ЛАБОРАТОРНАЯ РАБОТА № 8

МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ПРОЦЕССОВ

1. ЦЕЛЬ РАБОТЫ

- 1.1. Приобретение навыков по математическому моделированию и исследованию случайных процессов (СП) на персональном компьютере (ПК).
- 1.2. Закрепление знаний о методах моделирования и обработке результатов СП для решения радиотехнических задач.
- 1.3. Моделирование СП методом скользящего суммирования и рекуррентным методом.
 - 1.4. Приобретение навыков оформления результатов исследования на ПК.

2. ПОДГОТОВКА К РАБОТЕ

При подготовке к выполнению лабораторной работы необходимо вспомнить материалы предшествующих учебных дисциплин (теория вероятностей, радиоизмерения и т.д.), и изучить материалы данной дисциплины по следующим вопросам:

- 2.1. Основные положения по вхождению в программную оболочку Mathcad.
- 2.2. Систему команд и операторов Mathcad, необходимых для моделирования и анализа СП.
 - 2.3. Принципы составления алгоритмов для моделирования СП.
- 2.4. Изучить и запомнить встроенные функции и ключевые слова для анализа и обработки СП, моделируемых в лабораторной работе. Например, для СП с нормальным законом распределения:
- rnd(x) —случайная величина, имеющая равномерное распределение на интервале 0 и x,

runif(m, a, b) — вектор m случайных чисел, имеющих равномерное распределение (b и а — границы интервала a < b)?

dunif(x, min, max) – плотность вероятности для равномерного распределения,

mean(A) – среднее элементов массива A,

stdev(A) – среднеквадратичное отклонение элементов массива A,

var(A) – дисперсия элементов массива A,

hist(int, A) – вектор с числами точек из массива A, попавших в соответствующий интервал с границами, заданными вектором int (служит для построения гистограмм).

2.5. Вспомнить алгоритм формирования негауссовских СП, порождаемых нормальным процессом, используя метод нелинейного преобразования.

ЛИТЕРАТУРА

- 1. Дьяконов В. Mathcad 2000. Учебный курс. Санкт-Петербург.: Питер. 2000. 586 с.
- 2. Тихонов В.И. Статистическая радиотехника. М.: Радио и связь. 1982. 624 с.
- 3. Быков В.В. Цифровое моделирование в статистической радиотехнике. М.: Сов. радио. 1971. 328 с.
- 4. Криницин В.В., Хресин И.Н. Математические модели и методы в расчетах на ЭВМ. Часть 1. Математическое моделирование и оптимизация авиационных радиоустройств на ЭВМ. М.: МИИГА. 1991.
- 5. Прохладин Г.Н. Моделирование систем и процессов. Часть 1. М.: МГТУ ГА. 2009.

Общая характеристика методов моделирования.

Случайным процессом называется семейство случайных величин $X(t,\omega)$, заданных на одном и том же пространстве событий Ω , зависящих от параметра $t \in T$. При фиксированном значении $t = t_0$ случайный процесс $X(t,\omega)$ обращается в случайную величину $X(t_0,\omega)$, называемую сечением СП. Таким образом, СП X(t) представляет собой совокупность всех сечений при различных значениях, а понятие случайного процесса является обобщением понятия системы СВ, когда этих величин — бесконечное множество.

В отличие от СВ математическое ожидание и дисперсия не являются исчерпывающими характеристиками СП. В частности, зная математическое ожидание и дисперсию, ничего нельзя сказать о зависимости двух (и более) сечений СП. Для определения связи между различными сечениями СП используется корреляционная функция.

Корреляционной функцией СП X(t) называется неслучайная функция двух аргументов $R_x(t_1,t_2)$, которая при каждой паре значений t_1 и t_2 равна корреляционному моменту соответствующих сечений $X(t_1)$ и $X(t_2)$. Причем считается, что корреляционная функция при одинаковых значениях аргументов равна дисперсии СП. Это свойство позволяет считать математическое ожидание и корреляционную функцию главными характеристиками СП; необходимость в дисперсии отпадает.

Принцип моделирования СП на ПК аналогичен принципу моделирования случайных величин (СВ). Модель СП с заданными: одномерной плотностью распределения вероятностей q(y) и корреляционной функцией $R_y(\tau)$ получается из базовой модели СП. В качестве базовой модели используется модель стационарного нормального «белого» шума. Известно, распределение двух независимых СВ, одна из которых распределена по закону Рэлея, а другая — по закону арксинуса, является нормальным [2]. Тогда величина $Y = \sigma \cdot \sqrt{-2 \cdot \ln \left(\mathbf{K}_1 \right)} \cdot \sin \left(\mathbf{C} \cdot \mathbf{T} \cdot \mathbf{K}_2 \right)$ имеет нормальный закон распределения с па-

раметрами: математическое ожидание $m_y = 0$ и дисперсия — $D_y = \sigma^2$. Причем X_1 и X_2 две независимые равномерно распределенные на интервале (0,1) CB.

Другой способ основан на центральной предельной теореме теории вероятностей, в соответствии с которой распределение суммы достаточно большого числа независимых величин, распределенных по любому закону и имеющих конечную дисперсию, неограниченно приближается к нормальному закону.

Следовательно, СВ Y с нормальным законом распределения можно получить с помощью преобразования

$$y = \sum_{i=1}^{s} X_{i},$$

где x_i , i = 1,2,...s — числа датчика случайных чисел с равномерным законом распределения в интервале (0,1).

Для получения СВ Z с нормальным законом распределения и параметрами $m_z = a, \, \sigma_z = \sigma$ полученные выше числа y надо преобразовать следующим образом

$$z = \frac{\sqrt{(n/2)}\sigma}{\sqrt{n/12}} + a.$$

Достаточным считается число слагаемых n=8...12. Удобным является значение n=12, поскольку выражение принимает вид

$$z = (y - 6) \cdot \sigma + a$$
.

В лабораторной работе используется последний вариант формирования «белого» шума.

Известны два основных метода моделирования стационарных гауссовских СП: метод скользящего суммирования и метод рекуррентных алгоритмов [3]. В основу этих методов положено линейное преобразование стационарной последовательности z[i] независимых гауссовских, случайных чисел с параметрами $m_z = 0$, $D_z = 1$ (нормальный дискретный «белый» шум) в дискретные реализации $\xi[i]$ СП с заданными корреляционно-спектральными характеристиками.

При методе скользящего суммирования дискретные значения моделируемого процесса $\xi[i]$ формируются в виде скользящей суммы значений z[i] с весовыми коэффициентами c_k , то есть используются только входные величины СП. Применение рекуррентного алгоритма предусматривает использование, как входных значений СП, так и некоторых выходных значений.

В работе рассматриваются оба метода моделирования гауссовского, стационарного СП, причем с их визуальным сравнением полученных, выходных диаграмм. В качестве корреляционной характеристики используется экспоненциальная функция вида

В этом случае коэффициенты c_k определяются по формуле

$$c_k = \sqrt{2 \cdot \omega_0 \cdot \Delta t} \cdot \exp \left(\omega_0 \cdot \Delta t \cdot k \right)$$
.

Параметр q, ограничивающий число весовых коэффициентов c_k при использовании метода скользящего суммирования, можно выбрать из условия

$$\left|1 - \frac{1}{D} \sum_{k=-q}^{q} c_k^2\right| < \varepsilon,$$

где D – дисперсия модулирования случайного процесса, ϵ – погрешность моделирования. Данное условие основано на том, что сумма квадратов весовых коэффициентов сk должна быть равна дисперсии модулируемого СП.

Тогда алгоритм моделирования СП методом скользящего суммирования имеет вид

$$\xi[i] = \sqrt{2 \cdot \gamma} \cdot \sum_{k=0}^{2q} \exp \left(-\gamma \cdot k \right) x[i-k], \ \gamma = \omega_0 \cdot \Delta t.$$

Следует отметить, если при моделировании гауссовского СП $\xi[i]$ известно, что этот процесс является результатом воздействия «белого шума на линейную систему с известной импульсной характеристикой h(t), то заданную систему следует использовать как формирующий фильтр. В этом случае весовые коэффициенты c_k алгоритма моделирования будут определяться через дискретные значения импульсной характеристики по формуле

$$c_k = \sqrt{\Delta t} \cdot h(k)$$
.

Рекуррентный алгоритм моделирования СП определяется выражением $\xi[i] = \sqrt{1-\rho^2} \cdot x[i] + \rho \cdot \xi[i-1],$

где
$$\rho = \exp(-\gamma)$$
, $\gamma = \omega_0 \cdot \Delta t$.

Алгоритм моделирования стационарных негауссовских СП, как правило, основан на нелинейном преобразовании нормального СП. Общий подход к решению этой задачи может быть следующим:

- находят такое нелинейное безынерционное преобразование b = f(a), которое преобразует гауссовский процесс u(t) в процесс $\xi[i]$ с заданным законом распределения $W(\xi)$,
- определяют по найденной функции b=f(a) зависимость корреляционной функции $R(\tau)$ полученного процесса $\xi[i]$ и корреляционной функции $R_0(\tau)$ исходного гауссовского процесса u(t): $R(\tau)=\phi[R_0(\tau)]$,
- получают корреляционную функцию исходного гауссовского процесса $R_0(\tau) = \varphi^{-1}[R(\tau)]$, где φ^{-1} функция обратная φ ,
- находят алгоритм для моделирования гауссовского процесса $\mathbf{u}(t)$ с требуемой корреляционной функцией $\mathbf{R}_0(\tau)$.

Некоторые частные виды СП можно формировать с помощью нелинейного безынерционного преобразования $b = f(a_1, a_2)$, где $a_1(t), a_2(t)$ — два независимых стационарных СП с параметрами $(0, \sigma_0^2)$.

Известно [3], что релеевский процесс $\xi(t)$ выражается через два независимых, стационарных, гауссовских СП $u_1(t)$ и $u_2(t)$ с параметрами (0,1)

$$\xi = \sigma_0 \sqrt{u_1^2 + u_2^2}$$

или в дискретных отсчетах

$$\xi[n] = \sigma_0 \sqrt{u_1^2[n] + u_2^2[n]}$$
.

$$u_{1}[i] = \sqrt{1 - \rho^{2}} \cdot y_{1}[i] + \rho \cdot u_{1}[i - 1],$$

$$u_{2}[i] = \sqrt{1 - \rho^{2}} \cdot y_{2}[i] + \rho \cdot u_{2}[i - 1],$$

где $\rho = \exp(-\gamma/2)$, $\gamma = \omega_0 \cdot \Delta t$, $u_1[t]$ и $u_2[t]$ — независимые значения нормированного дискретного «белого» шума.

Для показательного закона распределения моделирование СП с экспоненциальной корреляционной функцией имеет следующий алгоритм

$$\xi[n] = \sigma_0^2 \cdot (\mathbf{q}_1^2[n] + \mathbf{u}_2^2[n]),$$

причем все исходные величины такие же, как и для релеевского закона распределения.

Этапы моделирования:

формирование двух независимых, гауссовских, случайных чисел («белого» шума) с параметрами

$$i = 12...5 \cdot 10^{2}$$
, $\sigma = 1.0$, $m = 0$, $n = 1...12$, $x1_{n,1} = \text{rnd}$, $x2_{n,1} = \text{rnd}$, $y1_{1} = \sigma \cdot \left(\sum_{n} x1_{n,1} - 6\right) + m$, $y2_{1} = \sigma \cdot \left(\sum_{n} x1_{n,1} - 6\right) + m$

— определение необходимого числа коэффициентов c_k при погрешности моделирования $\epsilon = 0.01$; D = 1; q = 15:

$$\gamma = 0.1, \ C_q = \sqrt{2 \cdot \gamma} \cdot e^{-\gamma \cdot q}, \ \left| 1 - \frac{1}{D} \cdot \left[\sum_{k=0}^{q} \mathbf{C}_k \right]^2 \right| < \epsilon,$$

 моделирование стационарного, гауссовского СП с экспоненциальной корреляционной функцией методом скользящего суммирования:

$$N = 12$$
, $ul_i = \sqrt{2 \cdot \gamma} \cdot yl_{i-k} \sum_{k=0}^{N} e^{\P \cdot k}$,

- моделирование стационарного, гауссовского СП с экспоненциальной корреляционной функцией рекуррентным методом, приняв u11 $_{11}$ = 0:

$$\gamma = 0.1$$
, $u11_i = \sqrt{1 - e^{-2 \cdot \gamma}} \cdot y1_i + e^{-\gamma} \cdot u11_{i-1}$,

- построение диаграмм двух методов моделирования,
- моделирование релеевского (по заданию) СП, приняв

$$u21_{11} = 0$$
, $u22_{11} = 0$, $\rho = e^{-\gamma/2}$,

$$u2_{i} = \sqrt{2 \cdot \gamma} \cdot y2_{i-k} \sum_{k=0}^{N} e^{\P \cdot k}, \ u21_{i} = \sqrt{1-\rho^{2}} \cdot u1_{i} + \rho \cdot u21_{i-1},$$

$$u22_{i} = \sqrt{1-\rho^{2}} \cdot u2_{i} + \rho \cdot u22_{i-1}, \ u_{i} = \sigma \cdot \sqrt{u21_{i}^{2} + u22_{i}^{2}},$$

- моделирование экспоненциального (по заданию) СП используя выражение $u_i = \sigma^2 \cdot \left(21_i^2 + u22_i^2\right)$
 - построение гистограммы смоделированного по заданию СП.

3. ВОПРОСЫ ДЛЯ ДОПУСКА К РАБОТЕ

- 3.1. Какие команды используются при составлении программ по моделированию случайных процессов?
- 3.2. Поясните алгоритм формирования случайного процесса методом нелинейного преобразования, обратного функции распределения.
 - 3.3. Поясните процесс ввода в программу команд и операторов.
- 3.4. Какие палитры используются при введении в программу математических операторов и интегро-дифференциальных символов?
- 3.5. Поясните суть параметров случайных процессов: математического ожидания, дисперсии, корреляционной функции.
 - 3.6. Поясните алгоритм моделирования «белого» шума в Mathcad.
- 3.7. Какими параметрами необходимо задаться при моделировании СП рекуррентным методом.
 - 3.8. Поясните принцип построения гистограмм.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 4.1. Получить допуск к выполнению лабораторной работы.
- 4.2. Ознакомится с рабочим местом исследователя, получить индивидуальное задание у преподавателя.
- 4.3. Выполнить моделирование гауссовского, СП методом скользящего суммирования и рекуррентным методом, а также негауссовского СП с заданным законом распределения, используя метод нелинейного преобразования.
- 4.3.1. Составить программу моделирования, содержащую переменные величины.
- 4.3.2. Произвести набор и отладку программы, после чего выполнить экспериментальную часть работы.
- 4.3.3. Построить гистограммы закона распределения по библиотечным функциям Mathcad.

Варианты

- а) показательный закон распределения: $\gamma = 0.08$; 0,1; 0,12; $\sigma = 0.9$; 1,0;
- б) релеевский закон распределения: $\gamma = 0.08$; 0,1; 0,12; $\sigma = 0.9$; 1,0.
- 4.4. Оформить отчет.
- 4.5. Защитить результаты лабораторной работы.

5. ОФОРМЛЕНИЕ ОТЧЕТА

В отчете должны быть представлены:

- цель работы,
- краткие теоретические сведения,
- листинг программы моделирования с необходимыми комментариями,

- результаты выполнения экспериментальной части лабораторного задания,
 - выводы по работе.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ ЗАЩИТЫ РЕЗУЛЬТАТОВ РАБОТЫ

- 6.1. Дайте определение СП и в чем отличие СП от СВ.
- 6.2. Назовите основные характеристики СП.
- 6.3. Что такое корреляционная функция и что она характеризует?
- 6.4. Может ли корреляционная функция быть случайной функцией?
- 6.5. Поясните общий принцип моделирования СП.
- 6.6. Что является базовой моделью СП?
- 6.7. Какие алгоритмы формирования «белого» шума вам известны?
- 6.8. Поясните алгоритм моделирования СП методом скользящего суммирования.
- 6.9. По какому принципу определяется минимальное число коэффициентов суммирования при одноименном методе моделирования СП?
 - 6.10. Поясните алгоритм моделирования СП рекуррентным методом.
- 6.11. В чем основное отличие в алгоритмах моделирования СП рекуррентного метода и скользящего суммирования?
 - 6.12. Поясните алгоритм моделирования негауссовских СП.
- 6.13. Приведите график плотности распределения СП с гауссовским законом.
- 6.14. Приведите график плотности распределения СП с релеевским законом.
- 6.15. Приведите график плотности распределения СП с показательным законом.