
Организм как живая целостная система

Уровни биологической организации

Спектр уровней биологической организации (по Ю.Одуму)

Экология изучает правую часть «спектра», изображенного на рис. 1., т. е. уровни биологической организации от организмов до экосистем. В экологии **организм** рассматривается как целостная система, взаимодействующая с внешней средой, как абиотической, так и биотической.

Популяция - это совокупность особей одного вида. Генетики обычно добавляют как обязательный момент – *способность этой совокупности к самовоспроизведению*. Экологи же, учитывая обе эти особенности, подчеркивают некую изолированность в пространстве и во времени аналогичных совокупностей одного и того же вида (Гиляров, 1990).

Изолированность в пространстве и во времени аналогичных популяций отражает реальную природную <u>структуру биоты</u>.

Некоторые из группировок достаточно хорошо приспосабливаются к местным условиям, образуя так называемый экотип.

Биоценоз - совокупность совместно обитающих популяций разных видов микроорганизмов, растений и животных. Термин «биоценоз» впервые применил Мёбиус (1877).

В дальнейшем это пространство было названо *биотопом*, под которым понимаются условия окружающей среды на определенной территории: воздух, вода, почвы и подстилающие их горные породы. Именно в этой окружающей среде существуют растительность, животный мир и микроорганизмы, составляющие биоценоз.

В 1935 г., английским ботаником А. Тенсли был введен термин "экосистема». **Экосистема**, по А. Тенсли, - «совокупность комплексов организмов с комплексом физических факторов его окружения, т. е. факторов местообитания в широком смысле». Подобные определения есть и у многих других известных экологов, например, ю. Одума, К. Вилли, Р. Уиттекера.

Особое значение для выделения экосистем имеют *темпрофические*, т. е. пищевые, взаимоотношения организмов, регулирующие всю энергетику биотических сообществ и всей экосистемы в целом.

Все организмы делятся на две большие группы - автотрофов и гетеротрофов.

Автотрые организмы используют неорганические источники для своего существования, тем самым создавая органическую материю из неорганической. К таким организмам относятся фотосинтезирующие зеленые растения суши и водной среды, сине-зеленые водоросли, некоторые хемосинтезирующие бактерии и др.

Гетеротрофные организмы потребляют только готовые органические вещества. К ним относятся все животные и человек, грибы и др. Гетеротрофы, потребляющие мертвую органику, называются сапротрофами (например, грибы), а способные жить и развиваться в живых организмах за счет живых тканей - паразитами (например, клещи).

Продуценты - производители продукции, которой потом питаются все остальные организмы, - это наземные зеленые растения, микроскопические морские и пресноводные водоросли, производящие органические вещества из неорганических соединений.

Консументы - это потребители органических веществ. Среди них есть животные, потребляющие только растительную пищу, - *также* потребляющие только мясом других животных - *плотоядные* (хищники), а также потребляющие ито и другое - *сееядные* (человек, медведь).

Редуценты (деструкторы) - восстановители. Они возвращают вещества из отмерших организмов снова в неживую природу, разлагая органику до простых неорганических соединений и элементов (например, на CO_2 , NO_2 и H_2O). Возвращая в почву или в водную среду биогенные элементы, они, тем самым, завершают биохимический круговорот. Это делают в основном бактерии, большинство других микроорганизмов и грибы. Функционально редуценты - это те же самые консументы, поэтому их часто называют *микроконсументами*.

Микроорганизмы, бактерии и другие более сложные формы в зависимости от среды обитания подразделяют на *аэробные*, т. е. живущие при наличии кислорода, и *анаэробные* живущие в бескислородной среде.

Развитие организма как живой целостной системы

Организм - любое живое существо. Он отличается от неживой природы определенной совокупностью свойств, присущих только живой материи: клеточная организация; обмен веществ при ведущей роли белков и нуклеиновых кислот, обеспечивающий *гомеостаз* организма - самовозобновление и поддержание постоянства его внутренней среды.

Живые организмы обладают обменом веществ, или **метаболизмом,** при этом происходит множество химических реакций.

Суммарно химическое уравнение фотосинтеза выглядит так:

солнечная энергия

$$6CO_2 + 12H_2O \xrightarrow{\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow} C_6H_1O_6 + 6O_2 + 6H_2O_6$$

где $C_6H_{12}O_6$ - богатая энергией молекула глюкозы.

Процесс хемосинтеза описывается уравнением

$$6 \; \mathrm{CO_2} \; + \; 12 \; \mathrm{H_2S} \; \rightarrow \; \mathrm{C_6H_{12}O_6} \; + \; 12 \; \mathrm{S} \; + \; 6 \; \mathrm{H_2O}.$$

Энергетический обмен

Центральную роль в энергетическом обмене клетки играет аденозинтрифосфорная кислота (АТФ), являющаяся непосредственным источником энергообеспечения любой клеточной функции.

Молекула ATФ состоит из аденина (азотистое основание), рибозы (углевод) и трех фосфатных групп.

Под влиянием специфических ферментов происходит гидролитическое отщепление концевой фосфатной группы от АТФ с образованием аденозиндифосфорной кислоты (АДФ) и освобождением энергии описываемые уравнением

$$AT\Phi + H_2O = AД\Phi + H_3PO4 + 30,6 кДж/моль.$$

Этапы энергетического обмена

Первый этап – подготовительный.

Второй этап - бескислородный.

$$C_6M_{12}O_6 + 3 H_3PO_4 + 2A \coprod \Phi = 2 C_3H_6O_3 + 2 A \top \Phi + 2 H_2O.$$

Третий этап - кислородный

$$2C_3H_6O_3 + 6O_2 + 36$$
 $H_3PO_4 + 36$ АД $\Phi = 6$ $CO_2 + 6H_2O + 36$ АТ $\Phi + 6$ H_2O

Системы организмов и биота Земли

Высшие таксоны систематики империи клеточных организмов

Надцарства	Царства	Подцарства
А. Доядерные организмы (Procaryota)	Дробянок (Mychota)	 Бактерии (Bacteriobionta) Цианеи, или сине- зеленые водоросли (Cyanobionta)
	1. Животные	
В. Ядерные организмы (Eycaryota)	(Animalia)	 Одноклеточные животные(простей шие) (Protozoa); Многоклеточные животные (Metazoa)
	II. Грибы (Mycetalia или Mycota)	 Низшие грибы (Мухоbiontа); Высшие грибы (Мусоmontа)
	III Растения (Vegetabilia или Plautae)	3. Высшие растения (Embrvobionta)