \bullet определение среднего времени периода проверок $T_{\rm cp}$ по формуле (4.5)
- б). При монотонно убывающей зависимости параметра от времени $\eta(t)$ (нижнее расположение η^{**} и η^{*}), расчет выполняется в следующем порядке:
- ullet определение момента первой проверки T_1 по формуле (4.8); квантиль нормального распределения по табл. П.3.2 или в программе Excel с использованием функции HOPM.CT.OБP;

Важно! При выполнении расчетов по формуле (4.8) и последующим формулам для монотонно убывающих зависимостей параметра значения m_b необходимо брать по модулю.

- •определение зависимости $\eta^*_{i}(\tau)$, i=3минимального предотказового значения параметра η^* от периодичности проверок τ по формуле (4.9); построение зависимости $\eta^*_{i}(\tau)$, i=3 в интервале от 0 до 2000 ч;
- расчет минимального предотказового значения параметра η^* по формуле (4.9) при τ = 300, 900, 1800;
 - определение среднего периода проверок $T_{\rm cp}$ по формуле (4.5)
- в). Из полученных значений момента первой проверки для трех параметров $\eta_{\gamma}, \eta_{p}, \eta_{\delta}$ выбрать наименьшее T_{1min} и его принять для изделия в целом.

Задача № 3. Управление процессами технической эксплуатации изделий ЛА, заменяемых по состоянию

3.1). Выбор модели процесса технической эксплуатации изделий, заменяемых по состоянию

Обоснование выбора модели процесса технической эксплуатации изделий, заменяемых по состоянию, на примере аксиально-поршневого гидравлического насоса с учетом износа и старения (табл.5.1, рис.5.1). Привести математическое описание и физическую интерпретацию выбранной модели с использованием модели экранов для определения вероятностей переходов P_{ij} , $i \ni N, j$.

- 3.2). Оценка параметров модели процесса технической эксплуатации изделий, заменяемых по состоянию
- а). При монотонно возрастающей зависимости параметра от времени $\eta(t)$ (верхнее расположение η^{**} и η^*) расчет выполняется в следующем порядке:
- определение момента последней (r -той) проверки T_r по формуле (5.1), квантиль нормального распределения по табл. П. 3.2;
- определение числа проверок r по формуле (5.7), при r < 8 принимаем полученные значения T_k , в противном случае подбираем τ , при котором r < 8 и выполняем повторный расчет η^* , T_r и r при фиксированном T_1 ;
- расчет значений вероятностей событий $P_k(\bar{A}), P_k(\bar{B})$ для значений $T_k = T_1, T_2 = T_1 + \tau, T_3 = T_1 + 2\tau$, по формулам (5.2, 5.3), вероятность нормального распределения по табл. П. 3.3;
- расчет значений вероятностей событий $P_k(C)$, $P_k(C/\bar{A})$ для значений $T_k = T_1$, $T_2 = T_1 + \tau$, $T_3 = T_1 + 2\tau$, по формулам (5.8, 5.9), вероятность нормального распределения по табл. П.3.3;
- б). При монотонно убывающей зависимости параметра от времени $\eta(t)$ (нижнее расположение η^{**} и η^{*}), расчет выполняется в следующем порядке:
- определение момента последней (r-той) проверки T_r по формуле (5.4), квантиль нормального распределения по табл. П.3.2;
- определение числа проверок r по формуле (5.7), при r < 8 принимаем полученные значения T_1, η^*, T_r и r, в противном случае подбираем τ , при котором r < 8 и выполняем повторный расчет , η^*, T_r и r, при фиксированном T_1 ;

Построить зависимости вероятностей событий $P_k(\bar{A})$, $P_k(\bar{B})$, $P_k(C)$, $P_k(C)$. Аот наработки t в виде рис. П.3.1.

- в соответствии с результатами расчетов числа проверок r и выбранной моделью процесса технической эксплуатации изделия заменяемого по состоянию (рис. 5.1) построить графы состояний и переходов при τ =300, 900, 1800
 - в). Определение вероятностей переходов $P_{U_iH_j}$, $P_{U_i\Pi_{i+1}}$, $P_{\Pi_{i+1}3_q}$, $P_{\Pi_{i+1}U_{i+1}}$

модели процесса технической эксплуатации изделий, подверженных износу и старению (рис. 5.1) по формулам (5.10 – 5.13). Вероятности безальтернативных переходов

$$P_{\rm HB} = P_{\rm 3B} = P_{\rm BC} = P_{\rm CM_0} = 1.$$

- г). Для сформированных графов состояний и переходов процесса технической эксплуатации изделий, заменяемых по состоянию в соответствии с мнемоническим правилом, приведенным в п.5.2 составить систему алгебраических уравнений вида (5.15) и уравнение нормировки (5.16). Решаем систему (5.15, 5.16) относительно π_i , $i = \overline{1,n}$.
- 3.3). Оценка показателей эффективности процесса технической эксплуатации изделий ЛА, заменяемых по состоянию
- а). Определение для каждой периодичности проверок $\tau = 300,900,1800 \ u$ по формуле (5.17) значений коэффициентов K_i пребывания изделия в i -ом состоянии $i = \overline{1,n}$ и представление результатов в форме табл. 6.1.

Определение коэффициента использования \mathbf{K}_{U} по формуле (5.18) и коэффициента удельных простоев $\mathbf{K}_{\mathrm{\Pi}}$ по формуле (5.19).

- б). Выполнить сравнительную оценку полученных результатов при периодичностях проверок $\tau = 300,900,1800$ ч по значениям показателей эффективности процесса технической эксплуатации изделий и выбрать наилучший, имеющий $K_{\rm H\ max}$ ($K_{\rm \Pi\ min}$).
- в). Для выбранного варианта по принятой периодичности проверок τ_j определить значения минимальных предотказовых значений параметров η^*
- г). Для повышения эффективности процесса технической эксплуатации изделий, заменяемых по состоянию при выбранном варианте выполнить следующее:
- определение доминирующих состояний по величине $\pi_i \cdot \mu_i$ (табл. 6.1) и формирование управляющих воздействий по повышению эффективности процесса технической эксплуатации изделий ЛА;
- •определение зависимости относительных показателей эффективности от относительных величин среднего времени в доминирующих состояниях $\overline{K}_{\text{N}}\left(\overline{\mu}_{\text{i}\;\partial}\right)$, $\overline{K}_{\Pi_{i}}(\overline{\mu}_{\text{i}\;\partial})$, построение графика.

Выполнить анализ результатов и сделать подробные выводы.

Таблица 6.1 Оценка коэффициента K_i , $i=\overline{1,N}$ и определение доминирующих состояний

Состояние	π_{j}	μ_{j}	$\pi_j \cdot \mu_j$	K_{j}
			$\sum\nolimits_{j=1}^{N}\pi_{j}\cdot\mu_{j}$	

приложения

приложение 1

Таблица П.1.1

Варианты заданий

$N_{\underline{0}}$	Шифр	No	Шифр	No	Шифр	$N_{\underline{0}}$	Шифр
вар.		вар.		вар.		вар	
1	111	26	211	51	311	76	411
2	112	27	212	52	312	77	412
3	113	28	213	53	313	78	413
4	114	29	214	54	314	79	414
5	115	30	215	55	315	80	415
6	121	31	221	56	321	81	421
7	122	32	222	57	322	82	422
8	123	33	223	58	323	83	423
9	124	34	224	59	324	84	424
10	125	35	225	60	325	85	425
11	131	3637	231	61	331	86	431
12	132	38	232	62	332	87	432
13	133	39	233	63	333	88	433
14	134	40	234	64	334	89	434
15	135	41	235	65	335	90	435
16	141	42	241	66	341	91	441
17	142	43	242	67	342	92	442
18	143	44	243	68	343	93	443
19	144	45	244	69	344	94	444
20	145	46	245	70	345	95	445
21	151	47	251	71	351	96	451
22	152	48	252	72	352	97	452
23	153	49	253	73	353	98	453
24	154	50	254	74	354	99	454
25	155	51	255	75	355	100	455

Таблица П.1.2

Параметры изделий

			$m_{\eta}(t)$					
Параметры,	Вари-	$t_0 =$	$t_1 =$	$t_2 =$	$t_0 =$	$t_1 =$	$t_2 =$	η^{**}
обозначения,	ант	0 ч	500 ч	1000 ч	0 ч	500 ч	1000 ч	
единицы								
измерения								
1.Максималь-	1	224,6	217,4	215,8	0,56	3,75	4,0	205
ное давление	2	224,0	217,6	215,9	0,58	3,9	4,2	205
нагнетания	3	223.6	217,9	216,0	0,60	3,65	3,9	205
η_p , кг/см ²	4	223,2	218,4	217,5	0,61	3,8	4,2	205
r	5	223,0	218,5	216,7	0,63	3,9	4,1	205
2.Объемный	1	0,929	0,879	0,849	0,011	0,072	0,012	0,750
КПД	2	0,930	0,881	0,849	0,013	0,036	0,042	0,750
$η_γ$, б/p	3	0.932	0,884	0,853	0,015	0,026	0,042	0,750
	4	0,933	0,886	0,855	0,016	0,032	0,040	0,750
	5	0,935	0,888	0,858	0,017	0,026	0,032	0,750
3.Суммарный	1	17,9	71,58	91,43	4,9	19,10	19,7	150
осевой люфт	2	18,1	71,55	91.30	5,0	18,85	19,5	150
в шарнирных	3	18,4	71,9	91,80	5,1	18,75	19,5	150
соединениях	4	18,6	71,6	91,1	5,3	19,75	20,5	150
поршневых	5	19,0	72,3	92,3	5,5	20,0	20,8	150
пар, η_{δ} , мк								

 $\label{eq:2.1.3.2} \mbox{ Таблица Π.1.3.}$ Заданные вероятности $P_{\mbox{\scriptsize 3ад}}=1-\ q_{\mbox{\scriptsize доп}}$ и $P_{\mbox{\scriptsize 3H}}$

Наименование	Шифр параметра	Вероятность	Вероятность
параметра изделия		безотказной	$P_{\scriptscriptstyle \mathrm{3H}}$
		работы	
		$P_{\text{зад}} = 1 - q_{\text{доп}}$	
Максимальное	η_p	0,995	0,95
давление -			
Объемный КПД -	η_{γ}	0.997	0.97
Суммарный	η_{δ}	0,999	0,99
осевой люфт -			

Таблица П.1.4 Среднее время пребывания в і-том состоянии $\mathrm{M}_i(t)$, $i=\overline{1,n}$ суточный налет $\mathrm{H_c}$

		Состояния								
Вари-	Ио	$i = \frac{M_i,}{1,r-1}$	$H_{j},$ $j = 1, m$	$ \Pi_{l}, $ $ l = \overline{1,r} $	$3_{q}, \\ q = 1, n$	В _к , к=1	C_s , $s=1$	H_c		
анты										
1-4	127,9	21,5×к	86	0,041	0,104	196,6	65,6	6		
5-8	130	21×к	80	0,05	0,15	200	60	5		
9-12	135	23×к	75	0,07	0,18	180	55	4		
13-16	137	23,5×к	70	0,08	0,2	170	50	6		
17-20	140	24×к	65	0,09	0,25	160	45	5		
21-24	130	22×к	75	0,07	0,18	170	55	4		
25-28	135	24×к	70	0,08	0,18	190	60	6		
29-32	150	25×к	80	0,05	0,15	170	50	5		
33-36	140	22×к	60	0,1	0,2	150	55	4		
37-40	150	25×к	50	0,12	0,15	140	45	6		
41-44	120	20×к	45	0,2	0,08	120	40	5		
45-48	140	21×к	55	0,05	0,15	110	50	4		
49-52	125	25×к	40	0,08	0,12	100	60	6		
53-56	115	20×к	70	0,1	0,2	150	45	5		
57-60	155	25×к	50	0,06	0,16	120	50	4		
61-64	115	22xĸ	60	0,05	0,21	90	35	6		
65-68	125	18xĸ	70	0,07	0,22	95	40	5		
69-72	135	19хк	65	0,09	0,18	90	50	4		
73-76	145	20хк	55	0,08	0,19	70	45	5		
77-80	120	16хк	60	0,06	0,21	110	40	6		
81-84	130	15хк	35	0,05	0,25	100	65	5		
85-88	125	18хк	45	0,06	0,28	85	50	6		
89-92	135	16хк	42	0,04	0,20	90	40	5		
93-96	145	17хк	40	0,08	0,23	110	35	4		
97- 100	140	18хк	35	0,06	0,25	95	30	5		

Примечание: при $\tau = 100$, к=1, при $\tau = 200$, к =2

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСЩЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

Кафедра технической эксплуатации ЛАиАД

«Защищена»
с оценкой
Комиссия
(подпись, дата)
(подпись, дата)

КУРСОВАЯ РАБОТА

по дисциплине «Управление системами и процессами эксплуатации»

НА ТЕМУ

«Управление системами и процессами технической эксплуатации летательных аппаратов»

Курсовую	работу выполнил
Студент	
Ф.И.О.	(подпись)
Шифр	
Группа	
Дата	

Москва 20___

ПРИЛОЖЕНИЕ 3 Таблица П.3.1 Плотность стандартного нормального распределения $\phi_{\rm c}(x)$

Z	0	1	2	3	4	5	6	7	8	9	Z
0,0	3989	3989	3989	3988	3986	3984	3982	3980	3977	3973	0,0
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918	0,1
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825	0,2
0,5	3814		3790	3778	3765	3752	3739	3726	3712	3697	0,5
0,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538	0,4
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352	0,5
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144	0,6
0,7	3123	3101	3079	3056	3034	3005	2989	2965	2943	2920	0,7
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685	0,8
0,9'	.2661	2637	2613	2589	2565	2541	2516	2492	2468	2444	0,9'
1,0	2420	2396	2371	2347	2323	2299	2275	2251	2227	2203	1,0
1, 1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965	1,1
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736	1,2
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518	1,3
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315	1,4
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127	1,5
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957	1,6
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804	1,7
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669	1,8
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551	1,9
2,0	0540	0529	0519	0508	0498	0488	0478	0468	0459	0449	2,0
2,1	0440	0431	0422	0413	0404	0396	0388	0379	0371	0363	2,1
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290	2,2

Продолжение табл.ПЗ.1

Z	0	1	2	3	4	5	6	7	8	9	Z
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229	2,3
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180	2,4
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139	2,5
2,6	0136	0132	0129	0126	0122	0119	0116	0113	ОНО	0107	2,6
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081	2,7
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061	2,8
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046	2,9
3,0	0044	0043	0042	0040	0039	0038	0037	0036	0035	0034	3,0
3,1	0032	0032	0031	0030	0029	0028	0027	0029	0025	0025	3,1
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018	3,2
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013	3,3
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009	3,4
3,5	0009	0008	0008	0008	0008	0007	0007	0007	0007	0006	3,5
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004	3,6
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003	3,7
3,8	0003	0003	0003	0003	0003	0002	0002	0.002	0002	0002	3,8
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001	3,9

Таблица П.3.2 Квантили нормального распределения U_P

p		0	1	2	3	4	5	6	7	8	9
0,50	0,0	0000	0251	0501	0752	1002	1253	1504	1755	2005	2256
0,51	0,0	2507	2758	3008	3259	3510	3761	4012	4263	4513	4764
0,52	0,0	5015	5266	5517	5768	6020	6271	6522	6773	7024	7276
0,53	0,0	7527	7778	8030	8281	8533	8784	9036	9288	9540	9791
0,54	0,	1004	1030	1055	1080	1105	NSO	1156	1181	1206	1231
0,55	0,	1257	1282	1307	1332	1358	1383	1408	1434	1459	1484

							qΠ	одолже	ние та	бл. I	1.3.1
р		0	1	2	3	4	5	6	7	8	9
0,56	0,	1510	1535	1560	1586	1611	1637	1662	1687	1713	1738
0 , 57	0,	1764	1789	1815	1840	1866	1891	1917	1942	1968	1993
0,58	0,	2019	2045	2070	2096	2121	2147	2173	2198	2224	2250
0,59	Ο,	2275	2301	2327	2353	2378	2404	2430	2456	2482	2508
0,60	Ο,	2533	2559	2585	2611	2637	2663	2689	2715	2741	2767
0,61	ο,	2793	2819	2845	2871	2898	2924	2950	2976	3002	3029
0,62	0,	3055	3081	3107	3134	3160	3186	3213	3239	3266	3292
0,63	0,	3319	3345	3372	3398	3425	3451	3478	3505	3531	3558
0,64	0,	3585	3611	3638	3665	3692	3719	3745	3772	3799	3826
0,65	0,	3853	3880	3907	3934	3961	3989	4016	4043	4070	4097
0,66	0,	4125	4152	4179	4207	4234	4261	4289	4316	4344	4372
0,67	0,	4399	4427	4454	4482	4510	4538	4565	4593	4621	4649
0,68	0,	4677	4705	4733	4761	4789	4817	4845	4874	4902	4930
0,69	Ο,	4959	4987	5015	5044	5072	5101	5129	5158	5187	5215
0,70	Ο,	5244	5273	5302	5330	5359	5388	5417	5446	5476	5505
0,71	0,	5534	5563	5592	5622	5651	5681	5710	5740	5769	5799
0,72	0,	5828	5858	5888	5918	5948	5978	6008	6038	6068	6098
0,73	ο,	6128	6158	6189	6219	6250	6280	6311	6341	6372	6403
0,74	0,	6433	6464	6495	6526	6557	6588	6620	6651	6682	6713
0,75	0,	6745	6776	6808	6840	6871	6903	6935	6967	6999	7031
0,76	0,	7063	7095	7128	7160	7192	7225	7257	7290	7323	7356
0,77	0,	7388	7421	7454	7488	7521	7554	7588	7621	7655	7688
0,78	0,	7722	7756	77S0	7824	7858	7892	7926	7961	7995	8030
0,79	0,	8064	8099	8134	8169	8204	8239	8274	8310	8345	8381
0,80	0,	8416	8452	8488	8524	8560	8596	8633	8669	8705	8742

Продо	олжени	табл.	П.3.2		
5	6	7	8	9	
8596	8633	8669	8705	874	
8965	9002	9040	9078	911	

p		0	1	2	3	4	5	6	7	8	9
0,80	0,	8416	8452	8488	8524	8560	8596	8633	8669	8705	8742
0,81	0,	8779	8816	8853	8890	8927	8965	9002	9040	9078	9116
0,82	0,	9154	9192	9230	9269	9307	9346	9385	9424	9463	9502
0,83	0,	9542	9581	9621	9661	9701	9741	9782	9822	9863	9904
0,84	_	0,994	0,99	1,003	1,007	1,011	1,015	1,019	1,024	1,098	1,032
0,85	_	1,036	1,041	1,045	1,049	1,054	1,058	1,063	1,067	1,071	1 , 076
0,86	_	1,080	1,08	1,089	1,094	1,098	1,103	1,108	1,112	1,117	1,122
0,87	-	1,126	1,131	1,136	1,141	1,146	1,150	1,155	1,160	1,165	1,170
0,88	_	1,175	1,18	1,185	1,190	1,195	1,200	1,206	1,211	1,216	1,221
0,89	_	1,227	1,23	1,237	1,243	1,248	1,254	1,259	1,265	1,270	1 , 276
0,90	_	1,282	1,28	1,293	1,299	1,305	1,311	1,317	, 323	1,329	1,335
0,91	_	1,341	1,34	1 , 353	1,359	1,366	1,372	1,379	1 , 385	1,392	1 , 398
0,92	_	1,405	1,41	1,419	1,426	1,433	1,440	1,447	, 454	1,461	1,468
0,93	_	1 , 476	1,48	1,491	1,499	1,506	1,514	1,522	1,530	1,538	1,546
0,94	_	1 , 555	1 , 56	1 , 572	1,580	1,589	1,598	1,607	1,616	1,626	1 , 635
0,95	_	1,645	1,65	1,665	1,675	1,685	1,695	1.706	1,717	1,728	1 , 739
0,96	_	1 , 751	1,76	1 , 774	1 , 787	1,799	1,812	1,825	1,838	1,852	1 , 866
0,97	_	1,881	1,89	1,911	1 , 927	1,943	1,960	1,977	1,995	2,014	2,034
0,98	_	2,054	2,07	2 , 097	2,120	2,144	2,170	2,197	2,226	2,257	2,290
0,99	_	2,326	2,36	2,409	2 , 457	2,512	2 , 576	2,652	2,748	2 , 878	3,090
0,991	_	2,366	2,37	2,374	2,378	2,382	2,387	2,391	2,395	2,400	2,404
0,992	_	2,409	2,41	2,418	2,423	2,428	2,432	2,437	2,442	2,447	2 , 452
0,993	_	2 , 457	2,46	2,468	2 , 473	2,478	2,484	2,489	2 , 495	2,501	2 , 506
0,994	_	2,512	2 , 51	2,524	2,530	2,536	2,543	2,549	2 , 556	2 , 562	2 , 569
0,995	_	2 , 576	2 , 58	2 , 590	2 , 597	2,605	2,612	2,620	2,628	2,636	2,644
0,996		2 , 652	2,66	2 , 669	2 , 678	2,687	2 , 697	2 , 706	2 , 716	2 , 727	2 , 737
0,997	-	2 , 748	2 , 75	2 , 770	2 , 782	2,794	2,807	2,820	2,834	2,848	2 , 863
0,998	_	2 , 878	2 , 89	2,911	2 , 929	2,948	2 , 968	2,989	3,011	3 , 036	3 , 062

32

Продолжение табл. П.3.1

		0	1	2	3	4	5	6	7	8	9
0,999	р	3,090	3,121	3 , 156	3 , 195	3 , 239	3 , 291	3 , 353	3,432	3,540	3,719
р	u _p	р	u_p	р	u _p	р	u_p	р	u_p	р	u_p
0,9 ⁴ 0,9 ⁴ *5	3.719 3,891	0,9 ⁶ 0,9 ⁶ 5	4,265 4,417	_	4,753 4,892	0,9 ⁷ 0,9 ⁷ 5	5,199 5,327		5,612 5,731	0,9ª -	5,998 -

Таблица П.3.3

Значения $F_c(X)$

	ı	1				$F_{c}(X)$		ı	ı	
X		0	1	2	3	4	5	6	7	8
0	0	5000	5040	5080	5120	5160	5199	5239	5279	5319
0.1	0	5398	5438	5478	5517	5557	5596	5636	5675	5714
0.2	0	5793	5832	5871	5910	5948	5987	6026	6064	6103
0.3	0	6179	6217	6255	6293	6331	6368	6406	6443	6480
0.4	0	6554	6591	6628	6664	6700	6736	6772	6808	6844
0.5	0	6915	6950	6985	7019	7054	7088	7123	7157	7190
0.6	0	7257	7291	7324	7357	7389	7422	7454	7486	7517
0.7	0	7580	7611	7642	7673	7704	7344	7764	7794	7823
0.8	0	7881	7910	7939	7967	7995	8023	8051	8078	8106
0.9	0	8159	8186	8212	8238	8264	8289	8315	8340	8365
1	0	8413	8438	8461	8485	8508	8531	8554	8577	8599
1.1	0	8643	8665	8686	8708	8729	8749	8770	8790	8810
1.2	0	8849	8869	8888	8907	8925	8944	8962	8980	8997
1.3	0.9	0320	0490	0658	0824	0988	1149	1308	1466	1621
1.4	0.9	1924	2073	2220	2364	2507	2647	2785	2922	3056
1.5	0.9	3319	3448	3574	3699	3822	3943	4062	4179	4295
1.6	0.9	4520	4630	4738	4845	4950	5053	5154	5254	5352
1.7	0.9	5543	5637	5728	5818	5907	5994	6080	6164	6246
1.8	0.9	6407	6485	6562	6637	6712	6784	6856	6926	6995
1.9	0.9	7128	7193	7257	7320	7381	7441	7500	7558	7615
_										
2	0.9	7725	7778	7831	7882	7932	7982	8030	8077	8124
2.1	0.9	8214	8257	8300	8341	8382	8422	8461	8500	8537
2.2	0.9	8610	8645	8679	8713	8745	8778	8809	8840	8870
2.3	0.9	8928	8956	8983	9010	9036	9061	9086	9111	9134
2.4	0.99	1802	2024	2240	2451	2656	2857	3053	3244	3431
2.5	0.00	2700	20.62	4100	1207	4.455	4614	17.00	4015	5 0.60
2.5	0.99	3790	3963	4132	4297	4457	4614	4766	4915	5060
2.6	0.99	5339	5473	5603	5731	5855	5975	6093	6207	6319
2.7	0.99	6533	6636	6736	6833	6928	7020	7110	7197	7282
2.8	0.99	7445	7523	7599	7673	7744	7814	7882	7948	8012
2.9	0.99	8134	8193	8250	8305	8359	8411	8462	8511	8559
	0.00	9650	0.004	0726	0777	0017	0056	0002	0020	9065
3	0.99	8650	8694	8736	8777	8817	8856	8893	8930	8965

Значения $F_c(X)$ (продолжение табл.П.3.3)

X		0	<u>1</u>	2	3	<u> 4</u>	5	6	7	8
3.0	0.99	8650	8694	8736	8777	8817	8856	8893	8965	8999
3.1	0.9^{3}	0324	0646	0957	1260	1553	1836	2112	2636	2886
3.2	0.9^{3}	3129	3363	3590	3810	4024	4230	4429	4810	4991
3.3	0.9^{3}	5166	5335	5499	5658	5811	5959	6103	6376	6505
3.4	0.9^{3}	6631	6752	6869	6982	7091	7197	7299	7493	7585
3.5	0.9^{3}	7674	7760	7842	7922	7999	8074	8146	8282	8347
3.6	0.9^{3}	8409	8469	8527	8583	8637	8689	8739	8834	8879
3.7	0.9^{3}	8922	8964	9004	9043	9080	9116	9150	9216	9247
3.8	0.9^{4}	2765	3052	3327	3593	3848	4094	4331	4777	4988
3.9	0.9^{4}	5190	5385	5573	5753	5926	6092	6252	6554	6696
	,									
4.0	0.9^{4}	6833	6964	7090	7211	7327	7439	7546	7748	7843
4.1	0.9^{4}	7934	8022	8106	8186	8264	8338	8409	8542	8605
4.2	0.9^{4}	8665	8723	8778	8832	8882	8931	8978	9066	9107
4.3	0.9^{5}	1460	1837	2198	2544	2876	3193	3497	4066	4332
4.4	0.9^{5}	4588	4832	5065	5288	5502	5706	5902	6268	6439
	5									
4.5	0.9^{5}_{5}	6602	6759	6908	7051	7187	7318	7442	7675	7784
4.6	0.9^{5}	7888	7987	8081	8172	8258	8340	8419	8566	8634
4.7	0.9^{5}	8699	8761	8821	8877	8931	8983	9032	9124	9166
4.8	0.9^{6}	2067	2554	2822	3173	3508	3827	4131	4696	4958
4.9	0.9^{6}	5208	5446	5673	5888	6094	6289	6475	6821	6981
5 0	6	7104	7070	7416	7540	7.770	7701	7004	0110	0210
5.0	0.9^{6}	7134	7278	7416	7548	7672	7791	7904	8113	8210
5.1	0.9^{6}	8302	8389	8472	8551	8626	8698	8765	8891	8949
5.2	0.9^{7}	004	056	105	152	197	240	280	354	388
5.3	0.9^{7}	421	452	481	509	539	560	584	628	648
5.4	0.9^{7}	667	685	702	718	734	748	762	787	799
5.5	0.9^{7}	810	821	831	840	849	857	865	880	886
5.6	0.9^{7}	893	899	905	910	915	920	924	933	936
5.7	0.9^{8}	40	44	903 47	50	53	55	58 58	63	65
5.8	0.9^{8}	67	69	71	72	74	75	77	79	81
5.9	0.9^{8}	82	83	84	85	86	87	87	89	90
6.0	0.9^{8}	90		- -	- 03		- 07			-
0.0	0.9	90	-	_	_	-	-	-	-	-

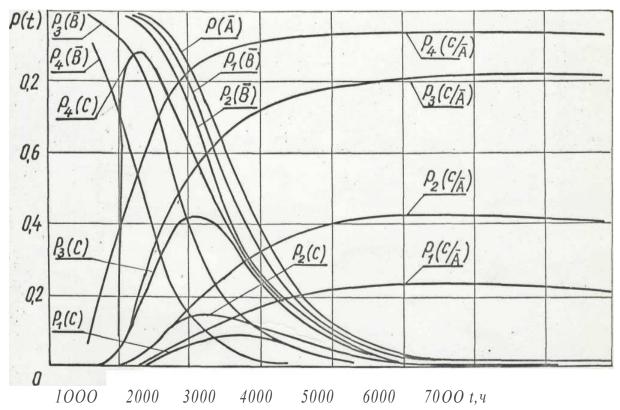


Рис. ПЗ.1.Вероятностные характеристики процесса технической эксплуатации изделий при разных режимах диагностирования и замены для объемного КПД $\dot{\eta}\gamma$: 1)при τ =100 ч, 2) τ =200 ч, 3) τ =600 ч, 4) τ =1200 ч. τ

ЛИТЕРАТУРА

- 1. Ицкович А.А., Файнбург И.А. Управление системами и процессами эксплуатации авиационной техники: учебное пособие.–М.: МГТУ ГА, 2014. 88 с.
- 2. Ицкович А.А., Файнбург И.А. Управление системами и процессами эксплуатации авиационной техники. Методы управления системами и процессами эксплуатации авиационной техники.: учеб. пособие.–М.: МГТУ ГА, 2016. 80 с.
- 3. Ицкович А.А., Файнбург И.А. Управление режимами ПЛГ изделий летательных аппаратов, заменяемых по состоянию. // Научный вестник МГТУГА № 121 (11) серия Навигация и УВД. М.: МГТУ ГА, 2007.- С. 51-56.

СОДЕРЖАНИЕ

1.	Общие положения	3
2.	Структура курсовой работы	4
3.	Анализ процесса изменения технического состояния изделий ЛА	5
3.1.	Характеристика объекта управления	5
3.2.	Характеристика объекта управления	5
3.3	Оценка и прогнозирование параметров изделий ЛА	7
4.	Управление режимами технической эксплуатации изделий,	
	заменяемых по состоянию	9
4.1.	Характеристика модели управления режимами диагностирования и замены изделий ЛА	10
4.2.	Определение связи периодичности проверок с упреждающим	
	допуском на параметр изделия ЛА	11
5.	Управление процессами технической эксплуатации изделий ЛА,	11
	заменяемых по состоянию	
5.1.	Выбор модели процесса технической эксплуатации изделий,	11
	заменяемых по состоянию	
5.2	Оценка параметров модели процесса технической эксплуатации	14
	изделий, заменяемых по состоянию	
5.3.	Оценка показателей эффективности процесса технической	15
	эксплуатации изделий ЛА, заменяемых по состоянию	
6.	Методические указания по выполнению курсовой работы	17
6.1.	Задание на выполнение курсовой работы	17
6.2.	Вопросы рекомендуемые к рассмотрению	18
6.3.	Получение исходных данных	18
6.4	Порядок решения задач	19
	Приложение 1. Варианты заданий	24
	Приложение 2. Титульный лист курсовой работы	27
	Приложение 3 Таблицы коэффициентов и значений функций	
	распределения случайных величин	28
	Литература	35