МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

А.А. Ицкович, И.А. Файнбург

ОСНОВЫ ТЕОРИИ НАДЕЖНОСТИ

Пособие по выполнению курсовой работы «Оценка показателей надежности авиационной техники»

для студентов направления 162300 4 курса дневного обучения

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра технической эксплуатации ЛАиАД

А.А.Ицкович, И.А.Файнбург

ОСНОВЫ ТЕОРИИ НАДЕЖНОСТИ

Пособие по выполнению курсовой работы «Оценка показателей надежности авиационной техники»

для студентов направления 162300 дневного обучения

Москва 2014

ББК 052-021.1

И 96

Рецензент канд. техн. наук, доц. Найда В.А.

Ицкович А.А., Файнбург И.А.

Основы теории надежности. Пособие по выполнению курсовой работы «Оценка показателей надежности авиационной техники»: М.: МГТУ ГА, 2014.-50 с.

Данное пособие издается в соответствии с учебным планом для студентов направления 162300 дневного обучения.

Рассмотрено и одобрено на заседаниях кафедры 21.10.2014 г. и методического совета 28.10.2014 г.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Выполнение курсовой работы (КР) является этапом изучения дисциплины «Основы теории надежности» и предусматривает решение задач по основным разделам дисциплины: модели надежности изделий, показатели надежности изделий, методы оценки показателей надежности по данным испытаний и эксплуатационных наблюдений; методы анализа надежности функциональных систем летательных аппаратов (ЛА).

Целью выполнения КР является овладение научными методами оценки и анализа надежности авиационной техники (АТ), систематизация и обобщение теоретических знаний, приобретенных при изучении материала по дисциплине «Основы теории надежности», получение навыков и умений применять теоретические знания к решению практических задач анализа надежности АТ. При выполнении КР автор несет ответственность за правильность расчетов и принятые решения.

Преподаватель на лекции дает рекомендации по выполнению КР студентом, уточняет объем и глубину проработки отдельных заданий, проводит консультации.

При оформлении КР необходимо соблюдать определенные требования. Изложение материалов КР должно быть конкретным и четким. Заимствованные цитаты, таблицы и другие материалы должны иметь ссылку на источник. В тексте необходимо соблюдать единую техническую терминологию, принятую в учебных пособиях и стандартах.

Оформление материала, изложенного в КР, производится в соответствии с ГОСТ 2.105-95. ЕСКД. Общие требования к текстовым документам, ГОСТ 2.106-96. ЕСКД. Текстовые документы.

Титульный лист КР должен быть выполнен по форме Приложения 6. За ним следует «Содержание», на котором выполняется основная надпись.

Текст пояснительной записки должен быть написан разборчиво на одной стороне листа формата A4 (297х210 мм). Числовые значения в формулах объясняются. Окончательный результат приводится с указанием размерности. Таблицы, помещенные в тексте должны иметь номера и названия. При приведении результатов расчетов в табличной (графической) форме даются примеры расчетов с подстановкой исходных данных в расчетные формулы. Графики, схемы, рисунки следует выполнять на листах миллиметровой бумаги формата A4. Рисунки должны иметь номера и подрисуночные подписи. На графиках указывать масштаб и размерность изображаемых величин. На все таблицы и рисунки в тексте должны быть ссылки.

В тексте необходимо выделить заголовки отдельных частей КР, их разделов и подразделов в соответствии с «Содержанием». Выводы должны приводиться по разделам (задачам) и по КР в целом. В конце пояснительной записки приводится литература, используемая при выполнении КР.

2. СТРУКТУРА КУРСОВОЙ РАБОТЫ

При выполнении КР необходимо решить следующие задачи:

- 1). Анализ данных эксплуатационных наблюдений за отказами изделий системы кондиционирования воздуха (СКВ) парка ЛА.
- 2). Статистический анализ показателей безотказности невосстанавливаемых изделий ЛА параметрическим методом.
- 3). Статистический анализ показателей безотказности невосстанавливаемых изделий ЛА непараметрическим методом.
- 4). Статистический анализ показателей безотказности восстанавливаемых изделий ЛА.
 - 5). Расчет показателей безотказности функциональной системы (ФС) ЛА. Пояснительная записка КР должна включать:
 - 1) Титульный лист;
- 2) Техническое задание (№ варианта задания, наименование ФС ЛА, принципиальная схема ФС ЛА, формулировка задач, исходные данные, ограничения и допущения);
- 3) Основную часть, включающую решение поставленных задач: краткое описание устройства и принципа работы ФС ЛА, применяемые термины и определения, последовательное изложение материалов по решению задач согласно техническому заданию, а именно: расчеты, построенные графики, пояснения к ним, выводы. При приведении результатов расчетов в табличной (графической) форме даются примеры расчетов с подстановкой исходных данных в расчетные формулы;
- 4) Выводы по результатам решения задач выполненной работы и в целом по КР;
 - 5) Список использованной литературы.

3. ТЕХНИЧЕСКОЕ ЗАДАНИЕ

В качестве объектов в задачах анализа безотказности изделий функциональной системы ЛА выбираются по № варианта задания типовые изделия систем кондиционирования воздуха (СКВ) самолетов Ил-62, Ту-154, Як-40: заслонки, воздухо-воздушные радиаторы, турбохолодильники, обратные клапаны, регуляторы избыточного давления, фильтры, регуляторы подачи воздуха.

Исходные данные для выполнения КР приведены в приложениях 1, 2. Выбор варианта задания производится согласно шифру зачетной книжки по сумме двух последних цифр (табл. П.1.1 приложения 1). Например, для шифра M73576, вариант 13 (7+6).

Исходными данными по вариантам заданий (приложение 1):

для решения задач 1-4 являются результаты эксплуатационных наблюдений за отказами изделий СКВ: наработки до отказа (табл. П.2.1-2.6 приложения 2) и наработки до цензурирования (табл. П.2.7 приложения 2.1);

для решения задачи 5 используются принципиальные схемы СКВ (приложение 2.2).

Задание состоит из следующих задач.

- 1). Анализ данных эксплуатационных наблюдений за отказами изделий СКВ парка ЛА.
- 2). Статистический анализ показателей безотказности невосстанавливаемых изделий ЛА параметрическим методом.
- 3). Статистический анализ показателей безотказности невосстанавливаемых изделий ЛА непараметрическим методом.
- 4). Статистический анализ показателей безотказности восстанавливаемых изделий ЛА.
 - 5). Расчет показателей безотказности функциональной системы ЛА.

При решении каждой задачи должны быть выполнены следующие операции.

<u>Задача № 1.</u> Анализ данных эксплуатационных наблюдений за отказами изделий СКВ парка ЛА.

- 1.1). Определение вида случайных величин наработки изделий (реализаций): наработки до отказа («полные реализации») и наработки до цензурирования («неполные реализации»).
- 1.2). Определение понятий: однократно цензурированные и многократно цензурированные выборки.
- 1.3). Построение ранжированных временных диаграмм (аналогов вариационных рядов) наработок до отказа t_i , $i=\overline{1,n}$ и наработок до цензурирования τ_i , $j=\overline{1,m}$.
 - 1.4). Выбор размаха и числа интервалов временных диаграмм.

<u>Задача № 2.</u> Статистический анализ показателей безотказности невосстанавливаемых изделий ЛА параметрическим методом.

- 2.1). Классификация и выбор методов оценки показателей безотказности изделий.
- 2.2). Оценка показателей безотказности параметрическим методом для однократно цензурированной выборки.
- а) оценка и построение гистограмм статистической плотности распределения $f^*(t)$ и статистической интенсивности отказов $\lambda^*(t)$;
- б) формирование гипотезы о законе распределения для однократно цензурированной выборки;
- в) оценка параметров распределений для однократно цензурированной выборки: экспоненциального λ^* (экспоненциального); a^* и b^* (Вейбулла); m_t^* и σ_t^* (нормального);
- г) проверка гипотезы о законе распределения для однократно цензурированной выборки по критерию Пирсона χ^2 ;
- д) оценка показателей безотказности для принятого закона распределения наработки до отказа.

- <u>Задача № 3.</u> Статистический анализ показателей безотказности невосстанавливаемых изделий ЛА непараметрическим методом.
 - 3.1). Оценка показателей безотказности по полным данным.
- а) определить число невосстанавливаемых изделий N и число отказавших изделий n. Найти доверительные границы для вероятности безотказной работы $P_{_{\! H}}$ и $P_{_{\! G}}$ при двухсторонней доверительной вероятности α =0,95;
- б) обосновать необходимость определения доверительного интервала (нижнюю $P_{_{\!\scriptscriptstyle H}}$ и верхнюю $P_{_{\!\scriptscriptstyle B}}$ границы) для доверительной вероятности α .
- 3.2). Оценка показателей безотказности по многократно цензурованным выборкам: P(t), T_{cp} , T_{γ} .
- а) определить точечные оценки вероятности безотказной работы за период наработок до профилактики $t_1 < t_i, t_{i+1} \le t_n$ в пределах выборки $t_i, i = \overline{1,n}$;
 - б) вычислить гамма-процентную наработку Т γ при γ =85%.
- <u>Задача № 4.</u> Статистический анализ показателей безотказности восстанавливаемых изделий ЛА.
- 4.1). Построение временной диаграммы однотипных восстанавливаемых изделий: $N=N_c k$, где N_c число самолетов, k число изделий на самолете, выбор числа интервалов и разбивка временной диаграммы на интервалы.
- 4.2). Статистическая оценка параметра потока отказов $\omega(t)$, построение гистограммы, выравнивание методом наименьших квадратов и определение вероятности безотказной работы восстанавливаемых изделий за интервал наработки до i-й формы периодического технического обслуживания ЛА $t_2 = 300 \, u$, $t_3 = 900 \, u$.

Задача № 5. Расчет показателей безотказности ФС ЛА.

- 5.1). Анализ функциональной системы.
- а) по описанию и принципиальной схеме ФС изучение принципа построения системы, рабочих функций изделий и взаимосвязи между ними;
- б) определение условий обеспечения работоспособности системы с учетом состояния ее элементов;
 - в) определение вероятностей безотказной работы изделий.
 - 5.2). Расчет показателей надежности ФС методом структурных схем.
- а) построение структурной схемы ΦC для расчета показателей надежности на основе условий безотказной работы системы;
 - б) составление выражения для расчета вероятности безотказной работы ФС;
- в) расчет вероятности безотказной работы ФС по значениям вероятностей безотказной работы изделий.
 - 5.3). Расчет показателей надежности ФС методом логических схем.
 - а) составление алгебраического уравнения событий безотказной работы ФС;
- б) построение логической схемы ФС для расчета показателей надежности на основе условий безотказной работы системы;
 - в) составление выражения для расчета вероятности безотказной работы ФС;
- г) расчет вероятности безотказной работы ФС по известным значениям вероятностей безотказной работы изделий;

д) анализ надежности ΦC на соответствие требованиям по уровню надежности при эксплуатации.

4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РЕШЕНИЮ ЗАДАЧ

- 4.1. Анализ данных эксплуатационных наблюдений за отказами изделий СКВ самолетов
- 1). Исходные данные (табл. П.2.1 П.2.7 приложения 2.1) анализируются в соответствии с заданиями своего варианта (приложение 1). При этом статистические данные содержат два типа случайных величин (реализаций): наработки изделий, составляющих выборки:
- а) реализации, представляющие собой случайные величины наработок до отказа (между отказами) t_i $i=\overline{1,n}$ (табл. $\Pi.2.1$ $\Pi.2.6$ приложения 2.1). Назовем их «полными реализациями»;
- б) реализации, представляющие собой величины наработок изделий до цензурирования au_j $j=\overline{1,m}$ (табл. П.2.7 приложения 2.1). Это соответствует случаю, когда испытания (наблюдения) прекращены или объект снят с испытаний до наступления отказа. Назовем их «неполными реализациями».
- 2). В первом случае используется полная выборка. Во втором случае имеет место цензурирование событие, приводящее к прекращению эксплуатационных наблюдений изделий до наступления отказа (предельного состояния).

При формировании выборки изделий во втором случае образуется цензурированная выборка, элементами которой являются значения наработок до отказа t_i $i=\overline{1,n}$ (полные реализации) и наработок до цензурирования τ_j , $j=\overline{1,m}$ (неполные реализации). Различаются однократно и многократно цензурированные выборки. В однократно цензурированной выборке значения всех наработок до цензурирования равны между собой и меньше наибольшей наработки до отказа Многократно цензурированная выборка характеризуется значениями наработок до цензурирования, не равными между собой.

- 3). В качестве аналога вариационного ряда рекомендуется использовать ранжированную временную диаграмму, в которой реализации расположены в следующем порядке: сначала полные реализации в порядке возрастания, затем неполные реализации в порядке убывания. Построение ранжированных временных диаграмм для однократно цензурированной выборки (рис. П.3.1, приложения 3) производится по данным табл. П.2.1 П.2.6 приложения 2.1, а для многократно цензурированной (рис. П.3.4 приложения 3) по данным табл. П.2.1 П.2.7 приложения 2.1.
- 4). На построенных ранжированных временных диаграммах (рис. П.3.1, П.3.4) производится группировка результатов наблюдений путем разбиения всего периода наблюдений (размаха), содержавшего п полных реализаций $t_1, t_2, ..., t_n$ на L равных или неравных интервалов Δt_k , но только не пустых. Для этого проводятся два крайних сечения ранжированной диаграммы, первое через точку,

соответствующую окончанию наименьшей из полных реализаций (или левее этой точки), вторую — через точку, соответствующую окончанию наибольшей из реализаций (или правее этой точки).

Расстояние между крайними сечениями определяет размах v, полученное значение которого разбивается на L интервалов и проводятся сечения диаграммы, соответствующие границам интервалов.

- 4.2. Статистический анализ безотказности невосстанавливаемых изделий СКВ самолета параметрическим методом.
 - 1) Анализ методов оценки показателей надежности изделий.

Параметрический метод оценки показателей надежности предусматривает при известном законе распределения наработки до отказа и других случайных величин выполнение следующих операций: оценку параметров закона распределения, входящих в расчетную формулу определенного показателя надежности, и оценку показателей надежности по вычисленным оценкам параметров закона распределения. При неизвестном законе распределения определяется сначала закон распределения.

Непараметрический метод предусматривает при неизвестном законе распределения наработки до отказа выполнение непосредственной оценки показателей надежности по данным эксплуатационных наблюдений.

Оценка показателей надежности изделий производится по результатам ограниченного количества наблюдений (выборки), представляющих некоторую часть генеральной совокупности. Под генеральной совокупностью подразумеваются результаты наблюдений по всем изделиям всего парка самолетов данного типа.

Показатель надежности θ^* , определенный по результатам наблюдений за выборкой, является статистической оценкой показателя надежности θ . Для оценки показателей надежности применяют точечные и интервальные оценки.

Для статистического оценивания необходимо, чтобы выборка была представительна, т.е. достаточно полно отражала свойства генеральной совокупности типа. Критерием качества точечной оценки служат: несмещенность — $M[\theta^*]=0$; эффективность — $M[(\theta^*-\theta)^2]_{min}$; состоятельность — $\lim_{n \to \infty} P(|\theta^*-\theta| < E)=1$, где $M[\theta^*]$ — математическое ожидание θ^* , n — объем выборки.

2) Задача оценки показателей безотказности параметрическим методом заключается в следующем. По данным наблюдений известны наработки $t_1, t_2, ..., t_n$, до отказа n изделий и наработки $\tau_n, \tau_{n+1}, ..., \tau_N$ до цензурирования (N - n) изделий за время T, определяющего период эксплуатационных наблюдений. Данная совокупность статистических данных характеризуется переменностью парка изделий в различных интервалах наработки и усеченностью выборки.

Рекомендуется следующий порядок решения задачи:

- 1) построение ранжированной временной диаграммы для однократно цензурированной выборки (рис. П.3.1, приложения 3);
- 2) построение гистограмм плотности вероятности наработки до отказа $f^*(t)$, и интенсивности отказов $\lambda^*(t)$ (рис. П.3.2, приложения 3);

- 3) формирование гипотезы о законе распределения наработки до отказа с учетом характера теоретических зависимостей f(t) и $\lambda(t)$ (рис. П.3.3, приложения 3);
 - 4) оценка параметров распределения наработки до отказа;
- 5) проверка гипотезы о законе распределения наработки до отказа по критерию Пирсона χ^2 ;
 - 6) оценка показателей надежности.

Оценка статистической плотности распределения $f^*(t)$ и интенсивности отказов $\lambda^*(t)$ производится для каждого интервала Δt_i по формулам:

$$f_i^*(t) = \frac{\Delta n_i}{N_i \cdot \Delta t_i} \tag{4.1}$$

$$\lambda_i^*(t) = \frac{\Delta n_i}{N_i - n_i(t) \cdot \Delta t_i}, \qquad (4.2)$$

где: Δn_i —число отказавших изделий в интервале Δt_i ;

 N_{i} — число изделий, наблюдаемых в интервале Δt_{i} ;

 $n_{i}(t)$ — число отказавших изделий до начала i-ro интервала.

Число N_i для i-ro интервала определяется как общее число всех реализаций

диаграммы за исключением тех неполных реализаций $\sum_{i=1}^{i-1} m_i$, которые по величине меньше левой границы этого интервала

$$N_i = N - \sum_{i=1}^{i-1} m_i$$

Результаты расчетов по (4.1, 4.2) представляются в виде таблицы и гистограмм $f^*(t)$ и $\lambda^*(t)$ (рис. $\Pi.3.2$ приложения 3).

Формирование гипотезы о законе распределения наработки до отказа должно основываться на анализе физики отказов и сравнительном анализе гистограмм $f^*(t)$ и $\lambda^*(t)$ c теоретическими кривыми f(t) и $\lambda(t)$ по их виду для различных законов распределения (рис.П.3.3, приложения 3).

Оценка параметров распределения для однократно цензурированной выборки выполняется методом максимального правдоподобия.

Метод максимального правдоподобия состоит в следующем: строится функция правдоподобия $L(\tau,\theta)$, зависящая от результатов наблюдений выборки из N изделий $t_1,...,t_n$, $(N-n)T^*$ и параметра θ неизвестного закона распределения наработки до отказа $F(t,\theta)$. Задача метода — найти оценку θ^* . Оценка будет достаточной, если предположить, что при этом ее значении вероятность наблюдаемого результата максимальна $P\{t,\theta\} \to \max$.

Для нахождения максимума строится функция правдоподобия, учитывающая все наблюдения $L(t,\theta)=\Pi$ $P\{t,\theta\}$, и определяется тах этой функции из условия $\delta L(t,\theta)/\delta\theta=0$ и соответствующее этому максимуму значение параметра θ^* .

Для случая усеченной выборки при экспоненциальном законе распределения наработки до отказа функция плотности распределения запишется:

$$f(t) = \lambda^* e^{-\lambda \cdot t_i} = \frac{1}{T_{cp}} e^{-t_i/T_{cp}},$$

где: T_{cp} — средняя наработка до отказа, $\lambda^* = \frac{1}{T_{cp}}$.

Для периода наблюдения Т функция правдоподобия будет иметь вид:

$$L^{T} = \sum_{i=1}^{n} \ln(1/T_{cp} \cdot e^{-t_{i}/T_{cp}} p) - (N-n) \cdot T/T_{cp}.$$

Отсюда находим среднюю наработку до отказа T_{cp}

$$\frac{\partial L(T)}{\partial L(T_{cp})} = \frac{n}{T_{cp}} + \frac{1}{T_{cp}^2} \sum_{i=1}^n t_i + \frac{N-n}{T^2} \cdot T_{cp.},$$

тогда

$$T_{cp} = \frac{1}{n} \sum_{i=1}^{n} t_i^{(c)} \cdot \Delta n_i + \frac{N-n}{n} \cdot T,$$
 (4.3)

где: $t_i^{(c)}$ -средняя наработка до отказа і-го интервала;

$$t_{i}^{(c)}=rac{t_{i}^{1}+t_{i}^{11}}{2},$$
 $\mathbf{t_{i}}^{1}$ и $\mathbf{t_{i}}^{11}$ - левая и правая границы i-ro интервала;

 Δn_i - число отказавших элементов в i-м интервале;

N -число наблюдаемых изделий;

n - число отказавших элементов за период наблюдения;

T - период наблюдения.

Функции и параметры распределений (экспоненциального, нормального и Вейбулла) приведены в табл. 4. 1.

Оценка параметров распределения по формулам приведенным в табл. П.3.1 приложения 3:

- 1) оценка параметра экспоненциального распределения λ;
- 2) оценка параметров нормального распределения $\mathbf{m}_{_{\mathrm{t}}}$ и $\sigma_{_{\mathrm{t}}}$;
- 3) оценка параметров распределения Вейбулла $\it a$ и b
- расчет коэффициента вариации $v = \frac{\sigma_t}{m_t}$,
- определение параметра распределения b и коэффициента $K_{\rm b}$ по табл. П.5.3 приложения 5,
 - расчет параметра распределения $a = \frac{\mathbf{m}_{t}^{*}}{\mathbf{K}_{b}}$;

		Таблица 4. 1
Функции	и параметры распределения наработки	и до отказа изделий
пения	Функция распределения $F(t)$	Параметры распределения

Закон распределения	Функция распределения $F(t)$	Параметры распределения
Экспоненциальный	$1-e^{-\lambda t}$	$\lambda = \frac{1}{T_{cp}}$
Нормальный	$\Phi(rac{t-m_{_t}}{\sigma_{_t}})$ по табл. 5.1 приложения 5	$m_{t} = T_{cp}$ $\sigma_{t} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} t_{i} - \overline{T}_{cp}^{2}}$
Вейбулла	$1 - e^{-(\frac{t}{a})^b}$	$v = \frac{\sigma_t}{m_t}, \ b = f(v), \ a = \frac{m_t}{K_b},$ где b и K_b по табл. 5.3 приложения 5

Проверка гипотезы о законе распределения для однократно цензурированной выборки может выполняться по критерию Пирсона χ^2

$$\chi^{2} = \sum_{i=1}^{L} \frac{\Delta n_{i} - NP_{i}^{2}}{NP_{i}},$$
(4.4)

где: L — число интервалов группирования;

 Δn_i — число наблюдаемых статистических данных, попавших в i-й интервал; NP_i — среднее число данных, попавших в i-й интервал при условии, что гипотеза о законе распределения верна, $P_i = F(t_i) - F(t_{i-1})$.

Большое значение критерия χ^2 указывает на расхождение между гипотезой и статистическими данными. Поэтому критической областью является интервал

 $\{\chi^2\}_{1\text{-0.01}\alpha,\infty}\}$, где α — принятый уровень значимости в %. Уровень значимости — это выраженная в процентах максимально допустимая вероятность неправильного отвержения гипотезы (ошибка первого рода). Наиболее употребительные уровни значимости — 1; 5; 10%. $\chi^2_{1\text{-0.01}}_{\alpha}$ — квантиль χ^2 распределения с L-1-S степенями свободы, отвечающий вероятности 1-0.01 α , где S — число наложенных связей, зависимых от числа параметров предполагаемого закона распределения наработки до отказа. Значения квантилей приведены в табл. П.5.4 приложения 5. Входами в таблицу являются число степеней свободы L-1-S и вероятность 1-0,01 α . Если расчетное значение критерия χ^2 расч. попадет в критическую область, т.е. $\chi^2_{\text{расч}} \geq \chi^2_{1\text{-0.01}}_{\alpha}$, то гипотеза отвергается, в противном случае — принимается.

Знание закона распределения и его параметров позволяет определить показатели надежности изделий.

- 4.3. Учитывая особенности данных эксплуатационных наблюдений, целесообразно рассмотреть оценку показателей надежности непараметрическим методом отдельно по полным данным и цензурированным выборкам.
- 1) Задача оценки показателей надежности по полным данным формулируется следующим образом. Если под наблюдением находится N

однотипных изделий с неизвестной, но одинаковой вероятностью отказа q(t), то за фиксированную наработку Т число отказавших изделий г является случайной величиной, имеющей биноминальное распределение

$$P\{r=n\} = C_N^{n} q^n (1-q)^{N-n}.$$
 (4.5)

Требуется найти оценку вероятности безотказной работы P=l-q. Оценка вероятности отказа q может быть получена методом максимального правдоподобия. Функция правдоподобия, полученная из (4.5), зависит от значений N и n

$$L(q)=C_N^n q^n (1-q)^{N-n}$$
.

В интервале l>q>0 при любом виде функции L(q) имеет максимум. Функцию правдоподобия сначала логарифмируют

$$\lg L(q) = \lg C_N^{n} + n \lg(q) + (N-n) \lg(1-q),$$

затем дифференцируют

$$\frac{\partial \ln L}{\partial q} = \frac{n}{q} = \frac{N - n}{1 - q}.$$

Откуда находится точечная оценка для вероятности отказа при наработке Т

$$q^* = n/N \tag{4.6}$$

и точечная оценка вероятности безотказной работы при наработке Т

$$P*=1-n/N.$$
 (4.7)

Любая точечная оценка, если даже она удовлетворяет всем критериям качества, обладает существенным недостатком, представляя собой лишь частное значение случайной величины. Поэтому, кроме точечной оценки, желательно знать "надежные" границы, так называемые доверительный интервал и доверительную вероятность.

Задача заключается в том, чтобы по выборочным характеристикам случайной величины q^* определить нижнюю $q_{\rm H}$ и верхнюю $q_{\rm B}$ доверительные границы генеральной характеристики q. Эти границы и определяют интервал, который с некоторой доверительной вероятностью накрывает q, рис. Π . 2.6 приложения 2

$$\alpha^* = P\{q_H \le q \le q_B\}. \tag{4.8}$$

Величина α^* называется двухсторонней доверительнной вероятностью. Односторонние доверительные вероятности α_1 и α_2 входят в условия

$$\alpha_1 = P\{ q \ge q_H \},$$
 $\alpha_2 = P\{ q \le q_B \}.$
(4.9)
(4.10)

Тогда из (4.8 - 4.10.) получим соотношение

$$\alpha^* = \alpha_1 + \alpha_2 - 1.$$
 (4.11)

В частном случае, когда α_1 = α_2 = α , уравнение (4.11) записывается в таком виде

$$\alpha = 2 \alpha - 1$$
.

Величина (ширина) доверительного интервала характеризует точность выборочной оценки генеральной характеристики, а доверительная вероятность — достоверность оценки.

Выражение для оценки имеет вид $q^*=n/N$, где N — фиксированная неслучайная величина, а n — случайная величина. Поэтому можно утверждать,

что независимо от вида функции распределения наработки на отказ оценка для вероятности отказа q* имеет также биноминальное распределение.

Учитывая это, границы доверительного интервала могут быть определены из уравнений:

$$1 - \alpha_1 = \sum_{i=n}^{N} C_i^{N} q_H^{i} (1 - q_H)^{N-1},$$

$$1 - \alpha_2 = \sum_{i=0}^{n} C_i^{\ N} q_B^{\ i} (1 - q_B)^{N-1}.$$

Введем коэффициенты R_o , R_1 , R_2 , приведенные в табл. П.5.5, П.5.6, П.5.7 приложения 5, по которым доверительные границы для вероятности q вычисляются по следующим формулам:

при
$$n = 0$$
, $q_{\text{\tiny H}} \! = \! 0$, $q_{\text{\tiny B}} \! = R_{\text{\tiny O}} / N$, (4.12)

при
$$n \neq 0$$
, $q_H = n/N R_1$, $q_B = n/N R_2$. (4.13)

Коэффициенты R_0 , R_1 , R_2 определяются по формулам:

$$R_0 = N \left[\frac{-\sqrt[N]{1-\alpha}}{\frac{1}{2} \chi_{1-\alpha}} \right],$$

$$R_1 = \frac{n(2N-n+\frac{1}{2} \chi_{1-\alpha})}{N\chi_{1-\alpha}},$$

$$R_2 = \frac{n(2N - n + \frac{1}{2}\chi_\alpha)}{N\chi_\alpha},$$

где: $\chi_{1-\alpha}$ — квантиль распределения χ^2 с k=2n степенями свободы; χ_{α} — квантиль распределения χ^2 с k=2(n+1) степенями свободы.

Оценка доверительных границ вероятности безотказной работы определяется следующим образом

$$P_{H} = 1 - q_{B}$$
, $P_{B} = 1 - q_{H.}$

Примеры оценок показателей безотказности по полным данным непараметрическим методом приведены в приложении 4 (примеры П.4.1, П.4.2).

Оценки, определяемые выражениями (4.6), (4.7) являются эффективными и несмещенными.

2) Задача оценки показателей надежности непараметрическим методом по многократно цензурированным выборкам включает точечную оценку показателей при количестве отказов n>5. При n<5 следует использовать нижние доверительные границы.

Метод позволяет определить точечные оценки вероятности безотказной работы за заданную наработку, среднюю и гамма-процентную наработку до отказа. Порядок определения перечисленных показателей следующий.

По выстроенному в порядке возрастания наработок до отказа t_i $i=\overline{1,n}$ и в порядке убывания наработок до цензурирования τ_j $j=\overline{1,m}$ вариационному ряду, представленному на рис. П.3.4 приложения 3 в виде ранжированной временной диаграммы, определяется количество интервалов наблюдения L:(O, τ_1), (τ_1 , τ_2),..., (τ_{1-1} , τ_1),..., (τ_{L-1} , τ_{L}).

Для каждого интервала наблюдений t= 1,L подсчитывают число наработок до отказа $\sum_{i=1}^{l} i = n_L$ и число наработок до цензурирования $\sum_{j=0}^{l-1} j = m_{L-1}$, лежащих между L-1 и L интервалами наблюдений.

Совокупность этих значений должна удовлетворять условиям $\sum_{l=1}^L \sum_{i=1}^l i = \sum_{l=1}^L n_l = n, \qquad \sum_{l=2}^L \sum_{i=0}^{i-1} j = \sum_{i=2}^L n_{l-1} = m.$

Общее число наблюдаемых изделий N=n+m. Если вариационный ряд начинается с наработки до отказа, то $m_0=0$, а если он заканчивается наработкой до отказа, то $m_1=0$.

Вычисляют величину эквивалентного объема цензурированной выборки в каждом интервале наблюдений (l=1,...,L-1)

$$N_{3l+1} = N_{3l} \left[1 - \frac{m_l}{N - m_l - n_l} \right],$$

где: $N_{9l}=N-m_0$.

Затем вычисляют эмпирическую функцию распределения, соответствующую каждой наработке до отказа в исходном вариационном ряду:

если і-я наработка до отказа принадлежит первому интервалу наблюдений, то

$$F_1^* = \frac{1 - m_0}{N_{21}} \tag{4.14}$$

если і-я наработка до отказа принадлежит 1-му (1=2,1) интервалу наблюдений, то

$$F_{l}^{*}(t_{i}) = \sum_{i=1}^{l-1} \frac{i}{N_{\Im(l-1)}} + \frac{I - \sum_{j=0}^{l-1} j - \sum_{i=1}^{l-1} i}{N_{\Im l}} \cdot . \tag{4.15}$$

Расчет $F^*(t_i)$ удобно вести в табличной форме с шагом i=1 до n.

Точечная оценка вероятности безотказной работы за заданную наработку t_3 при условии, что она меньше максимального наблюдаемого значения наработки до отказа Т в вариационном ряду ($t_3 < \tau_{(N-mL)}$), вычисляется по формуле

$$P^*(t_3) = 1-[d_i F^*(t_i) + (1-d_i) F^*(t_{i-1})],$$

где

$$d_i = (t_3 - \tau_{i-1})/(\tau_{i} - \tau_{i-1}),$$

 τ_{i} , τ_{i-1} — наработки до отказа, между которыми лежит наработка t_{3} . Точечную оценку средней наработки до отказа вычисляют по формуле:

$$T^* = \sum_{i=1}^{L} \frac{\sum_{i=\nu_l+1}^{g_l} \tau_l}{N_{\ni l}} + 1 - F^*(t_{N-m_L}) \cdot \underline{\underline{}}$$

$$u_l = m_0 + n_{l-1} + m_{l-1} = m_0 + \sum_{i=1}^{l-1} i + \sum_{j=0}^{l-1} j,$$

где
$$\mathcal{G}_l = \nu_l + n_l = m_0 + n_{l-1} + m_{l-1} + n_l.$$

Точечную оценку гамма-процентной наработки до отказа T^*_{γ} вычисляют по формуле:

...
$$T^*_{\gamma} = (1-d_2) \tau_{i-1} + d_2 \tau_{I}$$

где: τ_{i-1} , τ_{I} — наработки до отказа, для которых выполняется условие:

$$F^*(t_{i-1}) < 1 - \gamma/100 < F^*(t_{i}),$$

а d_2 вычисляют по формуле:

$$d_2 = \frac{\frac{100 - \gamma}{100} - F^*(t_{i-1})}{F^{*_i}(t_i) - F^*(t_{i-1})}.$$

Если выполнено одно из условий

...... 1-
$$\gamma/100 = F^*(t_{i-1})$$
 или 1- $\gamma/100 = F^*(t_{i})$,

то $T^*_{\gamma} = \tau_{i-1}$ или соответственно $T^*_{\gamma} = \tau_{i}$.

Приближенные значения доверительных границ вероятности безотказной работы для доверительной вероятности α вычисляют по формулам:

$$P_{H}(t) = P^{*}(t_{3}) - U_{\beta}\sigma_{i},$$

 $P_{B}(t) = P^{*}(t_{3}) + U_{\beta}\sigma_{i},$

$$\sigma_i = \left[-F^*(t_{i-1}) \right] \sqrt[]{\frac{I - \mathcal{G}}{(N - \nu_l)(N - \mathcal{G}_l)}},$$

где U_{β} – квантиль нормального распределения, соответствующий вероятности β,

$$\beta = \begin{cases} \alpha & -\textit{при вычислении односторонней доверительной границы} \\ \frac{1-\alpha}{2} -\textit{при вычислении двух сторонней доверительной границы} \end{cases}$$

Пример определения оценок показателей надежности невосстанавливаемых изделий непараметрическим методом по цензурированным данным приведен в приложении 4 (пример П.4.3).

4.4. Статистический анализ восстанавливаемых изделий проводится на основе оценки показателей безотказности и инженерного анализа физики отказов. На основе данных эксплуатационных наблюдений (своего варианта) строится временная диаграмма для всех самолетов (системы СКВ) рассматриваемого парка (рис. П.4.2 приложения 4). Причем очень важно, чтобы для каждого изделия I = 1,.... N была определена наработка до рассматриваемого момента Т, независимо от того, были или нет отказы этого изделия. На временной диаграмме отмечаются моменты отказов в масштабе наработки по табл. П.2.1 – П.2.6 приложения 2.1 и моменты восстановлений, которые совпадают с моментами отказов, так как в данной задаче мгновенное восстановление $t_{\rm B}$ =0, наработки a также цензурирования по табл. П.2.7 приложения 2.1. В зависимости от количества отказов проводится выбор величины и числа интервалов наработки (рекомендуется не делать интервалы без отказов). Затем временная диаграмма разбивается на интервалы (рис. П.4.2 приложения 4). По интервалам производится расчет статистической оценки параметра потока отказов $\omega^*(t)$ по формуле:

$$\omega_{i}^{*}(t) = \Delta n_{i}/(N_{i} \Delta t_{i}),$$

где: Δn_i — число отказавших изделий в i-м интервале;

 N_{i} -число наблюдаемых изделий в i-м интервале.

С учетом переменного парка N_i определяется как общее число всех реализаций на диаграмме (рис. П.4.2 приложения 4) за исключением неполных реализаций меньших по величине левой границы i-ro интервала, т.е. границы i. Результаты расчетов $\omega_i^*(t)$ сводятся в табл. 4.2 и представляются в виде гистограммы.

По гистограмме $\omega^*i(t)$ определяется величина $\omega(t)$ путем выравнивания методом наименьших квадратов. Обычно ограничиваются линейной зависимостью параметра потока отказов по наработке

$$\omega(t) = \alpha + \beta t,$$

$$\alpha_H = \sum_{i=1}^L \gamma_i \omega_i^* - \beta_H \sum_{i=1}^L \gamma_i t_{icc},$$

$$\beta_{H} = \frac{\sum_{i=1}^{L} \gamma_{i} t_{icc} \omega_{i}^{*} - (\sum_{i=1}^{L} \gamma_{i} \omega_{i}^{*}) (\sum_{i=1}^{L} \gamma_{i} t_{icc})}{\sum_{i=1}^{L} \gamma_{i} (t_{icc})^{2} - (\sum_{i=1_{i}}^{L} \gamma_{i} t_{icc})^{2}},$$

L-количество интервалов гистограммы,

 $t_{icp} = (t^1_i + t^{11}_i)/2$ - середина i-го интервала, γ_i -"вес" i-го наблюдения $\sum_{i=1}^{L} \gamma_i = 1,0$. При всех равноточных наблюдениях принимается $\gamma_i = 1/L$.

По величине параметра потока отказов определяется вероятность безотказной работы за интервал наработки (t_o, t) , который для восстанавливаемых изделий обычно равен периодичности технического обслуживания изделий — t_{np1} —300ч и t_{np2} =900 ч

$$P(t_{np}) = e^{-(\alpha + \frac{\beta}{2}t_{np})t_{np}},$$

проводится расчет и строится график вероятности безотказной работы P(t np) для восстанавливаемых изделий (рис. П.4.3 приложения 4).

Параметр потока отказов $\omega_{i}^{*}(t)$

Таблица 4.2

Основные		Интервалы					
параметры	1	2	3	• • •	i		L
	t_0 - t_1	t_1 - t_2	t ₂ - t ₃	• • •	t_{i-1} - t_i	• • •	t_{L-1} - t_L
$\Delta \mathbf{t_i} = \mathbf{t_{i+1}} - \mathbf{t_i}$	Δt_1	Δt_2	Δt_3		Δt_i		$\Delta t_{ m L}$
N_i	N_1	N_2	N_3		N_{i}		$N_{\rm L}$
Δn_i	Δn_1	Δn_2	Δn_3		Δn_i		$\Delta n_{\rm L}$
$\omega_{i}^{*}(t)$	$\omega^*_{1}(t)$	$\omega^*_{2}(t)$	$\omega^*_{3}(t)$		$\omega^*_{i}(t)$		$\omega^*_{L}(t)$

4.5. Расчет показателей надежности функциональной системы ЛА

Расчет показателей надежности состоит в определении вероятности безотказной работы СКВ самолетов Ил-62, Ту-154, Як-40 P(t = 2v) и P(t = 300v).

Расчет выполнить двумя методами: методом структурных схем и методом логических схем. Полученные независимые результаты расчетов должны совпадать.

Описание построения структурной и логической схемы, а также методика расчета по [2, 3].

Исходными данными для расчета служат (приложение 2.2):

- 1) описание работы принципиальной схемы СКВ самолетов Ил-62, Ту-154, Як-40;
- 2) перечень изделий, входящих в СКВ самолетов Ил-62, Ту-154, Як-40; вероятности безотказной работы каждого изделия СКВ самолетов Ил-62, Ту-154, Як-40 для t = 2ч и для t = 300ч в соответствии с техническим заданием на КР.

Результаты расчетов представить по форме табл.4.3.

Таблица 4.3 Результаты расчетов показателей надежности системы кондиционирования воздуха самолета (тип самолета)

Мото и по омото	Вероятность безотказной работы		
Метод расчета	t = 2ч	t = 300ч	
Структурных схем			
Логических схем			

Анализ надежности СКВ самолетов Ил-62, Ту-154, Як-40 на соответствие требованиям надежности при эксплуатации проводится сравнением расчетных значений показателей надежности системы в целом P(t=2v) и P(t=300v) и изделий $P_{\rm B}(t_{\rm 3ag})$ и $T_{\rm p}$ ср с нормативными значениями этих показателей. Анализ

следует проводить по алгоритму (рис. П.4.4) для полученных расчетных значений показателей надежности. В выводах необходимо отметить, соответствует или нет рассматриваемая в КР СКВ и ее изделие требованиям надежности при эксплуатации, и в случае не соответствия предложить способы повышения надежности [2, 3]:

для обеспечения требований по безопасности полетов необходимы конструктивные доработки изделий с целью повышения их надежности или изменение принципиальной схемы ФС (использование резервных элементов);

для обеспечения требований по восстановлению изделий необходимо сокращение среднего времени восстановления за счет: повышения ремонтопригодности изделия; разработки приспособлений для выполнения восстановительных работ; повышения квалификации инженерно-технического персонала;

для обеспечения требований по долговечности изделий следует предложить способы повышения ресурса за счет конструктивных доработок изделия.

приложение 1

Таблица П.1.1

Варианты заданий

№ вариа нта	Тип самолета	Длительность беспосадочного полета, ч	ФС	Наименование изделия	Тип изделия
1	2	3	4	5	6
1	Ил-62	4,0	СКВ	Турбохолодильник	2280T
2	Ил-62	4,0	СКВ	Заслонка	2574T
3	Ил-62	4,0	СКВ	Обратный клапан	2269T
4	Ил-62	4,0	СКВ	Воздухо-воздушный радиатор	2217T
5	Ил-62	4,0	СКВ	Регулятор избыточного давления	2940T
6	Ty-154	2,5	СКВ	Обратный клапан	4672
7	Ty-154	2,5	СКВ	Обратный клапан	5102
8	Ty-154	2,5	СКВ	Заслонка регулирующая	5670
9	Ty-154	2,5	СКВ	Воздухо-воздушный радиатор	4487T
10	Ty-154	2,5	СКВ	Фильтр-отстойник	5701T
11	Ty-154	2,5	СКВ	Регулятор избыточного давления	4833
12	Ty-154	2,5	СКВ	Заслонка	3161
13	Як-40	1,3	СКВ	Обратный клапан	1327
14	Як-40	1,3	СКВ	Заслонка	4064AT
15	Як-40	1,3	СКВ	Регулятор избыточного давления	4608T
16	Як-40	1,3	СКВ	Турбохолодильник	4629T
17	Як-40	1,3	СКВ	Обратный клапан	4488T
18	Як-40	1,3	СКВ	Регулятор подачи воздуха	1408T

приложение 2

Исходные данные для выполнения задания

Приложение 2.1

Статистические данные по изделиям системы кондиционирования воздуха самолетов Ил-62, Ту-1543, Як-40

Таблица П.2.1

Статистические данные наработок до отказа заслонок СКВ

Тип самолета	Объем парка	Наименование изделия	Наработка до отказа, ч
Ил-62	30	Заслонка 2574Т	920; 970; 1010; 1080; 1095; 1120; 1140; 1300; 1350; 1380; 1700; 1950; 2150; 2300; 2500; 2600
Ty-154	20	Заслонка 5670	840; 845; 970; 1110; 1230; 1280; 1350; 1600; 1720; 1790; 1900; 2100; 2250; 2400; 2500
		Заслонка 3161	560; 580; 610; 730; 870; 925; 1010; 1050; 1100; 1340; 1420; 1560; 2100; 2150; 2500
Як-40	15	Заслонка 4064АТ	725; 780; 840; 890; 910; 915; 945; 980; 1025; 1038; 1200; 1310; 1820; 1950; 2400

Таблица П.2.2 Статистические данные наработок до отказа обратных клапанов СКВ

Тип самолета	Объем парка	Наименование изделия	Наработка до отказа, ч
Ил-62	30	Обратный клапан 2269Т	150; 155; 230; 245; 310; 320; 330; 335; 420; 475; 510; 520; 530; 565; 870
T-: 154	20	Обратный клапан 5102	310; 340; 355; 367; 420; 440; 470; 510; 533; 540; 570; 585; 670; 820; 900
Ty-154	20	Обратный клапан 4672	327; 395; 450; 470; 520; 535; 540; 570; 610; 620; 637; 780; 800; 950; 1000
Як-40	15	Обратный клапан 1327	125; 130; 185; 210; 230; 235; 240; 257; 310; 320; 345; 400; 470; 520; 710
ЯК-40	15	Обратный клапан 4488Т	370; 410; 425; 500; 560; 575; 582; 600; 610; 620; 655; 720; 810; 815; 900

Таблица П.2.3 Статистические данные наработок до отказа ВВР СКВ

Тип самолета	Объем парка	Наименование изделия	Наработка до отказа, ч
Ил-62	30	Воздухо-воздушный радиатор 2217AT	1010; 1025; 1030; 1210; 1308; 1350; 1470; 1520; 1580; 1670; 1810; 1950
Ту-154	20	Воздухо-воздушный радиатор 4487T	1025; 1110; 1180; 1250; 1275; 1280; 1310; 1340; 1405; 1560; 1720; 1880

Таблица П.2.4 Статистические данные наработок до отказа регуляторов давления СКВ

Тип самолета	Объем парка	Наименование изделия	Наработка до отказа, ч
Ил-62	30	Регулятор избыточного давления 2940T	1050; 1055; 1110; 1115; 1210; 1240; 1370; 1400; 1520; 1540; 1570; 1750; 1820; 1870; 1950
Ту-154	20	Регулятор избыточного давления 4833	1310; 1340; 1370; 1450; 1520; 1615; 1700; 1810; 1825; 1900; 1940; 2000
G., 40	15	Регулятор избыточного давления 4608T	1400; 1480; 1495; 1520; 1670; 1710; 1800; 1820; 1900
Як-40	15	Регулятор избыточного давления 1408T	1370; 1450; 1520; 1610; 1620; 1740; 1800; 1850; 1950

Таблица П.2.5 Статистические данные наработок до отказа турбохолодильников СКВ

Тип самолета	Объем парка	Наименование изделия	Наработка до отказа, ч
Ил-62	30	Турбохолодильник 2280Т	570; 580; 595; 610; 640; 730; 735; 810; 870; 900
Як-40	15	Турбохолодильник 4629Т	1050; 1120; 1140; 1185; 1210; 1245; 1370; 1420; 1545; 1670; 2100; 2500

Таблица П.2.6 Статистические данные наработок до отказа фильтров СКВ

		<u>_</u>		1
Тип самолета	Объем парка	Наименование изделия	I	Наработка до отказа, ч
Ту-154	20	Фильтр-отстойник 5701Т-03	24	70; 185; 193; 210; 215; 40; 275; 310; 325; 403; 55; 478; 501; 540; 595

Таблица П.2.7 Статистические данные наработок до цензурирования изделий СКВ (многократно цензурированная выборка)

Тип	Объем	Наименование изделия,	Количество	Наработка до цензурирования
самолета	парка	шифр	на самолете	$m_i^{}$ изделий в ч
1	2	3	4	5
Ил-62	30	Заслонка 2574Т	5	$m = m_1 + m_2 + m_3 = 134$
				$m_1 = 50 \ no \ 1010$
				$m_2 = 50 \ no \ 1700$
				$m_3 = 34 \ no \ 2500$
Ty-154	20	Заслонка 5670	4	$m = m_1 + m_2 + m_3 = 65$
				$m_1 = 15 \ no \ 1010$
				$m_2 = 25 \ no \ 1500$
				$m_3 = 25 \ no \ 2500$
		Заслонка 3161	2	$m = m_1 + m_2 + m_3 = 25$
				$m_1 = 10 \ no \ 730$
				$m_2 = 10 \ no \ 1420$
				$m_3 = 5 \text{ no } 2500$
Як-40	25	Заслонка 4064АТ	1	$m = m_1 + m_2 + m_3 = 15$
				$m_1 = 5 \ no \ 800$
				$m_2 = 5 \text{ no } 1500$
				$m_3 = 5 \text{ no } 2400$
Ил-62	30	Обратный клапан 2269Т	2	$m = m_1 + m_2 + m_3 = 105$
				$m_1 = 50 \ no \ 300$
				$m_2 = 20 \ no \ 450$
				$m_3 = 35 \ no \ 870$
Ty-154	20	Обратный клапан 5102	4	$m = m_1 + m_2 + m_3 = 65$
				$m_1 = 25 \ no \ 450$
				$m_2 = 20 \ no \ 700$
				$m_3 = 20 \ no \ 900$
		Обратный клапан 4672	3	$m = m_1 + m_2 + m_3 = 45$
				$m_1 = 15 \text{ no } 450$
				$m_2 = 20 \ no \ 780$
				$m_3 = 10 \ no \ 1000$

Як-40 25 Обратный кланан 1327 6 m = m ₁ + m ₂ + m ₃ = 75 m ₁ = 25 no 200 m ₂ = 25 no 630 m ₃ = 25 no 710 Обратный кланан 4488T 1 m = m ₁ + m ₂ + m ₃ = 15 m ₁ = 5 no 500 m ₂ = 5 no 720 m ₃ = 5 no 900 Ил-62 30 Bоздухо-воздушный радиатор 2217АТ 2 m = m ₁ + m ₂ + m ₃ = 48 m ₁ = 18 no 1350 m ₂ = 10 no 1670 m ₃ = 20 no 1950 Ту-154 20 Bоздухо-воздушный радиатор 4487T 1 m = m ₁ + m ₂ + m ₃ = 8 m ₁ = 2 no 1180 m ₂ = 3 no 1340 m ₃ = 3 no 1340 m ₃ = 3 no 1880 Ил-62 30 Perулятор избыточного давления 2940T 2 m = m ₁ + m ₂ + m ₃ = 8 m ₁ = 20 no 1110 m ₂ = 5 no 1540 m ₃ = 20 no 1950 Ту-154 20 Perулятор избыточного давления 4833 2 m = m ₁ + m ₂ + m ₃ = 8 m ₁ = 2 no 1110 m ₂ = 4 no 1600 m ₃ = 2 no 2000 m = m ₁ + m ₂ + m ₃ = 6 m ₁ = 2 no 1670 m ₃ = 2 no 1900 Як-40 Perулятор подачи воздука 1408T 1 m = m ₁ + m ₂ + m ₃ = 6 m ₁ = 2 no 1520 m ₂ = 2 no 1740 m ₃ = 2 no 1950	1	2	3	4	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Як-40	25	Обратный клапан 1327	6	$m = m_1 + m_2 + m_3 = 75$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$m_1 = 25 \ no \ 200$
Обратный кланан 1					$m_2 = 25 \ no \ 630$
Нл-62 30 Воздухо-воздушный радиатор 2217АТ 2					$m_3 = 25 \ no \ 710$
Ил-62 30 Воздухо-воздушный радиатор 2217АТ 2 $m = m_1 + m_2 + m_3 = 48$ $m_1 = 18 no 1350$ $m_2 = 10 no 1670$ $m_3 = 20 no 1950$ Ту-154 20 Воздухо-воздушный радиатор 4487Т 1 $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 no 1180$ $m_2 = 3 no 1340$ $m_3 = 3 no 1880$ Ил-62 30 Регулятор избыточного давления 2940Т 2 $m = m_1 + m_2 + m_3 = 45$ $m_1 = 20 no 1110$ $m_2 = 5 no 1540$ $m_3 = 20 no 1950$ Ту-154 20 Регулятор избыточного давления 4833 2 $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 no 1110$ $m_2 = 4 no 1600$ $m_3 = 2 no 2000$ Як-40 25 Регулятор избыточного давления 4608Т 1 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2 no 1480$ $m_2 = 2 no 1670$ $m_3 = 2 no 1900$ Регулятор подачи воздуха 1408Т 1 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2 no 1520$ $m_2 = 2 no 1740$			-	1	$m = m_1 + m_2 + m_3 = 15$
Мл-62 30 Воздухо-воздушный радиатор 2217АТ 2			44881		$m_1 = 5 \ no \ 500$
Ил-62 ЗО Воздухо-воздушный радиатор 2217АТ 2					$m_2 = 5 \text{ no } 720$
радиатор 2217АТ					$m_3 = 5 \text{ no } 900$
Ту-154 20 Воздухо-воздушный радиатор 4487Т 1 $m_1 = 18 \ no 1530$ $m_2 = 10 \ no 1670$ $m_3 = 20 \ no 1950$ 1 $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 \ no 1180$ $m_2 = 3 \ no 1340$ $m_3 = 3 \ no 1880$ 2 $m = m_1 + m_2 + m_3 = 45$ $m_1 = 20 \ no 1110$ $m_2 = 5 \ no 1540$ $m_3 = 20 \ no 1950$ 2 $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 \ no 1110$ $m_2 = 4 \ no 1000$ $m_3 = 2 \ no 1000$ 2 $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 \ no 1110$ $m_2 = 4 \ no 1600$ $m_3 = 2 \ no 2000$ 2 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2 \ no 1670$ $m_3 = 2 \ no 1900$ 2 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2 \ no 1520$ $m_2 = 2 \ no 1520$ $m_2 = 2 \ no 1520$ $m_2 = 2 \ no 1740$	Ил-62	30		2	$m = m_1 + m_2 + m_3 = 48$
Ту-154 20 Воздухо-воздушный радиатор 4487Т 1 $m_3 = 20 \ no \ 1950$ $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 \ no \ 1180$ $m_2 = 3 \ no \ 1340$ $m_3 = 3 \ no \ 1880$ 1 $m_2 = 3 \ no \ 1340$ $m_3 = 3 \ no \ 1880$ 2 $m = m_1 + m_2 + m_3 = 45$ $m_1 = 20 \ no \ 1110$ $m_2 = 5 \ no \ 1540$ $m_3 = 20 \ no \ 1950$ 2 $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 \ no \ 1110$ $m_2 = 4 \ no \ 1600$ $m_3 = 2 \ no \ 2000$ 2 $m = m_1 + m_2 + m_3 = 8$ $m_1 = 2 \ no \ 110$ $m_2 = 4 \ no \ 1600$ $m_3 = 2 \ no \ 1000$ 2 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2 \ no \ 1670$ $m_2 = 2 \ no \ 1670$ $m_3 = 2 \ no \ 1900$ 2 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2 \ no \ 1520$ $m_2 = 2 \ no \ 1520$ $m_2 = 2 \ no \ 1740$			радиатор 221/АТ		$m_1 = 18 \text{ no } 1350$
Ту-154 20 Воздухо-воздушный радиатор 4487Т 1					$m_2 = 10 \ no \ 1670$
радиатор 4487Т					$m_3 = 20 \ no \ 1950$
$m_1 = 2 no 1180$ $m_2 = 3 no 1340$ $m_3 = 3 no 1880$ Ил-62 $m_3 = 3 no 1880$ $m_4 = 20 no 1180$ $m_2 = 3 no 1880$ $m_3 = 3 no 1880$ $m_4 = 20 no 1110$ $m_2 = 5 no 1540$ $m_3 = 20 no 1950$ $m_4 = 20 no 1110$ $m_2 = 5 no 1540$ $m_3 = 20 no 1950$ $m_4 = 2 no 1110$ $m_2 = 4 no 1600$ $m_3 = 2 no 2000$ $m_4 = 2 no 1480$ $m_4 = 2 no 1480$ $m_4 = 2 no 1480$ $m_2 = 2 no 1670$ $m_3 = 2 no 1900$ $m_4 = 2 no 1900$ $m_4 = 2 no 1520$ $m_4 = 2 no 1520$ $m_2 = 2 no 1520$ $m_2 = 2 no 1740$	Ty-154	20		1	$m = m_1 + m_2 + m_3 = 8$
$M_{3}=3\ no\ 1880$ $M_{1}=2\ no\ 1110$ $M_{2}=5\ no\ 1540$ $M_{3}=2\ no\ 1900$ $M_{3}=2\ no\ 1900$ $M_{3}=2\ no\ 1900$ $M_{3}=2\ no\ 1520$ $M_{1}=2\ no\ 1520$ $M_{2}=2\ no\ 1740$			радиатор 448 / 1		$m_1 = 2 \ no \ 1180$
Ил-62 30 Регулятор избыточного давления 2940Т 2					$m_2 = 3 \text{ no } 1340$
давления 2940Т					$m_3 = 3 \text{ no } 1880$
$m_1 = 20\ no\ 1110$ $m_2 = 5\ no\ 1540$ $m_3 = 20\ no\ 1950$ Ту-154 20 Регулятор избыточного давления 4833 $m_1 = 2\ no\ 1110$ $m_2 = 4\ no\ 1600$ $m_3 = 2\ no\ 2000$ Як-40 25 Регулятор избыточного давления 4608Т $m_1 = 2\ no\ 1480$ $m_2 = 2\ no\ 1670$ $m_3 = 2\ no\ 1900$ Регулятор подачи воздуха 1408Т $m_1 = 2\ no\ 1520$ $m_2 = 2\ no\ 1740$	Ил-62	30		2	$m = m_1 + m_2 + m_3 = 45$
Ту-154 $= 20$ Регулятор избыточного давления 4833 $= 20$ ло 1950 $= m_3 = 20$ ло 1950 $= m_1 + m_2 + m_3 = 8$ $= 20$ ло 1110 $= 20$ ло 1110 $= 20$ ло 2000 $= 25$ Регулятор избыточного давления 4608Т $= 20$ ло 1480 $= 20$ ло 1900 $= 20$ ло 1900 $= 20$ ло 1900 $= 20$ ло 1520 $= 20$ ло 1520 $= 20$ ло 1740					$m_1 = 20 \ no \ 1110$
Ту-154 20 Регулятор избыточного давления 4833					$m_2 = 5 \text{ no } 1540$
давления 4833 $ m_1 = 2 \ no \ 1110 \\ m_2 = 4 \ no \ 1600 \\ m_3 = 2 \ no \ 2000 $ Як-40 $ 25 \qquad $					$m_3 = 20 \ no \ 1950$
$m_1 = 2\ no\ 1110$ $m_2 = 4\ no\ 1600$ $m_3 = 2\ no\ 2000$ Як-40 25 Регулятор избыточного давления 4608Т $m_1 = 2\ no\ 1480$ $m_2 = 2\ no\ 1480$ $m_2 = 2\ no\ 1670$ $m_3 = 2\ no\ 1900$ Регулятор подачи воздуха 1408Т $m_1 = 2\ no\ 1480$ $m_2 = 2\ no\ 1520$ $m_2 = 2\ no\ 1740$	Ty-154	20		2	$m = m_1 + m_2 + m_3 = 8$
$m_3 = 2\ no\ 2000$ Як-40 25 Регулятор избыточного давления 4608Т 1 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2\ no\ 1480$ $m_2 = 2\ no\ 1670$ $m_3 = 2\ no\ 1900$ Регулятор подачи воздуха 1408Т 1 $m = m_1 + m_2 + m_3 = 6$ $m_1 = 2\ no\ 1520$ $m_2 = 2\ no\ 1740$			давления 4033		$m_1 = 2 \ no \ 1110$
Як-40 25 Регулятор избыточного давления 4608Т					$m_2 = 4 \ no \ 1600$
давления 4608Т $ m_1 = 2 \ no \ 1480 \\ m_2 = 2 \ no \ 1670 \\ m_3 = 2 \ no \ 1900 $ $ Pегулятор подачи воздуха 1408Т m = m_1 + m_2 + m_3 = 6 \\ m_1 = 2 \ no \ 1520 \\ m_2 = 2 \ no \ 1740 $					$m_3 = 2 \ no \ 2000$
$m_1=2\ no\ 1480$ $m_2=2\ no\ 1670$ $m_3=2\ no\ 1900$ Регулятор подачи воздуха 1408T $m=m_1+m_2+m_3=6$ $m_1=2\ no\ 1520$ $m_2=2\ no\ 1740$	Як-40	25	давления 4608Т Регулятор подачи	1	$m = m_1 + m_2 + m_3 = 6$
$\begin{array}{c} m_3 = 2\ no\ 1900 \\ \hline \\ \text{Регулятор подачи} \\ \text{воздуха 1408T} \end{array} \qquad \begin{array}{c} 1 \\ m = m_1 + m_2 + m_3 = 6 \\ m_1 = 2\ no\ 1520 \\ m_2 = 2\ no\ 1740 \end{array}$					$m_1 = 2 \ no \ 1480$
Регулятор подачи воздуха 1408Т					$m_2 = 2 \text{ no } 1670$
$m_1 = 2 \text{ no } 1520$ $m_2 = 2 \text{ no } 1740$					$m_3 = 2 \ no \ 1900$
$m_1 = 2 \text{ no } 1520$ $m_2 = 2 \text{ no } 1740$				1	$m = m_1 + m_2 + m_3 = 6$
					$m_1 = 2 \ no \ 1520$
$m_3 = 2 \text{ no } 1950$					$m_2 = 2 \text{ no } 1740$
					$m_3 = 2 \ no \ 1950$

Продолжение табл. П.2.7

1	2	3	4	5
Ил-62	30	Турбохолодильник 2280T	2	$m = m_1 + m_2 + m_3 = 50$
				$m_1 = 25 \ no \ 610$
				$m_2 = 15 \ no \ 740$
				$m_3 = 10 \ no \ 900$
Як-40	25	Турбохолодильник 4629Т	1	$m = m_1 + m_2 + m_3 = 3$
				$m_1 = 1 \ no \ 1140$
				$m_2 = 1 \text{ no } 1420$
				$m_3 = 1 \text{ no } 2500$
Ty-154	20	Фильтр-отстойник	4	$m = m_1 + m_2 + m_3 = 65$
		5701T		$m_1 = 25 \ no \ 210$
				$m_2 = 10 \ no \ 310$
				$m_3 = 30 \text{ no } 595$

Приложение 2.2

Принципиальные схемы СКВ самолетов Ил-62, Ту-154, Як-40

Таблица П.2.8

Система кондиционирования воздуха самолета Ил-62

Позиции на схеме	Наименование агрегата	Тип агрегата	Количество на самолете
1, 3, 11, 9, 52, 54, 59, 61	Переключатель электромагнитный	4038T	8
2, 10, 53, 60	Командный прибор	4211AT	4
4, 16, 51, 65	ВВР предварительного охлаждения	2793AT	4
5, 12, 55, 62	Задатчик расхода воздуха	2785T	4
6, 13, 56, 63	Исполнительный механизм	4149AT	4
7, 14, 38, 65	Термовыключатель	1374A-6	4
8, 15, 57, 64	Заслонка продувочного воздуха	4084T	8
17, 18, 49, 50, 67	Заслонка	2574T	5
19, 48	Исполнительный механизм	4149T	4
21, 46	Клапан регулятора (2940Т)	2990T	2
23, 44	Регулятор избыточного давления	2940T	2
24, 43	BBP охлаждения	2251AT	2
25, 42	Командный прибор	1300ДТ	2
26, 41	ВВР обогрева	2217AT	2
27, 40	Трехканальный блок заслонок	2235T	2
28, 39	Датчик расхода воздуха	4061БТ	2
29, 38	Водоотделитель	2394T	2
30, 37	Блок заслонок	2236T	2
31, 36	Турбохолодильник	2280T	2
32, 35	Блок обратных клапанов	2269T	2
33, 34	Блок заслонок	1932T	2
69, 70	Задвижка	1884T	2
71, 72	Термовыключатель	1374A-4	2
68	Заслонка перекрывная	4074T	3

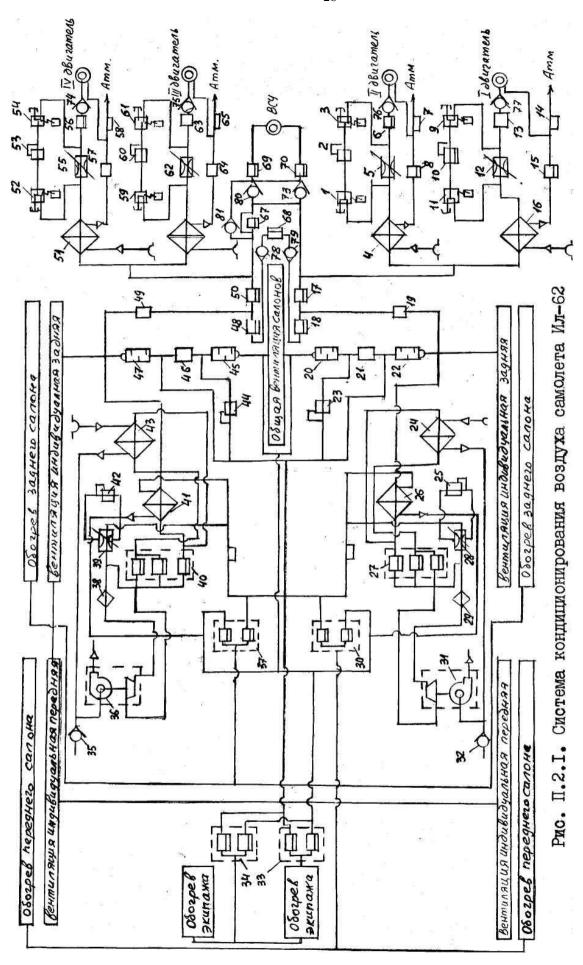


Таблица П.2.9

Система кондиционирования воздуха самолета Ту-154

	петеми кондиционирования воздух	<u> </u>	TC
Позиции	Наименование агрегата	Тип агрегата	Количество
на схеме	•	1	на самолете
1, 21, 32	Обратный клапан	4672	3
2	Штуцер для подключения наземного		1
2	кондиционера		1
3, 53, 55	Кран отбора воздуха от двигателей		3
4, 5, 54, 56, 57	Обратный клапан	5102	4
6	Первичный ВВР	4487T	1
7, 46	Кран наддува	4602	2
8, 45	Заслонка ПСВП	5701T-02	2
9, 44	Регулятор избыточного давления	4561	2
10, 43	Командный прибор ПСВП	5701T-01	2
11, 42	Трубка Вентури 76×95		2
12, 41	Регулятор избыточного давления	4833	2
13, 18, 35, 40	Заслонка регулирующая	5670	4
15, 38	Обратный клапан	4488	2
16, 37, 47	Воздухозаборник		3
17, 36	Вторичный ВВР	4458	2
19, 34	Обратный клапан	4477	2
20, 33	Влагоотделитель	154. 04. 7613. 023	2
22, 24, 27, 28	Смеситель	154. 04. 7611. 003	4
23, 25, 26, 29	Заслонка регулирующая	1406T	4
30	Регулятор избыточного давления	4833	1
31	Глушитель шума	154. 04. 7613. 044	1
48	Эжектор продува ВВР	4467T	1
49	Заслонка	3161	2
50	Электроклапан	4073T	1
51, 52	Обратный клапан	4656	2
Не показан	Фильтр-отстойник	5701T-03	4

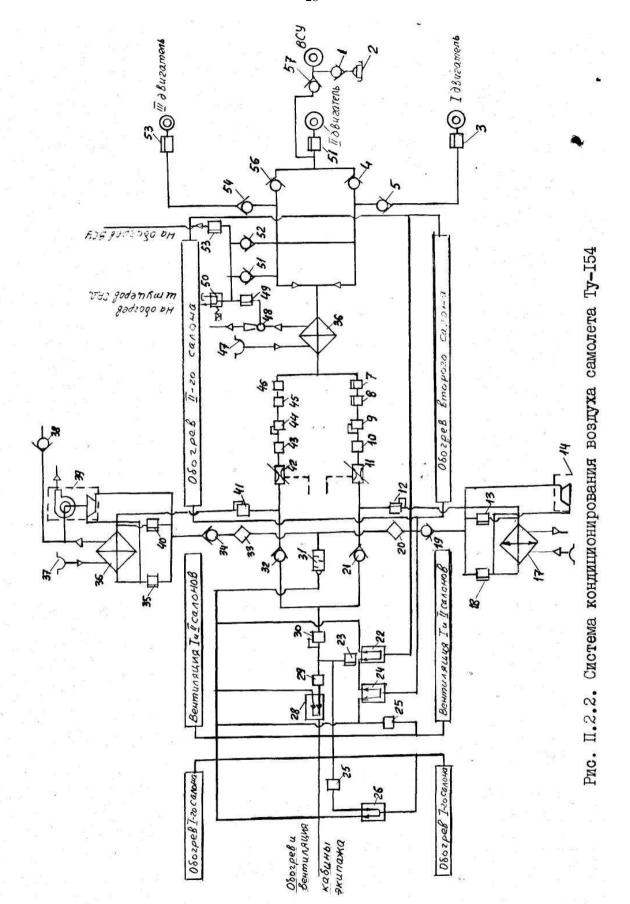
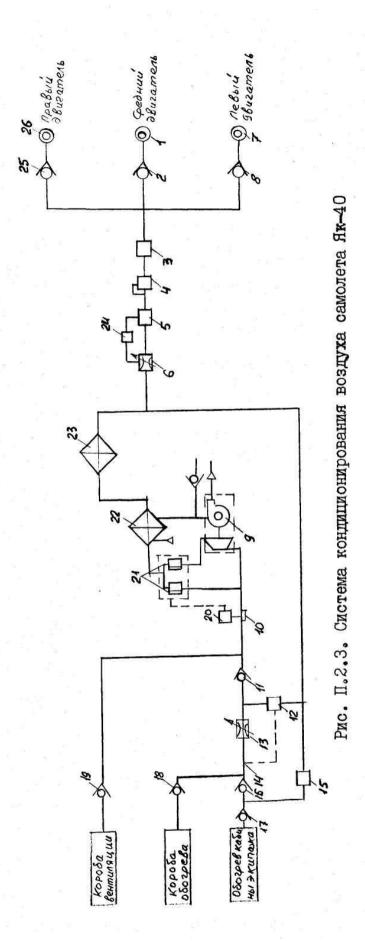
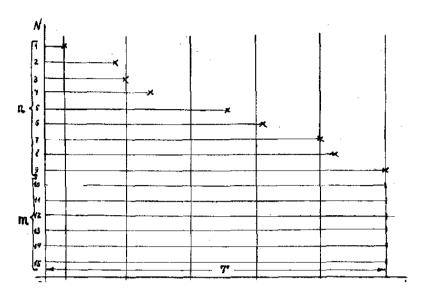



Таблица П.2.10


Система кондиционирования воздуха самолета Як-40

Позиции на схеме	Наименование агрегата	Тип агрегата	Количество на самолете	
1, 7, 26	Двигатели	AH-25	3	
2, 8, 16, 17, 19, 25	Обратный клапан	1327	6	
3	Заслонка	4064AT	1	
4	Регулятор избыточного давления	4608T	1	
5	Дроссельная заслонка	1293ET	1	
6	Датчик расхода воздуха	2344BT	1	
9	Турбохолодильник	4629T	1	
10	Датчик температуры	П-1Т	1	
11	Обратный клапан	4488T	1	
12	Регулятор подачи воздуха	1408T	1	
13	Трубка Вентури		1	
1.4	Биметаллический ограничитель	1262	1	
14	температуры	1362	1	
15	Заслонка		1	
18	Обратный клапан	4488T	1	
20	Блок управления	4827AT	1	
21	Блок заслонок	1932T	1	
22	BBP	4603T	1	
22	Радиатор подогрева воздушного		1	
23	клапана среднего двигателя		1	
24	Командный прибор	4211FT	1	

приложение 3

Оценка безотказности изделий параметрическим методом

1400 1500 1600 1700 1800 t, ч

Рис. П.3.1. Ранжированная временная диаграмма наработок до отказа t_i , i=1,n, и наработок до цензурирования t_j , j=1,2,...,m (однократно цензурированная выборка).

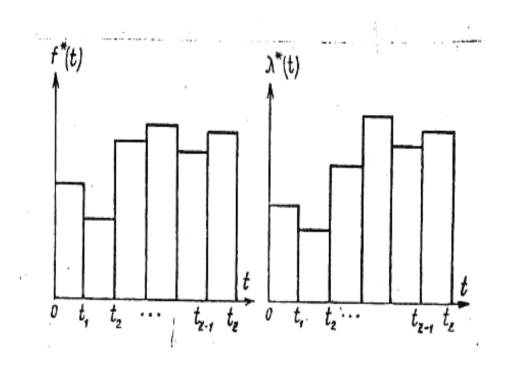


Рис. П.3.2. Гистограммы статистических оценок $f^*(t)$, $\lambda^*(t)$.

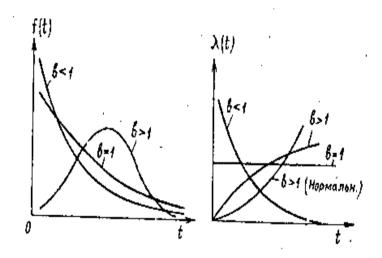


Рис. П.3.3. Теоретические зависимости f(t), $\lambda(t)$ для различных законов распределения: экспоненциального (b=1), нормального (b>1), Вейбулла (b<1, b>1).

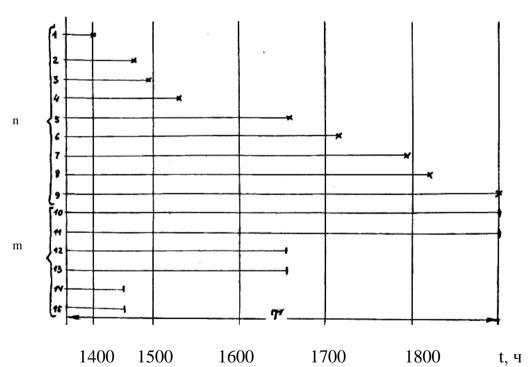


Рис. П.3.4. Ранжированная временная диаграмма наработок до отказа t \mathbf{q}_i , $\mathbf{i}=1$, \mathbf{n} , и наработок до цинзурирования $\mathbf{\tau}_j$, $\mathbf{j}=1$, \mathbf{m} (многократно цензурированная выборка).

Таблица П. 3.1

ОЦЕНКА ПОКАЗАТЕЛЕЙ БЕЗОТКАЗНОСТИ ПО ПАРАМЕТРАМ РАСПРЕДЕЛЕНИЯ

Законы распреде- ления плотности, f(t)	Средняя нара- ботка до отказа, Т _{ср}	Вероятность безотказной работы, P(t)	Интенсивность отказа, λ(t)	Гамма- процентная наработка,Т,
Экспоненциальный $\lambda e^{\lambda_{\xi}^{\frac{1}{4}}}$	1/2	e ^{. ĄŁ}	λ	1/ (ln 8/100)
Beйбулла g $\frac{g}{a} \left(\frac{t}{a} \right) \cdot e^{-\frac{t}{a}}$	$a\Gamma(1+\frac{1}{B})$	$e^{-\frac{1}{a}t^{\beta}}$	$\frac{b}{a} \cdot t^{B-1}$	$\alpha(-\ln \frac{\delta}{100})^{\frac{1}{8}}$
Нормальный 2 - (t-a) 2 - 26t Gt√2π € 26t	a	$\frac{\frac{4}{2} - \frac{1}{2} \times }{< \Phi\left(\frac{t - \alpha}{\widetilde{\varsigma_{\alpha}}}\right)}$	$\frac{\frac{1}{Gt} \oint_{C} \left(\frac{t-a}{Gt}\right)}{\frac{1}{2} - \frac{1}{2} \varphi \left(\frac{t-a}{Gt}\right)}$	$\frac{\frac{1}{2} - \frac{1}{2} \varphi(\frac{t_3 - 0}{6i})}{\frac{1}{100}} = \frac{1}{100}$

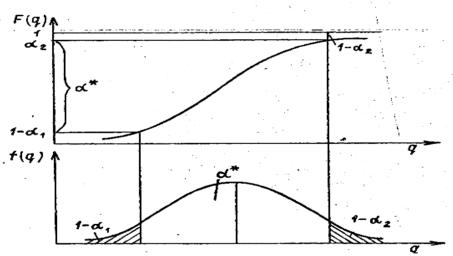


Рис. П.3.5. Определение доверительных границ.

приложение 4

Примеры оценок показателей безотказности изделий непараметрическим методом

<u>Пример П.4.1.</u> При испытании N=100 невосстанавливаемых изделий получено n=10 отказов. Найти доверительные границы для вероятности безотказной работы P при $\alpha=0.95$, где α - доверительная вероятность.

По табл. П.5.5, П.5.6 приложения 4 для n=10 и n/N=0,1 находим R1=1,81, R2=0.61.

По уравнениям (4.13) находим

$$q_H = \frac{n}{NR_1} = \frac{10}{100 \cdot 1,81} = 0,055,$$

$$q_B = \frac{n}{NR_2} = \frac{10}{100 \cdot 0.61} = 0.164.$$

Для вероятности безотказной работы

P=1-0.1=0.9,

 $P_{H}=1-q_{B}=1-0.164=0.836,$

 $P_{\rm B} = 1 - q_{\rm H} = 1 - 0.055 = 0.945.$

<u>Пример П.4.2.</u> При испытании N=100 невосстанавливаемых изделий не получено ни одного отказа. Найти доверительные границы для вероятности безотказной работы при $\alpha=0.90$. По табл. П.5.4 приложения 5 для доверительной вероятности $\alpha=0.95,\,n=0,\,N=100$

находим Ro = 2,28. По уравнению (4.12) для вероятности отказа получим $q_{\scriptscriptstyle H}$ = 0;

$$q_{\rm B} = R_0/N = 2,28/100 = 0,0228.$$

Для вероятности безотказной работы будем иметь

$$P = 1 - 0.1 = 0.9$$

$$P_{H} = 1 - q_{B} = 0.977,$$

$$P_{\scriptscriptstyle B} = 1 - q_{\scriptscriptstyle H} = 1.0.$$

<u>Пример П.4.3</u>. В результате обработки данных по надежности изделий функциональной системы самолетов, эксплуатирующихся по состоянию, были сформированы цензурированные данные 50 изделий.

Наработки до отказа (n = 23): 2292, 5440, 880, 2996, 1711, 14610, 10806, 4652, 1638, 1287, 2850, 4830, 2700, 755, 3438, 581, 1904, 23289, 12036, 8550, 742, 1064, 2640 ч.

Наработки до цензурирования (m = 27): 25 изделий были сняты с наблюдения при наработке 3600 ч., а два изделия при наработке 25000 ч.

Для внедрения прогрессивного метода эксплуатации изделий на всем парке самолетов требуется оценить показатели надежности.

1) Строим вариационный ряд или ранжированную временную диаграмму наработок до отказа τ_i , i = 1,...,n и цензурирования t_i , j = 1,...,m

581, 742, 755, 880, 1064, 1287, 1638, 1711, 1904, 2292, 2640, 2700, 2850, 2996, 3438, 3600(25), 4652, 4830, 5440, 8550, 10806, 12036, 14610, 23289, 25000 (2).

2) По вариационному ряду (ранжированной временной диаграмме) определяем интервалы наблюдения (1 = 2)

$$(0,\tau_{15}) \rightarrow (0;3438),$$

 $(\tau_{16},\tau_{23}) \rightarrow (3438;23289).$

Для каждого интервала наблюдения определяем

$$n_1=15, m_0=0, m_2=2,$$

$$n_2=8$$
.

$$N_{91} = N - n_0 = 50, \ N_{92} = N_{91} \left[1 - \frac{m_1}{N - m_0 - n_1} \right] = 50 \left(1 - \frac{25}{50 - 15} \right) = 14,286..$$

3) Определяем значения эмпирической функции распределения $F^*(t)$ по (4.14) или (4.15).

Значения функции распределения F*(t_i)

Таблица П. 4.1

1	F*(t _i)	I	$F^*(t_i)$	Ι	$F*(t_i)$	I	$F^*(t_i)$	I	F*(t _i)
1	0,02	6	0,12	11	0,22	41	0,37	46	0,72
2	0,04	7	0,14	12	0,24	42	0,43	47	0,79
3	0,06	8	0,16	13	0,26	43	0,51	48	0,86
4	0,08	9	0,18	14	0,28	44	0,58		
5	0,10	10	0,20	15	0,30	45	0,65		

4) Определим точечные оценки вероятности безотказной работы за 5000, 10000 и 20000 ч.

Заданные наработки:

$$t^{1}_{3}$$
= 5000 ч; I= 43; τ_{i} = 5440; τ_{i-1} =4830;
$$d_{i}$$
= (t^{1}_{3} - τ_{i-1})/(τ_{i} - τ_{i-1}) =(5000-4830)/(5440-4830) = 0,279

$$\begin{split} P^*(5000) &= 1 - [d_i F^*(t_i) + (1 - d_i) F^*(t_{i-1})] = 1 - (O,279 \bullet 0,51 + 0,721 \bullet 0,43) = 0,55 \\ t^2_3 &= 10000 \ \text{y,I} = 45, \ \tau_i = 10806; \ \tau_{i^-1} = 8550; \end{split}$$

$$d_i = (t_{3}^1 - \tau_{i-1})/(\tau_{i-} \tau_{i-1}) = (10000 - 8550)/(10806 - 8550) = 0,567$$

$$P*(10000) = 1 - (0,567 \cdot 0,65 + 0,433 \cdot 0,58) = 0,38,$$

$$t^{3}_{3}$$
= 20000 ч; $I = 48$; $\tau_{i} = 23289$; $\tau_{i-1} = 14610$;

$$d_i$$
=(t_{3}^1 - τ_{i-1})/(τ_{i} - τ_{i-1}) = (20000-14610) /(23289-14610) = 0,621

$$P*(20000) = 1 - (0.621 \cdot 0.86 + 0.379 \cdot 0.79) = 0.16.$$

5) Определим среднюю наработку до отказа

$$T_{cp} = \frac{\sum_{i=1}^{15} \tau_i}{50} + \frac{\sum_{i=41}^{48}}{14,286} + (1 - 0,86)\tau_{48} = \frac{27478}{50} + \frac{84213}{14,286} + 0,14 \cdot 23289 = 9705 \ y$$

6) Вычисление 95% - й наработки до отказа показывает, что она лежит между вторым и третьим членами вариационного ряда (таб. П.4.1),

т.е.
$$F^*(t_i) = 0,05$$
, следовательно, $i = 3$; $F^*(t_{i-1}) = 0,04$;
$$F^*(t_i) = 0,06$$
; $\tau_{i-1} = 742$ и $\tau_i = 755$;
$$d_2 = ((100-\gamma)/(100-F^*(\tau_{i-1}))/((F^*(\tau_i)-F^*(\tau_{i-1}))) = (0,05-0,04)/(0,02=0,5).$$

$$T^*_{\gamma} = (1-d_2) \tau_i. + d2 \tau_i = 0,5 \cdot 742 + 0,5 \cdot 755 = 748,5 \text{ ч}.$$

7) Доверительный интервал для значений вероятностей безотказной работы $P^*(t_3)$ оценим, задавшись доверительной вероятностью $\beta = 0.95$.

$$P^*(t_3)$$
 оценим, задавшись доверительной вероятностью $\beta=0.95$. $t^1{}_3=5000$ ч; $I-1=42$; $I=43$; $I=2$, во втором интервале: $v=23$; $b=25$; $\sigma_i=[1-0.43]\sqrt{18/(25\cdot 27)}=0.57\cdot 0.14=0.08$, Для $\beta=0.95$ (односторонние доверительные границы) $U_8=1.645$; $P_H=P^*(t_3)-U_B\sigma_{I=}0.55-1.645\cdot 0.08=0.42$ $P_B=P^*(t_3)+U_B\sigma_{I=}0.55+1.645\cdot 0.08\cdot 0.68$. $t_3=10000$ ч, $I-1=44$, $Ii=45$, $I=2$ $\sigma_i=[1-0.58]\sqrt{20/25\cdot 27}=0.06$, $P_H=0.38\cdot 1.645\cdot 0.06=0.282$; $P_B=0.38+1.645\cdot 0.06=0.478$. $t_3=20000$ ч, $I-1=47$, $I=48$, $I=2$ $\sigma_i=[1-0.86]\sqrt{23/25\cdot 27}=0.02$, $P_H=0.16\cdot I$, $645\cdot 0.02=0.128$, $P_B=0.16\cdot I$, $645\cdot 0.02=0.128$, $P_B=0.16\cdot I$, $645\cdot 0.02=0.128$, $P_B=0.16\cdot I$, $645\cdot 0.02=0.129$,

Результаты оценки приведены на рис. П. 4.1.

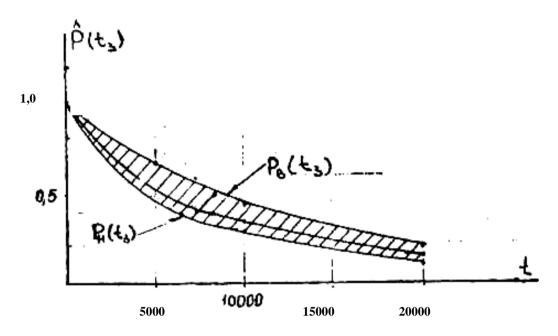


Рис. П.4.1. Оценка доверительных интервалов $P(t_3)$

изделий на I-ю категорию с периодичностью в 9705 ч.

Вывод.

Из-за низкой надежности (P*(t=10000)<0,3 после наработки 10000ч гидравлические фильтры эксплуатировать нецелесообразно. Значение средней наработки до отказа T* показывает целесообразность замены

Рис. П.4 .2. Временная диаграмма однотипных восстанавливаемых изделий: N- число наблюдаемых объектов ($N=N_0k$); N_0- число самолетов, k- число однотипных изделий на самолете.

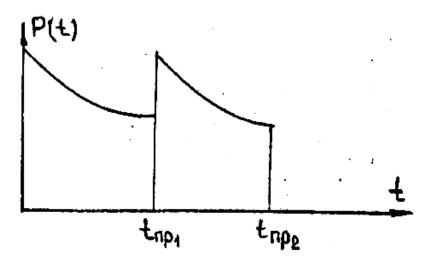


Рис. П.4.3. График Р(t) для восстанавливаемых изделий.

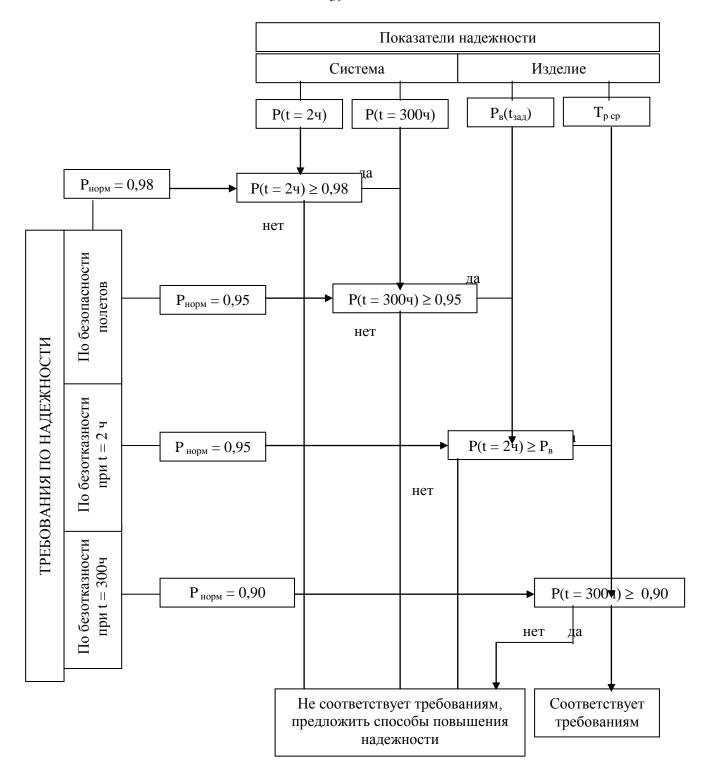


Рис. П. 4.4. Алгоритм анализа надежности СКВ самолета и ее изделий на соответствие требованиям надежности при эксплуатации

ПРИЛОЖЕНИЕ 5 Таблицы характеристик распределения случайных величин

Таблица П. 5.1 Функция стандартного нормального распределения $F_0^- X$

	_								U	
X		0	1	2	3	4	5	6	7	8
0	0	5000	5040	5080	5120	5160	5199	5239	5279	5319
0.1	0	5398	5438	5478	5517	5557	5596	5636	5675	5714
0.2	0	5793	5832	5871	5910	5948	5987	6026	6064	6103
0.3	0	6179	6217	6255	6293	6331	6368	6406	6443	6480
0.4	0	6554	6591	6628	6664	6700	6736	6772	6808	6844
0.5	0	6915	6950	6985	7019	7054	7088	7123	7157	7190
0.6	0	7257	7291	7324	7357	7389	7422	7454	7486	7517
0.7	0	7580	7611	7642	7673	7704	7344	7764	7794	7823
0.8	0	7881	7910	7939	7967	7995	8023	8051	8078	8106
0.9	0	8159	8186	8212	8238	8264	8289	8315	8340	8365
1	0	8413	8438	8461	8485	8508	8531	8554	8577	8599
1.1	0	8643	8665	8686	8708	8729	8749	8770	8790	8810
1.2	0	8849	8869	8888	8907	8925	8944	8962	8980	8997
1.3	0.9	0320	0490	0658	0824	0988	1149	1308	1466	1621
1.4	0.9	1924	2073	2220	2364	2507	2647	2785	2922	3056
		2210	2440	2554	2 400	2022	20.42	40.52	44.50	420.7
1.5	0.9	3319	3448	3574	3699	3822	3943	4062	4179	4295
1.6	0.9	4520	4630	4738	4845	4950	5053	5154	5254	5352
1.7	0.9	5543	5637	5728	5818	5907	5994	6080	6164	6246
1.8	0.9	6407	6485	6562	6637	6712	6784	6856	6926	6995
1.9	0.9	7128	7193	7257	7320	7381	7441	7500	7558	7615
2	0.9	7725	7778	7831	7882	7932	7982	8030	8077	8124
2.1	0.9	8214	8257	8300	8341	8382	8422	8461	8500	8537
2.1	0.9	8610	8645	8679	8713	8745	8778	8809	8840	8870
2.2	0.9	8928	8956	8983	9010	9036	9061	9086	9111	9134
2.3	0.9	1802	2024	2240	2451	2656	2857	3053	3244	3431
2.4	0.33	1002	2024	2240	4 4 31	2030	2031	3033	344	3431
2.5	0.99	3790	3963	4132	4297	4457	4614	4766	4915	5060
2.6	0.99	5339	5473	5603	5731	5855	5975	6093	6207	6319
2.7	0.99	6533	6636	6736	6833	6928	7020	7110	7197	7282
2.8	0.99	7445	7523	7599	7673	7744	7814	7882	7948	8012
2.9	0.99	8134	8193	8250	8305	8359	8411	8462	8511	8559
3	0.99	8650	8694	8736	8777	8817	8856	8893	8930	8965
		I	1		1		1	1		l

Таблица П. 5.1 (продолжение)

Значения F_0 X

X		0	1	2	3	4	5	6	7	8
3.0	0.99	8650	8694	8736	8777	8817	8856	8893	8965	8999
3.1	0.93	0324	0646	0957	1260	1553	1836	2112	2636	2886
3.2	0.9^{3}	3129	3363	3590	3810	4024	4230	4429	4810	4991
3.3	0.9^{3}	5166	5335	5499	5658	5811	5959	6103	6376	6505
3.4	0.9	6631	6752	6869	6982	7091	7197	7299	7493	7585
3.5	0.9	7674	7760	7842	7922	7999	8074	8146	8282	8347
3.6	0.9	8409	8469	8527	8583	8637	8689	8739	8834	8879
3.7	0.9^{3}	8922	8964	9004	9043	9080	9116	9150	9216	9247
3.8	0.9	2765	3052	3327	3593	3848	4094	4331	4777	4988
3.9	0.9	5190	5385	5573	5753	5926	6092	6252	6554	6696
4.0	0.9	6833	6964	7090	7211	7327	7439	7546	7748	7843
4.1	0.9^{4}	7934	8022	8106	8186	8264	8338	8409	8542	8605
4.2	0.9^{4}	8665	8723	8778	8832	8882	8931	8978	9066	9107
4.3	0.9^{3}	1460	1837	2198	2544	2876	3193	3497	4066	4332
4.4	0.9	4588	4832	5065	5288	5502	5706	5902	6268	6439
4.5	0.9	6602	6759	6908	7051	7187	7318	7442	7675	7784
4.6	0.9^{3}	7888	7987	8081	8172	8258	8340	8419	8566	8634
4.7	0.9	8699	8761	8821	8877	8931	8983	9032	9124	9166
4.8	0.9	2067	2554	2822	3173	3508	3827	4131	4696	4958
4.9	0.9	5208	5446	5673	5888	6094	6289	6475	6821	6981
5.0	0.9	7134	7278	7416	7548	7672	7791	7904	8113	8210
5.1	0.9	8302	8389	8472	8551	8626	8698	8765	8891	8949
5.2	0.9	004	056	105	152	197	240	280	354	388
5.3	0.9	421	452	481	509	539	560	584	628	648
5.4	0.9	667	685	702	718	734	748	762	787	799
5.5	0.9	810	821	831	840	849	857	865	880	886
5.6	0.9^{7}	893	899	905	910	915	920	924	933	936
5.7	0.9	40	44	47	50	53	55	58	63	65
5.8	0.9	67	69	71	72	74	75	77	79	81
5.9	0.9	82	83	84	85	86	87	87	89	90
6.0	0.9	90	-	-	-	-	-	-	-	-

Таблица П.5.2 Плотность стандартного нормального распределения f(x)

	ż	0	١ .	2	3	4	5	6	7	8	9	z
	0.0	0,3989 3970	3989 3965	3989 3961	-3988 3956	3986 3951	3984 3945	3982 3939	3980 3932	3977 3925	3973 3918	0,0
	0.2	3910 3814	3902 3802	3894 3790	3885 3778	3876 3765	3867 3752	3857 3739	3847 3726	3836 3712	3825 3697	0,2
	0,4 0,5	3683 3521	3668 3503	3653 3485	3637 3467	3621 3448	3605 3429	3589 3410	3572 3391	3555 3372	3538 3352	0.4 0.5
	0,6 0,7	3332 3123	3312 3101	3292 3079	3271 3056	3251 3034	3230 3011	3209 2989	3187 2965	3166 2943	3144 2920	0.6
	$0.8 \\ 0.9$	2897 2661	2874 2637	2850 2613	2827 2589	2803 2565	2780 2541	2756 2516	2732 2492	2709 2468	2685 2444	0,8 0,9
	1,0	0.2420		2371	2347	2323	2299	2275	2251	2227	2203	1,0
	1,1	2179 1942	1919	2131 1895	2107 1872	2083 1849	2059 1826	2036 1804	2012 1781	1989 1758	1965 1736	1.1 1.2
	1,3	1714 1497		1669 1456	1647 1435	1626 1415	1604 1394	1582 1374	1561 1354	1539 1334	1518 1315	1,3
	1.5 1.6	1295 1109	1092	1257 1074 0909	1238	1219 1040	1200	1182	1163 0989	0973	1127 0957	1,5
	1,7	0940 0790 0656	0775	0761 0632	0893 0748 0620	0878 0734 0608	0863 0721 0596	0848 0707 0584	0833 0694 0573	0818 0681 0562	0804 0669 0551	1.7 1.8
۸	1.9	0030	0014	0002	0020	0000	000	0004	0373	0302	000	1,9
	2,0 2.1	0,0540 0440		0519 0422	0508 0413	0498 0404	0488 0396	0478 0388	0468 0379	0459 0371	0449 0363	2,0
	$\frac{2,2}{2,3}$	0355 0283	0277	0339 0270	0332 0264	0325 0258	0317 0252	0310 0246	0303 0241	0297 0235	0290 0229	2.2 2.3
	$\frac{2.4}{2.5}$	0224 0175	0171	0213 0167	0208 0163	0203 0158	0198 0154	0194 0151	0189 0147	0184 0143	0180 0139	2,4 2,5
	2,6 2,7	0136 0104	1010	0129	0126 0096	0122 0093	0119 0091	0116 0088	0113 0086	0110 0084	0107 0081	2,6 2,7
	2.8 2.9	0079 0060		0075 0056	0073 0055	0071 0053	0069 0051	0067 0050	0065 0048	0063 0047	0061 0046	2,8 2.9
	3.0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034	3.0
	3,1 3,2	0033 0024	0023	0031	0030	0029 0021	0028 0020	0027	0029	0025	0025	3,1
	3.3	0017	0012	0016 0012	0016	0015	0015	0014	0014	0009	0013	3,3
	3.5 3.6	0009	0006	0008	0008	0008	0007	0007	0007	0007	0006	3,5
	3,7	0004	0003	0004	0004	0003	0004 0002 0002	0003	0003	0003	0003	3,7
	3.9	0,002	0002	0002	0002	0002	0002	0002	0002	0001	0001	3.9

Таблица П. 5.3

Коэффициенты для распределения Вейбулла

	коэффициенты д	ля распределения і	эсибулла
b	K_b	C_b	V
0.2	120	1900	15.83
0.3	8.86	46.9	5.29
0.4	3.32	10.4	3.14
0.5	2	4.47	2.24
0.6	1.50	2.61	1.74
0.7	1.27	1.86	1.46
0.8	1.13	1.43	1.26
0.9	1.05	1.17	1.11
1	1.00	1.00	1.00
1.1	0.965	0.878	0.910
1.2	0.941	0.787	0.837
1.3	0.924	0.716	0.775
1.4	0.911	0.659	0.723
1.5	0.903	0.612	0.678
1.6	0.897	0.574	0.640
1.7	0.892	0.540	0.605
1.8	0.889	0.512	0.575
1.9	0.887	0.485	0.547
2	0.886	0.463	0.523
2.1	0.886	0.441	0.489
2.2	0.886	0.425	0.480
2.3	0.886	0.409	0.461
2.4	0.887	0.394	0.444
2.5	0.887	0.380	0.428
3	0.893	0.326	0.365
3.5	0.900	0.285	0.316
4	0.906	0.255	0.281

$$m_t^* = a K_b, \sigma_t = a C_b$$

Таблица П.5.4 Квантили $\chi 2$ - распределения

Число стене- ней своболи	y*0,1	7°0,3	×**,5	х [*] 0,7	×°0,9	x*0,95	×*0,99	x*0,599
1	0,016	0,148	0,455	1,07	2,71	3,84	6,63	10,8
2	0,211	0,713	1,39	2,41	4,61	5,99	9.21	13.8
3	0,594	1.42	2,37	3,67	6.25	7,81-	11,3	16,3
4	1.06	2,19	3,36	4,88	7.78	8,49	13.3	18,5
5	1.61	3.00	4,35	6.06	9,24	11,1	15,1	20.5
6	2,20	3,83	5,35	7,23	10,6	12,6	16,8	22,5
7	2,83	4,67	6,35	8,38	12,0	14,1	18,5	24,3
8	3,49	5,53	7,34	9,52	13,4	15,5	20,1	26,1
9	4,17	6.39	8,34	10.7	14,7	16,9	21,7	27.9
10	4,87	7,27	9,34	11,8	16,0	18,3	23,2	29,6
11	5,58	8,15	10,3	12,9	17,3	19.7	24,7	31,3
12	6,30	9,03	11,3	14,0	18,5	21,0	26,2	32,9
13	7,04	9,93	12,3	15.1	19,8	22,4	27.7	34,5
14	7,79	10,08	13,3	16,2	21,1	23,7	29,1	36,1
15	8,55	11,7	14,3	17.3	22,3	25,0	30,6	37,7
16	9,31	12,6	15.3	18.4	23,5	26,3	32,0	39,3
17	10.1	13,5	16,3	19,5	24,8	27,6	33,4	40,8
18	10,9	14.4	17.3	20.6	26,0	28,9	34,8	42,3
19	11,7	15.4	18,3	21,7	27.2	30,1	36,2	43,8
20	12.4	16,3	19,3	22,8	28.4	31,4	37.6	45,3
21 22 23 24 25 26 27 28 29	13,2 14,0 14,8 15,7 16,5 17,3 18,1 18,9 19,8 20,6	17.2 18.1 19.0 19.9 20.9 21.8 22.7 23.6 24.6 25.5	20,3 21,3 22,3 23,3 24,3 25,3 26,3 27,3 28,3 29,3	23,9 24.0 26.0 27,1 28,2 29,2 30,3 31,4 32,5 33,5	29,6 30,8 32,0 33,2 34,4 35,6 36,7 37,9 39,1 40,3	32,7 33.9 35.2 36.4 37,7 38.9 40,1 41.3 42.6 43.8	38,9 40,3 41,6 43,0 44,3 45,6 47,0 48,3 49,6 50,9	46,8 48,3 49,7 51,2 52,6 54,1 55,5 56,9 58,3 59,7

Значения коэффициента Ro

N	0,999	0,990	0,975	0,900	0,950	0,800
I	1,00	0,99	0,98	0,95	0,90	0,80
2	1,94	1,80	1,68	1,55	1,37	I,II
3	-2,70	2,35	2,12	1.89	1,61	1,25
4	3,29	2,74	2,41	2,11	1,75	1,32
5	3,74	3,01	2,61	2,25	1,85	1,38
6	4,10	3,22	2,76	2,36	1,91	1,41
7	4,39	3,37	2,87	2,44	1,96	I,44
8	4,63	3,50	2,96	2,50	2,00	1,46
9	4,82	3,60	3,03	2,55	2,03	I,47
10	4,99	3,69	3,08	2,59	2,06	1,49
12	5,25	3,82	3,18	2,65	2,09	1,51
14	5,45	3,92	3,24	2,70	2,12	1,52
16	5,61	4,00	3,29	2,73	2,14	1,53
18	5,74	4,06	3,33	2,76	2,16	1,54
20	5,84	4.11	3,37	2,78	2,18	1,55
25	6,04	4,21	3,43	2,82	2,20	1,56
30	6,17	4,27	3,47	2,85	2,22	1,57
35	6,27	4,31	3,50	2,87	2,23	1,57
40	6,34	4,35	3,52	2,89	2,24	1,58
50	6,45	4,40	3,56	2,91	2,25	1,58
60	6,52	4,43	3,58	2,92	2,26	I,59
80	6,62	4,45	3,60	2,94	2,27	1,59
160	6,67	4,50	3,62	2,95	2,28	1,60
200	6,79	4,55	3,66	2,97	2,29	1,60
300	6,83	4,57	3,67	2,98	2,29	1,61
500	6,86	4,58	3,68	2,99	2,30	1,61
1000	6,88	4,59	3,68	3,00	2,30	1,61
	6,91	4,60	3,69	3,00	2,30	1,61

 $R_0 = N(1 - \sqrt{1 - d^2}),$ $P_0 = \frac{R_0}{d^2}.$

Значения ковффициента R_4 при L=0.95

N TOW	0	0,10	0,20	0,30	0,40	0,50
I	19,5	19,5	19,6	19,6	19,7	19,7
2	5,63	5,53	5,44	5,35	5,26	5,15
3	3,66	3,60	3,52	3,44	3,36	3,27
4 1	2,93	2,87	2,81	2,74	2,67	2,59
5	2,54	2,49	2,43	2,37	2,31	2,25
6	2,29	2,26	2,20	2,15	2,09	2,04
8	2,01	1,98	1,93	1,89	1,84	1,79
10	1,63	18,1	1,78	1,74	1,70	1,66
15	1,62	1,60	1,58	1,54	1,51	1,48
20	1,51	1,49	1,46	1,44	1,41	1,39
25	1,44	1,42	1,40	1,38	1,35	1,33
30	1,39	1,37	1,35	1,34	1,31	1,29
40	1,32	1,31	1,30	1,28	I,26	1,24
50	1,28	1.27	1,26	1.24	1,23	1,21
60	1,25	ا مُصْرِ آ	I,23	I,22	1,21	1,20
80	1,21	1,21	1,20	1,19	1,18	1,17
100	1.19	1,18	1,17	1,16	1,16	1,15
150	1,15	1,14	1,14	1,13	1,12	1,12
200	1,13	1,12	1,12	1,11	1,10	1,10
250	1,11	1,11	1,10	1,10	1,09	1,09
300	1,10	1,10	1,09	1,09	1,08	1,08
400	1,09	1,08	1,06	1,08	1,07	1,07
560	1,08	1,08	1,07	1,07	1,06	1,06
600	1,07	1,07	1,06	1,06	1,06	1,05
800	1,06	1,06	1,06	1,05	1,06	1,05
1000	1,06	1,66	1,06	1,05	1,04	1,04

$$P_{u} = \frac{h}{NR_{i}}$$

Таблица П.5.7.

		Значал	ия ковффи	ционта (र्ट छोस ≠	0,95
No. of the last	: 0 ¹	0.1	0.2	_0,3	0,4	0.5
Ţ	0.21	0.25	0,30	0.37	0,45	0,51
2	0,32	0,35	0,39	0,44	0,49	0,56
3	0,39	0,42	0,45	0,49	0,53	0,59
4	0,44	0,47	0,50	0,53	0,57	0,62
5	0,48	0,50	0,53	0,57	0,50	0,64
6	0.51	0,53	0,56	0,59	0,62	0,68
į ė	0,55	0,58	0,50	0,63	0,66	0,69
10	0.59	0.61	0,63	0,65	0,69	0,72
15	0,65	0,67	0,69	0.71	0,74	0,76
20	0,69	0,70	0,72	0,74	0,76	0,78
25	0,72	0,73	0,74	0,76	0,78	0,80
30	0.74	0.75	0,76	0,78	0,60	0,82
40	0,77	0,76	0,79	0,80	0,82	0,84
50	0,79	0,80	0,81	0,82	0,83	0,85
60	0,81	0,82	0,63	0,84	0,85	0,86
80	0,83	0.84	0,85	0,88	0,87	0,88
100	0,85	0,86	0.86	0,87	0.88	0,89
150	0,87	0.88	0,89	0,89	0,90	0,91
200	0,89	0,90	0,90	12.0	10,0	0.92
250	0,90	0,91	0,92	0.92	0,92	0,93
300	0,91	0.91	0,92	0,92	0,93	0.93
400	0,92	0,92	0,93	0,93	0,94	0,94
500	0,93	0,93	0,94	0,94	0,94	0,96
600	0,94	0,94	0,94	0,94	0,96	0,96
800	0,94	0,95	0,95	0,95	0,95	0.96
1000	0,95	0.96	0.97	0.97	0,97	0,97

 $\Gamma_{\rm B} = \frac{h}{HR_{\rm A}}$

приложение 6

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра технической эксплуатации ЛАиАД

«Проверена» Руководитель курсовой работы	«Защищена» с оценкой	
(степень, звание, Ф. И. О.	с оценкои	
(подпись, дата)	(подпись)	(Ф. И. О.)
КУРСО	ВАЯ РАБОТА	
	жазателей надежности ионной техники»	
по ди	СЦИПЛИНЕ	
«ОСНОВЫ ТЕО	РИИ НАДЕЖНОСТИ»	
рр студента:	Курсовую рабовариант №	выполнил
	(d	Р. И. О.)

ЛИТЕРАТУРА

- 1. Ицкович А.А., Файнбург И.А. Основы теории надежности. Ч.1. Учебное пособие. М.: МГТУ ГА, 2013.
- 2. Ицкович А.А. Надежность летательных аппаратов и авиадвигателей. Ч.2. Учебное пособие. М.: МГТУ ГА, 1995.
- 3. Смирнов Н.Н., Ицкович А.А. и др. Надежность и эксплуатационная технологичность ЛА. М.: МИИГА, 1989.

4.

СОДЕРЖАНИЕ

1. Общие положения	3
2.Структура курсовой работы	4
3. Техническое задание	4
4. Методические указания по решению задач	7
Приложения:	
Приложение 1. Варианты заданий	19
Приложение 2. Исходные данные для выполнения задания	20
Приложение 3. Оценка показателей безотказности изделий	
параметрическим методом	31
Приложение 4. Примеры оценок показателей безотказности изделий	
непараметрическим методом	34
Приложение 5. Таблицы характеристик распределения случайных	
величин	40
Приложение 6. Титульный лист курсовой работы	48
Список литературы	49