ЛАБОРАТОРНАЯ РАБОТА ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ МАГНЕТРОНА

1. Цель работы

Изучение динамики движения заряженных частиц в электрическом и магнитном полях; опытное определение отношения заряда электрона к его массе $\frac{e}{m}$.

2. Подготовка к работе

Изучите теоретический материал [1; 2]: силы, действующие на заряженную частицу в электрическом и магнитном полях и соответствующие уравнения движения частицы; соотношение между работой, совершаемой электрическим полем и изменением кинетической энергии частицы. Ознакомьтесь с методом управления траекториями электронов в магнетроне и способом опытного определения удельного заряда электрона $\frac{e}{m}$. Подготовьте ответы на вопросы к допуску.

3. Краткая теория

На частицу с зарядом q, движущуюся со скоростью \vec{v} во внешнем магнитном поле с индукцией \vec{B} , действует сила Лоренца:

$$\vec{F}_{n} = q[\vec{v}, \vec{B}] \; ; \; F_{n} = qvB\sin\alpha \,, \tag{1}$$

где $[\vec{v}, \vec{B}]$ – векторное произведение;

 α — угол между векторами \vec{v} и \vec{B} .

Важно отметить, что сила Лоренца не совершает механической работы, так как вектор $\vec{F}_{\!\scriptscriptstyle \Pi}$ всегда перпендикулярен вектору скорости частицы \vec{v} .

Если магнитное поле однородно и вектор \vec{v} перпендикулярен \vec{B} (α = 90°), то заряженная частица описывает окружность, радиус которой, согласно уравнению движения

$$F_{\scriptscriptstyle A} = ma$$
, $q \upsilon B = \frac{m \upsilon^2}{R}$,

равен

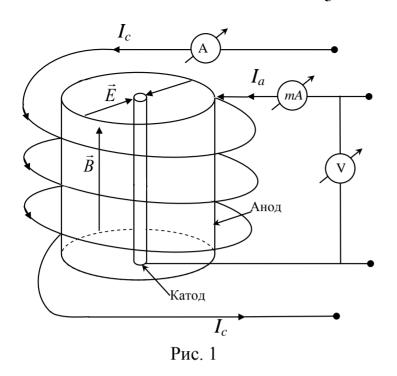
$$R = \frac{mv}{aB} . (2)$$

Если в пространстве, кроме магнитного поля, существует электрическое поле с напряжённостью \vec{E} , то на заряженную частицу действует результирующая сила

$$\vec{F}_{n} = q\vec{E} + q[\vec{v}, \vec{B}]. \tag{3}$$

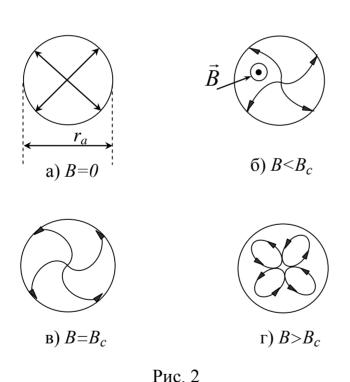
Равенство (3) определяет полное выражение для силы Лоренца и его иногда называют формулой Лоренца [1; 3].

В отличие от магнитного поля, электрическое поле совершает над заряженной частицей механическую работу. Например, электрон с нулевой начальной скоростью под воздействием ускоряющего напряжения U получает кинетическую энергию T, равную

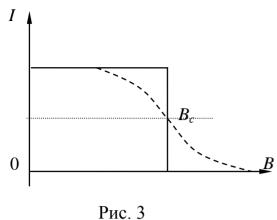

$$T = \frac{mv^2}{2} = eU \quad , \tag{4}$$

где m — масса электрона; e — заряд электрона.

4. Описание установки и методика проведения эксперимента


<u>Магнетроном</u> называют устройство, в котором свободные электроны движутся в вакууме под воздействием электрического и магнитного полей. В нашем случае магнетрон (рис.1) представляет собой вакуумную лампу с анодом и катодом цилиндрической формы, имеющими общую ось. Электрическое поле создаётся источником постоянного напряжения, подключаемым между анодом и катодом. Нагреваемый до высоких температур катод вследствие термоэлектронной эмиссии испускает электроны. Ускоряемые электрическим полем, они образуют анодный ток I_a , измеряемый миллиамперметром. Электрическое поле в лампе обладает цилиндрической симметрией, при этом величина напряжённости поля обратно пропорциональна расстоянию r от общей оси катода и анода $E \sim \frac{1}{r}$.

Для создания магнитного поля используется катушка (соленоид) с постоянным током. Внутрь этого соленоида помещается лампа. Величина индукции магнитного поля B пропорциональна силе тока через соленоид I_c , измеряемой амперметром. Магнитное поле в лампе однородно, при этом векторы \vec{B} перпендикулярны векторам \vec{E} .


Рассмотрим, каким образом магнитное поле воздействует форму на траекторий электронов и величину анодного тока. Допустим, что анодное напряжение задано и остаётся постоянным. При B = 0 (рис. 2, a) электроны, ускоряемые электрическим полем, движутся к аноду прямым радиальным ПО В слабом траекториям. магнитном поле (рис. 2, б) Лоренца незначисилы

тельно искривляют траектории электронов, при этом все они достигают анода

и анодный ток I_a остаётся неизменным. При некоторой критической величине индукции B_c (рис. 2, в) траектории искривляются настолько, что электроны лишь поверхности касаются анода и при $B > B_c$ анодный ток прекращается. Дальнейший рост величины В увеличивает кривизну траекторий и анодный ток I_a продолжает отсутствовать (рис. 2, г).

Соответствующая ступенчатая зависимость $I_a(B)$ показана сплошной линией на рис. 3. В эксперименте вместо резкого падения анодного тока I_a наблюдается его плавное снижение (пунктирная линия на рис. 3). Это связано с тем, что электроны, приближающиеся к аноду, имеют некоторое распределение

по скоростям. При этом медленные электроны не достигают анода при $B < B_c$, а более быстрые — при $B > B_c$. Если считать участок спада кривой $I_a(B)$ приближённо симметричным, то значение B_c можно оценивать по точке, где ток I_a падает вдвое по отношению к начальной величине при B=0 (рис. 3).

Установим теперь количественные соотношения между параметрами траекторий электронов и характеристиками электрического и магнитного полей.

Как показано в работе [4], если радиус катода r_k значительно меньше радиуса анода r_a , то при $B=B_c$ участок траектории вблизи анода можно приближённо считать дугой окружности с радиусом

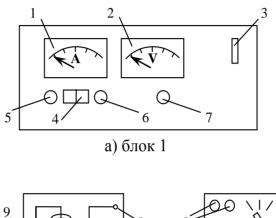
$$R = \frac{r_a}{2}. (5)$$

Это объясняется тем, что электроны ускоряются электрическим полем в основном вблизи катода. Далее электрическое поле резко ослабевает ($E \sim \frac{1}{r}$), и, приближаясь к аноду, электроны движутся с почти постоянной скоростью под воздействием преобладающей силы Лоренца.

Приравнивая правые части равенств (2) и (5) и полагая $B = B_c$, найдём скорость электронов вблизи анода:

$$\upsilon = \frac{eBr_a}{2m},\tag{6}$$

где e – заряд;


m — масса электрона.

Подставляя затем величину υ в формулу (4) при $U = U_a$, находим выражение для критической индукции магнитного поля:

$$B_c^2 = \frac{8mU_a}{er_a^2}. (7)$$

Согласно формуле (7) экспериментальный график $B_c^2(U_a)$ должен иметь вид прямой линии, проходящей через начало координат и по коэффициенту его наклона a можно определить искомое отношение e/m:

$$\frac{e}{m} = \frac{8}{ar_a^2} \,. \tag{8}$$

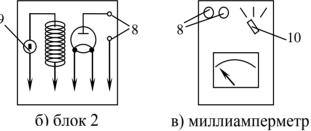


Рис. 4

Из формулы (8) следует, что если пренебречь погрешностью величины радиуса анода r_a , то для относительных погрешностей величин a и e/m справедливо равенство:

$$\frac{\Delta \frac{e}{m}}{e} = \frac{\Delta a}{a},\tag{9}$$

где Δ-обозначают соответствующие стандартные погрешности.

Поясним теперь устройство лабораторного стенда (рис. 4). Стенд состоит из двух блоков и миллиамперметра. Блок 1 (рис. 4, а) — источник питания, обеспечивающий необходимые напряжения и токи в лампе и соленоиде. В блоке 1 имеются амперметр 1 для измерения тока соленоида I_c и вольтметр 2, измеряющий анодное напряжение U_a . Блок 2 (рис. 4, б) содержит лампу, помещённую внутрь соленоида. На передней панели блока 2 (рис. 4, б) находятся

гнёзда 8 для подключения миллиамперметра и выключатель магнитного поля 9. Величина индукции магнитного поля B пропорциональна току соленоида I_c :

$$B = bI_c, (10)$$

величина коэффициента b указана на стенде.

Анодный ток лампы I_a измеряется миллиамперметром с переключателем пределов измерения 10 на рис. 4, в.

5. Порядок выполнения работы

- 5.1. Подготовка установки к работе (выполняет лаборант):
- 1. Привести элементы регулировки и управления на блоках 1 и 2 в исходное положение: в блоке 1 установить регуляторы напряжения накала лампы 5, тока соленоида 6 и анодного напряжения 7 в крайние левые положения, выключатель амперметра 4 в нажатое положение. В блоке 2 перевести выключатель 9 в нижнее положение. Переключатель пределов шкалы миллиамперметра 10 установить в центральное положение.
- 2. Включить блок 1 в сеть (ручка 3). Перевести регулятор 5 в крайнее правое положение. Прогреть установку в течение 3-5 мин.
- 5.2. Измерение зависимости критической индукции магнитного поля B_c от анодного напряжения U_a :
- 1. При выключенном магнитном поле (выключатель 9 на блоке 2 в нижнем положении), вращая регулятор 7, установить по вольтметру 2 на блоке 1 анодное напряжение U_{a1} (диапазон анодных напряжений для вашей бригады, указан в табл. 2). Подобрав предел измерения переключателем 10 на панели миллиамперметра (рис. 4, в), измерить анодный ток лампы I_{a1} . Записать результат в табл. 1.
- 2. Включить магнитное поле, переведя выключатель 9 на блоке 2 в верхнее положение. Не изменяя анодного напряжения U_{a1} , медленно вращая регулятор 6 на блоке 1 по часовой стрелке, установить такой ток соленоида I_c , при котором анодный ток уменьшается вдвое, по сравнению с величиной I_{a1} , Записать величину I_c в табл. 1.
- 3. Провести однократные измерения I_a и I_c , аналогично пунктам 1 и 2 для других анодных напряжений U_a , указанных в табл. 2.

	Таблица Т					
U_a, B						
I_a , MA						
I_c, A						
B_c, T_{π}						
B_c, T_{π} B_c^2, T_{π}^2						
e/ m						

Таблица 2

Номер	U_{al}	U_{a2}	U_{a3}	U_{a4}	U_{a5}
бригады					
1,3	40	50	60	70	80
2,4	45	55	65	75	85

6. Обработка результатов измерений и оформление отчёта

- 1. По формуле (10) и табличным значениям токов соленоида I_c определить величины критической индукции магнитного поля B_{ci} и квадраты этих величин B_{ci}^2 . Данные занести в табл.1.
- 2. Открыть папку «Обработка результатов ЛР», расположенную на рабочем столе лабораторного компьютера; выбрать файл для графической обработки данных методом наименьших квадратов (МНК) под названием «Расчёт y=ax МНК». Внести в таблицу файла величины B_c^2 и U_a из табл. 1. Приняв стандартную погрешность величины a равной её среднеквадратической погрешности $\Delta a = \sigma_a$, записать результат компьютерного расчёта a в стандартной форме в нижнюю строку табл. 1. Построить в тетради график зависимости $B_c^2(U_a)$, аналогичный полученному на экране компьютера, с указанием всех экспериментальных точек.

Примечание. 1. При записи результатов необходимо округлять величины погрешностей до одной-двух значащих цифр. Последние цифры значений величин должны быть того же разряда, что и в их погрешности.

- 2. Полагая $\Delta a = \sigma_a$, считаем доверительную вероятность результата, равной P=0,68.
- 3. По формуле (9), используя найденные величины a и Δa , рассчитать относительную погрешность опытного значения $\frac{e}{m}$ в % и записать результат в нижнюю строку табл.1.
- 4. Сравнить опытное значение отношения e/m с табличной величиной $e/m=1,76\cdot 10^{11}~{\rm K}{\rm л/k}{\rm F}$ и сделать выводы по результатам эксперимента.

7. Вопросы для допуска к лабораторной работе

- 1. Какие силы действуют на заряженную частицу, движущуюся со скоростью υ в электрическом и магнитном полях? Покажите на рис. 2, б векторы сил, действующих на электрон, движущийся от катода к аноду в магнетроне.
- 2. Запишите уравнение движения электрона, равномерно вращающегося в магнитном поле с вектором индукции, перпендикулярном вектору скорости электрона. Как рассчитать радиус вращения электрона?
- 3. Как определить скорость электрона, прошедшего ускоряющее напряжение U, если известна его начальная скорость v_0 ? Может ли сила Лоренца увеличить кинетическую энергию электрона?
- 4. Каким образом создаются электрическое и магнитное поля в магнетроне? Являются ли эти поля однородными? Как направлены векторы напряжённости электрического поля и индукции магнитного поля по отношению к вектору скорости электрона?
- 5. Почему с увеличением индукции магнитного поля анодный ток в магнетроне начинает падать? Как по показаниям миллиамперметра можно судить о форме траекторий электронов? Каким образом, измеряя анодный ток, определить критическую индукцию магнитного поля B_c ?
- 6. Какие предположения используются при получении теоретической зависимости критической индукции магнитного поля B_c от анодного напряжения U_a ?
- 7. На основе какого экспериментального графика определяется значение удельного заряда электрона? Каким образом оценивается относительная погрешность этой величины?

8. Литература

- 1. Трофимова Т.И. Курс физики. М.: Издательский центр «Академия», 2007.
 - 2. Савельев И.В. Курс общей физики. СПб: Лань, 2008. Т. 2.
- 3. Платунов Е.С., Самолётов В.А., Буравой С.Е. Физика: словарьсправочник. СПб.: Питер, 2005.
 - 4. Шимони К. Физическая электроника. М.: Энергия, 1977.

СОДЕРЖАНИЕ

1. Цель работы	3
2. Подготовка к работе	3
3. Краткая теория	3
4. Описание установки и методика проведения эксперимента	4
5. Порядок выполнения работы	8
6. Обработка результатов измерений и оформление отчёта	9
7. Вопросы для допуска к лабораторной работе	10
8. Литература	11