МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

А.А. Ицкович

ПОСОБИЕ

по выполнению практических занятий по дисциплине "Управление процессами технической эксплуатации летательных аппаратов"

для студентов специальности 130300 направления 552000 всех форм обучения

Москва - 2001

МИНИСТЕРСТВО ТРАНСПОРТА РФ ГОСУДАРСТВЕННАЯ СЛУЖБА ГРАЖДАНСКОЙ АВИАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра технической эксплуатации ЛА и АД

А.А.Ицкович

ПОСОБИЕ

по выполнению практических занятий по дисциплине "Управление процессами технической эксплуатации летательных аппаратов"

для студентов специальности 130300 направления 552000 всех форм обучения Рецензент: доктор технических наук, проф. Н. Н. Смирнов

Ицкович А.А.

Пособие по проведению практических занятий по дисциплине "Управление процессами технической эксплуатации летательных аппаратов" –М.: МГТУ ΓA , 2001г. - стр.

Данное пособие по проведению практических занятий издается в соответствии с учебным планом для студентов специальности 130300 направления 552000 всех форм обучения.

Рассмотрено и одобрено на заседании кафедры ТЭЛА и АД и методического совета ${\rm M}\Phi$

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Целью проведения практических занятий является овладение научными методами анализа, систематизация и обобщение теоретических знаний, приобретенных при изучении лекционного материала по дисциплине "Управление процессами технической эксплуатации летательных аппаратов", получение навыков и умений применять теоретические знания к решению практических задач технической эксплуатации летательных аппаратов.
- 1.2. Практические занятия включают решение задач по основным темам дисциплины: системный анализ процессов технической эксплуатации летательных аппаратов; программное управление процессами технической эксплуатации летательных аппаратов; оперативное управление процессами технической эксплуатации летательных аппаратов.
- 1.3. Пособие по каждому практическому занятию содержит: название темы и цель занятия, краткие теоретические сведения по теме, рекомендации для выполнения данной темы занятия собственного задания для самостоятельной работы. По каждому занятию предусмотрено несколько вариантов исходных данных. Кроме того, преподаватель может выдать студентам дополнительные варианты.
- 1.4. По результатам выполнения каждого практического задания студент составляет отчет. Отчет должен содержать тему и цель занятия, исходные данные выполненного варианта, необходимые расчетные зависимости, результаты расчета в виде таблиц или графиков, выводы. Каждый отчет подписывается студентом.

2. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

2.1. Практическое занятие №1

Тема: Управление объемами запасных частей для замены отказавших изделий

Цель: практическое освоение метода управления объемами запасных частей с использованием закона распределения Пуассона.

2.1.1. Техническое задание:

Практическое занятие состоит из решения следующих задач:

- 1). Определение потребного количества запасных изделий для эксплуатации парка ЛА на период назначенного ресурса.
- 2). Определение возможной длительности эксплуатации изделий для парка ЛА с учетом замены отказавших и при наличии заданного количества запчастей на складе авиапредприятия.

В качестве объекта анализа на практическом занятии выбираются типовые изделия системы кондиционирования воздуха (СКВ) самолета Ту-154: распределитель, обратный клапан, турбохолодильник, кран надува, регулятор избыточного давления, блок управления.

2.1.2. Необходимые теоретические сведения.

Для управления объемами запасных частей используется уравнение Пуассона:

$$\Pr \text{доп} = \sum_{n=0}^{r} \frac{(\omega t)^n}{n!} e^{-\omega t}, \qquad (2.1.1)$$

где: $Pr_{\text{ДОП}}$ – вероятность того, что для замены отказавших изделий будет достаточно г запасных частей $Pr_{\text{ДОП}} = 1$ - $P_{\text{ДОП}}$;

 ω - параметр потока отказа;

t - период эксплуатации в часах наработки.

Параметр потока отказа ω вычисляется известными методами теории надежности на базе статистических данных наработки до отказа восстанавливаемых изделий. На интервале наработки Δt_i определяется статистическая оценка ω_i *:

$$\omega_{i}^{*} = \frac{\Delta n_{i}}{N \Delta t_{i}}, \qquad (2.1.2)$$

где Δn_i - количество отказов изделий на интервале наработки Δt_i .

Строится гистограмма $\omega_{\mathbf{i}}^* = f(t)$ и определяется среднее значение $\omega(t)$ для k интервалов:

$$\omega_{cp}^* = \frac{1}{k} \sum_{i=1}^k \omega_i^*.$$
 (2.1.3)

2.1.3 Последовательность выполнения работы

1) Получение исходных данных

Варианты задания формируются в соответствии с данными табл. 2.1.1.

Таблица 2.1.1

Варианты заданий

№Варианта	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Коэффициент	1,0 1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
Корректировки																													
Наименование	П	ред	ел			Обр	атн	ΙЫЙ		-	Гур	οχο Σοχ	оло			ŀ	(ра	1			Рег	уля	тор)		(Σποι	{	
Изделия	Pac⊔	ширі	ител	٦Ь		Кл	апа	Н			ДИ	ЛЬН	ИК			На	адув	за			Из	зб.д	ιав		У	пра	авле	ЭНИ	Я
СКВ		513	}			5	102	2			1	621	Т			4	1602	2			4	456	1			2	2427	7	
Объем		5					10					15					20					25					30		
Парка ЛА																													
Кол-во изделий		5					4					2					3					2					2		
На ЛА а																													
Количество		5					4					55					2					5					5		
Запасных																													
Частей на																													
Складе n₃																													
Назначенный	;	3000	0			3	000)			6	000)			4	1000)			6	600	0			6	000)	
Ресурс, Трн																													
Рдоп		0,25	5				0,2				(0,05	5				0,1				(0,0	5			(0,05	5	

Выбор варианта задания студентами производится согласно шифру зачетной книжки по сумме трех последних цифр. Например, для шифра М73496, вариант №19 (4+9+6).

Исходные данные по надежности (табл. 2.1.2) являются результатами эксплуатационных наблюдений за наработками изделий до отказа.

2) Порядок решения задачи №1

Исходные данные: № варианта; коэффициент корректировки; заданное изделие СКВ; объем парка ЛА (m); количество изделий на ЛА (a); назначенный ресурс (T_{PH}), допустимая вероятность отсутствия запасного изделия на складе для замены отказавшего ($P_{доп}$) (табл. 2.1.1); наработки до отказа для заданного изделия СКВ (табл. 2.1.2).

Таблица 2.1.2. Статистические данные по наработке до отказа

Наименование Изделия	Наработки до отказа, ч
Распредилитель 513	150, 155, 230, 245, 310, 330, 420, 475, 510, 520, 530,565,87
Обратный Клапан 5102	310, 340, 355, 367, 420, 470, 510, 533, 540, 570, 585, 670
Турбохолодильник 1621т	327, 395, 450, 470, 535, 540, 570, 610, 620, 637, 780, 800, 950, 1000
Кран надува 4602	125, 130, 185, 210, 230, 235, 240, 257, 310, 320, 345, 400, 470, 520, 710
'	370,410,425,500,560,575,582,600,610,620,655 720,810,815,900
Блок управления 2427	588,646,675,697,798,836,893,969,1013,1026 1083,1112,1273

Определение статистической оценки параметра потока отказа ω_{cp}^* : исходные данные наработки до отказа разбить на интервалы и для каждого интервала определить ω_{i}^* , $i=\overline{1,k}$ по формуле 2.1.2;

построить гистограмму $\omega_{i}^{*}=f(t);$ определить среднее значение ω_{cp}^{*} по формуле 2.1.3

для определения потребного количества запасных изделий, $n_{3(1)}$ для эксплуатации одного изделия установленного на ЛА, в течении назначенного ресурса T_{PH} подставляем в формулу 2.1.1:

$$Pr_{\text{ДОП}} = 1 - P_{\text{ДОП}},$$

 $t = T_{\text{PH}},$
 $\omega = \omega_{\text{cp}}.$

Принимаем n=0 и определяем $Pr_{\mathbf{0}}\,(n=0);$ затем n=1 и находим $Pr_{\mathbf{1}}\,(n=1)$ и т.д.

При этом на каждом шаге проверяем условие: не превышает ли сумма

$$\sum_{n=1}^{r} p_n$$

значение $Pr_{ДОП}$. При

$$\sum_{n=1}^{\kappa} p_n \ge p_{T}$$
доп

вычисления прекращаются и определяется $n_{3(1)} = r$.

Графическое определение потребного количества запасных изделий $n_{3(1)}$ для одного изделия, установленного на самолете, приведено на рис. 2.1.1.

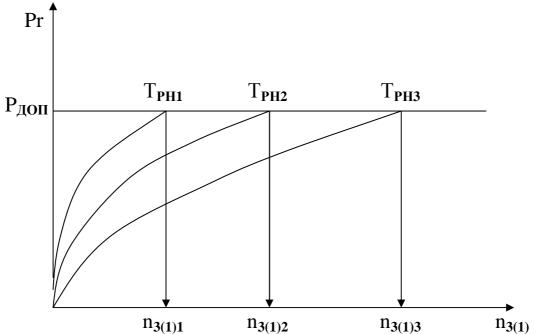


Рис. 2.1.1. Определение $\mathbf{n_{3(1)}}$ потребного $\mathbf{n_{3i}}$ для і-го варианта задания $\mathbf{T_{PHi}}$

Потребное количество запасных изделий n₃ для эксплуатации изделий парка ЛА:

$$N_{3\Pi} = n_{3(1)} \cdot a \cdot m$$

Порядок решения задачи №2

Исходные данные для выбранного варианта в задаче №1: вариант задания, заданное изделие СКВ, объем парка ЛА (m), количество изделий на ЛА (a), допустимая вероятность отсутствия запасного изделия на складе для замены отказавшего ($P_{\text{ДОП}}$), количество запасных частей на складе (n₃) (табл. 2.1.1), $\omega = \omega_{\text{CP}}$, вычисленное в задаче №1.

Для определения возможной длительности эксплуатации для парка ЛА с учетом отказавших и при наличии заданного количества запчастей на складе авиапредприятия n₃ подставляем в формулу (2.1.1):

$$\begin{split} ⪻_{\text{ДОП}}=1\text{ - }P_{\text{ДОП}},\\ &t=\tau,\\ &\omega=\omega_{\text{CP}}. \end{split}$$

Принимаем $\tau_1 = 1000$ и рассчитываем:

$$P_{n \, 3 \, (\tau \, 1)} = \sum_{n \, = \, 0}^{n \, 3} P_n \, ,$$

Затем $\tau_2 \equiv 2000$ и определяем

$$P_{n_{3(\tau_{2})}} = \sum_{n=0}^{n_{3}} P_{n},$$

и т.д. При этом на каждом шаге проверяется условие не превышает ли сумма $Pn_3(\tau_i)$ значения $Pr_{\text{ДОП}}$. При $Pn_3(\tau_i) \geq Pr_{\text{ДОП}}$ вычисления прекращаются и принимается $\tau = \tau_i$.

Графическое определение возможной длительности эксплуатации τ_i представлено на рис. 2.1.2.

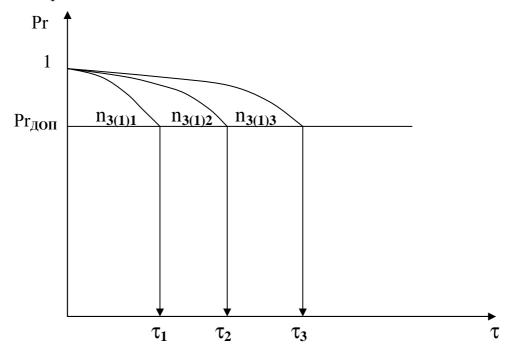


Рис. 2.1.2. Определение τ_i для i-го варианта задания.

Практическое занятие № 2

Тема: Управление техническим состоянием изделий, подверженных износу и старению.

Цель: практическое освоение экспоненциальной модели изменения параметров.

2.2.1 Техническое задание

Практическое занятие состоит из решения следующих задач:

- 1). Определение зависимости параметра изделия от наработки для математического ожидания и среднего квадратического отклонения по статистическим данным эксплуатационных наблюдений при двух фиксированных значения наработки.
- 2). Определение зависимости параметра изделия от наработки для математического ожидания и среднего квадратического отклонения по статистическим данным эксплуатационных наблюдений при трех фиксированных значения наработки.

В качестве объекта анализа на практическом занятии выбираются параметры гидравлического насоса НП-43M самолета Ту-134 аксиально-поршневого типа, регулируемой подачи.

- 1.2.2 Необходимые теоретические сведения [1]
- 1.2.3 При нелинейном характере процесса изменения параметра η(t) скорость изменения параметра V может быть аппроксимирована линейной зависимостью

$$V = \frac{d\eta}{dt} = C + k\eta. \tag{2.2.1}$$

Преобразуя и интегрируя левую и правую части (2.2.1) по времени и параметру получаем

$$t - t_1 = \frac{1}{k} \ln \frac{C + k \overline{\eta}}{C + k \overline{\eta_1}},$$

где $\overline{\eta_1}$ и $\overline{\eta}$ - средняя величина параметра при t и общая средняя, соответственно.

В десятичных логарифмах:

$$t - t_1 = \frac{1}{k \lg e} \lg \frac{\frac{C}{k} + \overline{\eta}}{\frac{C}{k} + \overline{\eta_1}}.$$

Обозначая $\frac{1}{k \lg e} = A$, $\frac{C}{k} = h$, получим

$$\bar{\eta} = (\bar{\eta} + h) \cdot 10^{\frac{t - t_1}{A}} - h. \tag{2.2.2}$$

Коэффициент А, измеренный в единицах наработки, определяет форму кривой (коэффициент долговечности), коэффициент h, измеренный в единицах параметра, определяет положения кривой (коэффициент смещения).

Дифференцируя (2.2.2) получим уравнение скорости изменения параметра

$$V = \frac{d\eta}{dt} = \frac{\overline{\eta_1} + h}{A \lg e} 10^{\frac{t - t_1}{A}}.$$
 (2.2.3)

Экспоненциальное уравнение (2.2.2) предполагает нормальное распределение параметра для любого момента наработки.

В этом случае верхнюю (нижнюю) доверительную границу изменения параметра можно описать таким же экспоненциальным уравнением, подставляя в него вместо математического ожидания исходного параметра верхний (нижний) доверительный предел этой случайной величины

$$\eta_1^1 = \overline{\eta}_1 + t_{\beta} \sigma_1$$

$$(\eta_1^{11} = \overline{\eta}_1 - t_{\beta} \sigma_1),$$

верхняя доверительная граница процесса изменения параметра

$$\eta^{1} = (\overline{\eta_{1}} + t_{\beta}\sigma_{1} + h)10^{\frac{t-t_{1}}{A}} - h,$$
(2.2.4)

нижняя доверительная граница процесса изменения параметра

$$\eta^{11} = (\overline{\eta_1} + t_{\beta} \sigma_1 + h) 10^{\frac{t-t_1}{A}} - h,$$
(2.2.5)

где σ_1 - среднее квадратическое отклонение параметра при наработке t_1

 t_{eta} - коэффициент Стьюдента при доверительной вероятности eta (Приложение 1)

Подставив в (2.2.4) и (2.2.5) вместо η' и η'' значения верхнего и нижнего доверительных пределов в момент t_2 и решив совместно, получим

$$A = \frac{t_2 - t_1}{\lg \frac{\sigma_2}{\sigma_1}}, \qquad (2.2.6)$$

$$h = \frac{\overline{\eta}_2 - \overline{\eta}_1 \frac{\sigma_2}{\sigma_1}}{\frac{\sigma_2}{\sigma_1} - 1}, \qquad (2.2.7)$$

где $\overline{\eta_2}$ и σ_2 - среднее значение параметра и среднее квадратическое отклонение в момент t_2 .

Уравнения (2.2.2 , 2.2.4 2.2.7) дают возможность по статистическим данным эксплуатационных наблюдений параметра в моменты t_1 и t_2 найти уравнения для математического ожидания и доверительных пределов процесса изменения параметра (задача N1).

$$h = \frac{\overline{\eta_2^2} - \overline{\eta_1}\overline{\eta_3}}{\overline{\eta_1} + \overline{\eta_3} - 2\overline{\eta_2^2}},$$
 (2.2.8)

$$A = \frac{t_3 - t_1}{\lg(\frac{\overline{\eta}_3 - \overline{\eta}_2}{\overline{\eta}_2 - \overline{\eta}_1})^2}.$$
 (2.2.9)

2.2.3. Последовательность выполнения работы

1). Получение исходных данных

Варианты задания формируются в соответствии с данными табл.2.2.1. Выбор варианта студенты производят согласно шифру зачетной книжки по сумме трех последних цифр.

Исходные данные по параметрам (табл.2.2.1) являются результатами эксплуатационных наблюдений за параметрами изделий при фиксированных значениях наработки t.

Исходные данные варианта формируются при умножении наработки t на корректирующий коэффициент (табл. 2.2.1).

2). Порядок решения задачи № 1.

Исходные данные : № варианта, коэффициент корректировки ; данный параметр гидронасоса, значения моментных функций : матожидания $\bar{\eta}$ и среднего квадратического отклонения σ при наработках t_1 =500 ч.,

 $t_2 = 1000$ ч. (в исходном варианте) ; доверительная вероятность α .

Определение значений коэффициентов долговечности A и смещения h по формулам (2.2.6) и (2.2.7) соответственно.

Составление зависимостей матожидания η , верхнего η' и нижнего η'' доверительных пределов параметра гидронасоса $\eta(t)$ от наработки t по формулам (2.2.2), (2.2.4) и (2.2.5) соответственно.

Составление зависимости скорости V изменения параметра η от наработки t по формуле (2.2.3) .

По полученным зависимостям определить прогноз матожидания $\overline{\eta}$, верхнего η' и нижнего η'' доверительных пределов и скоростей V изменения параметра на период упреждения $\tau = \frac{t_2}{2}$ (при наработке $t_3 = t_2 + \frac{t_2}{2}$).

Построение графических зависимостей $\overline{\eta(t)}, \eta'(t), \eta''(t), v(t)$ (рис. 2.2.1).

Порядок решения задачи №2

Исходные данные: № варианта, коэффициент корректировки; данный параметр гидронасоса, значения моментных функций: матожидания $\bar{\eta}$ и среднего квадратического отклонения σ при наработках t_1 =0 ч. , t_2 =500 ч, t_3 = 1000 ч. (в исходном варианте).

Определение значений коэффициентов долговечности A и состояния h по формулам (2.2.8), (2.2.9).

Далее выполнить операции в последовательности решения задач №1 и сравнить результаты прогноза в задачах 1 и 2, сделать выводы.

Варианты заданий

№ Вариа	анта	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Коэффи	циент	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Корреля	ции																														
		Давл	тени	e pa	боче	ей	Объ	емн	ый I	КПД	,	Зазо	рві	юри	інев	ЫΧ	Сум	марі	ный	осев	юй	Зазо	р 30.	лотн	ника	c	Зазо	р на	прав	онки) -
Парамет	тр	жид	кост	М			γ					пара	ах по	Ø	9,2,		люф	т δ	, M	к		гиль	зой	по 🛭	Ø 6,	3	щей	с си	ІЛОВІ	ым ц	(И-
Гидрона	icoca	Ρ, κ	г/ с л	ι^2								S_1 M	ſК									S_2 ,	МК				линд	дром	1		
												•										_					S_3 ,	MK			
			$\overline{\eta_{_{p}}}$		σ_{p}	,		$\overline{\eta_{_{\gamma}}}$		σ_{γ}	,	7	η_{s1}		σ_{s1}		7	η_{δ}		$\sigma_{_\delta}$		7	$\overline{\eta_{s2}}$		σ_{s}	2	1	$\overline{\eta_{s3}}$		σ_{s3}	3
Нара-	0	22	24.6		0.5	6	0.	.929		0.01	1	2	5.3		1.4		1	7.9		4.9)	4	1.7		0.6	6	2	1.84		1.69	9
ботки	500	2	17.9		4.2	2	0.	.904		0.02	26	2	6.9		2.5	í	7	1.6		20.	1	Ģ	9.3		2.0)	31	1.62		3.45	5
t, u																															
	1000	2	15.9		4.4	1	0.	.893		0.04	18	2	9.7		3.3		9	1.5		21.	7		10		2.0	5	3	7.3		9.5	j
Доверит	ельная																		•												
Вероятн	ость			0.95					0.9					0.85					0.9					0.85					0.8		
β																															

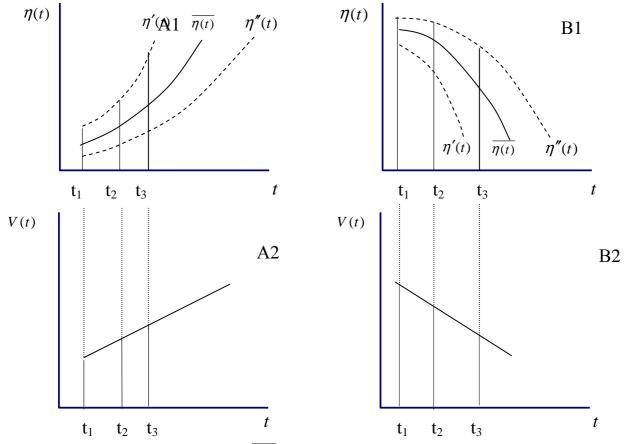


Рис . 2.2.1 Вид зависимостей $\overline{\eta(t)}, \eta'(t), \eta''(t), V(t)$:

A1 , A2 — при возрастающем; B1 , B2 — при убывающем характере изменения параметра $\eta(t)$.

2.3. Практическое занятие № 3

Тема: Модели управляемых состояний процесса технической эксплуатации
ЛА

Цель: практическое освоение моделей управляемых состояний: использования по назначению, технического обслуживания и ремонта.

2.3.1. Техническое задание:

Практическое занятие состоит из решения следующих задач:

- 1). Определение параметров модели управляемого состояния использования по назначению
- 2). Определение параметров управляемого состояния технического обслуживания и ремонта с детерминированной периодичностью и переменным объемом работ.

В качестве объектов анализа на практическом занятии выбираются функциональные системы ЛА, характеристики их надежности и видов технического обслуживания и ремонта.

2.3.2. Необходимые теоретические сведения. [2]

Модели управляемых состояний: использования по назначению U_i , $i = \overline{1,S}$ и технического обслуживания и ремонта (ТОиР) B_j , $j = \overline{1,n}$ являются фрагментами полумарковской модели управляемого ПТЭ ЛА.

- I. В модели управляемого состояния использования по назначению (рис.2.3.1) выделяются следующие состояния:
- состояния использования U_{i+1} , в котором объект имеет уровень работоспособности ниже, чем в U_i ;
- состояние ТОиР (восстановления) $B_{j,\ j} = \overline{1,n}$, посещаемое с периодичностью T_{j} .

Модель управляемого состояния использования по назначению должна удовлетворять следующим требованиям:

- 1). В предположении ожидания переходов из U_i в U_{i+1} заданы :
- а) случайное время пребывания объекта в состоянии $\, \, H_{i,} \, \,$ имеющее $\, \, \varphi$ ункцию распределение $\, F(t) \, \,$

$$P\{\tau < t\} = F(t),$$
 (2.3.1)

где ${\mathcal T}$ - время пребывания в состоянии H_i до выхода в состояния $B_1, \dots B_{n;}$

- б) вероятность $P_1, \, \ldots \, , \, P_n \, \, (\, P_1 + \ldots \, P_n = 1)$ перехода в состояния
- B_1 , B_n соответственно, отражающие периодичность проведения TO и P в этих состояниях.

Пусть объект попадает в состояние TO и P с периодичностью $\tau_{\,0} \, = \, \int \limits_{0}^{\infty} \, t dt \ \, , \label{eq:tau_0}$

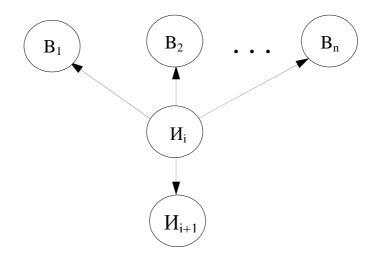


Рис. 2.3.1 Управляемое состояние использования по назначению ЛА

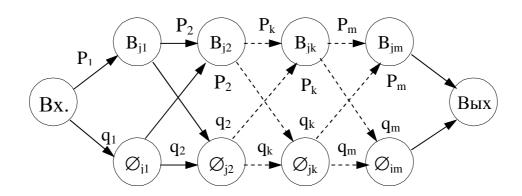


Рис .2.3.2 Управляемое состояние ТОиР ЛА

а в состояние B_J , $J = \overline{1,n}$ попадает с периодом T_j (суммарное время пребывания объекта в состоянии U_i) между двумя последовательными попаданиями состояние B_i .

На практике $T_1=\tau_0$, $T_2=K_1T_1$,, $T_n=K_{n-1}T_{n-1}$, где K_1 ,, K_{n-1} — целые числа, при этом P_i определяется по формулам :

$$P_1 = \frac{K_1 - 1}{K_1} = 1 - \frac{T_1}{T_2}, \dots,$$

$$P_{j} = \frac{K_{j} - 1}{K_{j}} = \frac{T_{1}}{T_{j}} (1 - \frac{T_{j}}{T_{j+1}}), \dots$$

$$P_{n} = \frac{T_{1}}{T_{n}}.$$
(2.3.2)

2). В предположении отсутствия переходов в состояния ТО и Р задано случайное время пребывания объекта в состоянии H_i , распределенное по закону G(t)

$$P\{\tau < t\} = G(t), (2.3.3)$$

где τ - время выхода из U_{i} в U_{i+1}

Процессы 1) и 2), накладываемые друг на друга, должны отражаться заданием параметров

 $\mu_{H_iB_1}=\mu_{H_{i}B_2}=....=\mu_{H_iB_{n}}$ – среднее время пребывания объекта в состоянии Π_i при условии его последующего перехода в состояние Π_i ТО и Π_i

 $\mu_{_{I_{i}H_{i+1}}}$ - среднее время пребывания в состоянии μ_{i} при условии перехода в состояние μ_{i+1} ,

 $\mu_{_{_{_{_{_{i}}}}}}$ - среднее время пребывания в состоянии $\mu_{_{i}}$,

 $P_{\boldsymbol{H}_i\boldsymbol{B}_j}$ - вероятность перехода из \boldsymbol{H}_i в \boldsymbol{B}_j ,

 $P_{U_i U_{i+1}}$ - вероятность перехода из $\mathbf{U}_{\mathbf{i}}$ в $\mathbf{U}_{\mathbf{i+1}}$.

Обозначим $P_{H_{\perp}B}$ вероятность перехода в состояние ТО и Р

$$P_{U_{i}B} = \sum_{i=0} P_{U_{i}B_{j}} = 1 - P_{U_{i}U_{i+1}},$$

тогда получим

$$P_{U_{i}B_{j}} = P_{j}P_{U_{iB}} (2.3.4)$$

Вероятность F(t) выхода объекта в состояние $B=UB_{j}$ $j=\overline{1,n}$ до наступления отказа за время $\tau \langle t \rangle$ определяется по формуле:

$$\overline{G}(t) = \int_{0}^{t} (1 - F(t)) dG(\tau). \tag{2.3.5}$$

Параметры состояний фрагмента модели ПТЭ определяются по формулам :

$$P_{H_{i}B_{j}} = P_{j}(1 - \int_{0}^{\infty} G(\tau)dF(\tau) , \quad j = \overline{1,n}$$

$$P_{H_{i}H_{i+1}} = 1 - \int_{0}^{\infty} F(\tau)dG(\tau) ,$$

$$\mu_{H_{i}B_{j}} = \frac{\int_{0}^{\infty} t(1 - G(t)) dF(t)}{1 - \int_{0}^{\infty} G(\tau) dF(\tau)} , \quad j = \overline{1,n}$$

$$\mu_{H_{i}H_{i+1}} = \frac{\int_{0}^{\infty} t(1 - F(t)) dG(t)}{1 - \int_{0}^{\infty} F(t) dG(t)} ,$$

$$(2.3.6)$$

$$\mu_{H_i} = \int_0^\infty t dF (t) + \int_0^\infty t dG (t) - \int_0^\infty t d(F(t)G(t)).$$

В частном случае , соответствующем детерминированной периодичности ТО и Р τ_0 , получим

$$F(t) = \begin{cases} 0, t < \tau_0 \\ 0, t \ge \tau_0 \end{cases}$$

Тогда приведенные выше формулы (2.3.6) примут вид:

$$P_{U_i U_{i+1}} = G(\tau_0), \tag{2.3.7}$$

$$P_{U_iB_j} = P_j(1 - G(\tau_0))$$
 , $i = \overline{1,n}$ (2.3.8)

$$\mu_{H_i B_i} = \tau_0, \tag{2.3.9}$$

$$\mu_{H_{i}H_{i+1}} = \frac{1}{G(\tau_{0}) \int_{0}^{\tau_{0}} t dG(t)},$$
(2.3.10)

$$\mu_{H_i} = \int_{0}^{\tau_0} t dG(t) = \tau_0 (1 - G(\tau_0)). \tag{2.3.11}$$

Функции и параметры распределений (экспоненциального, нормального и Вейбула) приведены в табл .2.3.1

II. Модель управляемого состояния ТО и Р (рис .2.3.2) с детерминированной периодичностью и переменным объемом работ определяет следующую ситуацию: из исходного состояния (одно из состояний использования U_i , $i=\overline{1,s}$) объект попадает с периодичностью τ_0 в состояние ТОиР $rac{B_i}{I}$, где

выполняется некоторый постоянный объем работ A_{j1} и переменный объем работ A_{jk} , $k=\overline{2,m}$ при каждом попадание в это состояние ТО и Р.

Таблица 2.3.1 Функции распределения и параметры распределения

Закон распределения	Функция	Параметры рас-
	распределе-	пределения
	ния	
	$F(t) = G(\tau_0)$	
		_
Экспоненциальный	$1 - e^{-\lambda \tau_0}$	$\lambda = \frac{1}{m_t}$
		m_t
Нормальный	$\Phi\left(\frac{\tau_0-m_t}{\sigma_t}\right)$	
	σ_{t}	m_t , σ_t
	t	
Вейбулла	$1 - e^{-(\frac{1}{a})^t}$	$b = f(v), v = \frac{\sigma_t}{m_t}$
		$D-J(V), V-m_t$
		$a = \frac{m_t}{K_b}$
		$a - \overline{K_b}$

Примечание: 1) функция нормального распределения ΦC определяется по табл. Приложения 2.

2) параметры распределения Вейбулла определяются по табл. Приложения 3: по значению коэффициента вариации $\,V\,$ находим параметр(b) и коэффициент $\,K_b\,$ и вычисляем параметр $\,$ а.

Принята следующая структура состояния ПТЭ B_{j} :

состояния B_{jk} , $k=\overline{1,m}$ в которых выполняется объем работ A_{jk} ;

нулевые" состояния Φ_{jk} , $k=\overline{1,m}$, характеризуемые нулевыми значениями среднего времени пребывания и расходов на единицу времени пребывания объекта в них.

Вероятности переходов P_i , q_i (см. рис. 2.3.2) удовлетворяют условию $P_i, q_i \geq 0, P_i + q_i = 1$

Продолжительность пребывания μ_i в состоянии B_{ji} , является аддитивным параметром . В состоянии Φ_{ji} продолжительность пребывания равна нулю .

Среднее время μ_j ср пребывания в состоянии ТО и Р B_j удовлетворяет уравнению:

$$\mu_{cp} = P_1 \mu_1 + P_2 \mu_2 + \dots + P_m \mu_m. \tag{2.3.12}$$

Другие параметры состояния ТО и Р \boldsymbol{B}_{j} :

средние трудовые затраты

$$\tau_{jcp} = P_1 \mu_1 + P_2 \tau_2 + \dots + P_m \tau_m \tag{2.3.13}$$

средняя стоимость ТО и Р

$$C_{jcp} = P_1 C_1 + P_2 C_2 + \dots + P_m C_m.$$
 (2.3.14)

В частном случае модель состояния ТО и Р характеризуется значениями параметров:

$$P_1 = 1, P_2 = \frac{1}{2}, \dots, P_m = \frac{1}{m},$$

$$\mu_{jcp} = \mu_1 + \frac{\mu_2}{2} + \dots + \frac{\mu_m}{m}, \quad (2.3.15)$$

$$\tau_{jcp} = \tau_1 + \frac{\tau_2}{2} + \dots + \frac{\tau_m}{m},$$
(2.3.16)

$$C_{jcp} = C_1 + \frac{C_2}{2} + \dots + \frac{C_m}{m}.$$
 (2.3.17)

2.3.3. Получение вариантов исходных данных

Варианты задания формируются в соответствии с данными табл. 2.3.2. путем умножения их на корректирующие коэффициенты. Выбор варианта задания производится согласно шифру зачетной книжки по сумме трех последних цифр. Для получения значения варианта задания следует умножать исходные данные m_t , σ_t , τ_i на коэффициент корректировки варианта задания.

2.3.4.Последовательность выполнения работы

Задача №1

Исходные данные: № варианта, корректирующий коэффициент, значение моментных функций m_t и σ_t при разных законах распределения, периодичностей T_i .ч , продолжительностей t_i ,ч и трудоемкостей τ_i ,чел-ч, ТО и P самолета (см. табл. 2.3.2).

Порядок решения задачи №1

- 1). Определение вероятностей P_i , $j=\overline{1,r}$ по формуле (2.3.3)
- 2). Оценка параметра экспоненциального распределения и управляемого состояния использования по назначению:

параметры распределения λ (см. табл. 2.3.2);

вероятности перехода $P_{\text{Иі Иі+1}}$ (см. табл. 2.3.2);

вероятностей переходов $P_{\text{Иів1}}$, $P_{\text{Иів2}}$, $P_{\text{Иів3}}$, $P_{\text{Иів4}}$ по формуле (2.3.8), и найденным ранее значениям вероятностей P_{j} , $j=\overline{1,r}$,

времени пребывания в состояние И_і по формуле (2.3.11).

3).Оценка параметров нормального распределения и управляемого состояния использования по назначению:

параметров распределения m_t и σ_t заданных в исходных данных (см. табл. 2.3.1); вероятности перехода $P_{\textbf{И}i \ \textbf{И}i+1} = G(\tau_0)$ по формуле, приведенной в таблице 2.3.2 и по данным таблицы Приложения 2.

вероятностей переходов $P_{\textbf{Иів1}}$, $P_{\textbf{Иів2}}$, $P_{\textbf{Иів3}}$, $P_{\textbf{Иів4}}$ по формуле (2.3.8) и найденным ранее значениям P_j , j=1,r;

времени пребывания в состоянии И_i по формуле (2.3.11).

4). Оценка параметров распределения Вейбулла и управляемого состояния использования по назначению: 1

коэффициента вариации по формуле приведенной в табл. 2.3.2,

параметра распределения b и коэффициента K_b по таблице Приложения 3 параметра распределения a;

вероятности перехода Риі иі+1 (см. таб. 2.3.2);

вероятностей переходов $P_{\mathbf{U}_{i\mathbf{B}1}}$, $P_{\mathbf{U}_{i\mathbf{B}2}}$, $P_{\mathbf{U}_{i\mathbf{B}3}}$, $P_{\mathbf{U}_{i\mathbf{B}4}}$ по формуле (2.3.8) и найденным значениям вероятностей $P_{i,j}$ =1,r;

времени пребывания в состоянии И_і по формуле (2.3.11) .

Задача №2

Исходные данные: № варианта, корректирующий коэффициент, значение периодичностей T_{i} , ч, продолжительностей t_{i} , ч и трудоемкостей t_{i} , чел.- ч

ТОиР самолета или продолжительностей, трудоемкостей ТОиР при заданных вероятностях переходов (см. табл. 2.3.1)

Порядок решения задачи №2

1) Определение параметров управляемого состояния ТОиР по исходным данным приведенным в пп. 2,3 табл. 2.3.1:

вероятности P_i, j=1,n (оценены в задаче №1);

- среднего времени пребывания в состоянии ТОиР по формуле(2.3.12); средней трудоемкости в состоянии ТОиР по формуле 2.3.13.
- 2) Определение параметров управляемого состояния ТОиР по данным п.4 табл. 2.3.2(частный случай):

вероятности P_i , $j=\overline{1,n}$ заданы;

среднего времени пребывания в состоянии ТОиР находим по формуле (2.3.15); средней трудоемкости в состоянии ТОиР - по формуле (2.3.16).

Варианты заданий

№варианта	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2	0 2	1 2	22	23	24	1 2	5	26	27	28	29	30
Коэффициент	1	1,5	2	2,5	3	1	1,5	2	2,5	3	1	1,5	2	2,5	3	1	1,5	5 2	2,5		3 1	1	,5	2	2,5	5	3	1	1,5	2	2,5	3
Корректировки																																
1.Значения																																
моментных																																
функций																																
Наробаток до																																
Отказа t																																
Экспонециальн																																
Ный mt		1	000)			2	000				30	000				4	.000					50	00					6	000		
Нормальный																																
m_t		1	000)			2	000				30	000				4	.000					50	00					6	000		
$\sigma_{\rm t}$			350)			6	50				9	50				1	300					16	00					19	900		
Вейбулла		1	000	\mathbf{C}			2	000				30	000				4	.000					50	00					6	000		
m_t																																
$\sigma_{\rm t}$,	550)			1	100				1	600				2	100					26	00					32	200		
2.Периодич-		T	y-1.	34			Ty	-13	4			R	к-4()			T	y-15	4			Į	Ил-	62	M				И.	п-86		
ность ТО																																
самолета																																
Типа																																
$\overline{T_1}$			330)			3	00				3	00				(300					30	00					3	30		
T_2		1	000	\mathbf{C}			Ç	00				9	000				(900					90	00					10	000		
T_3		2	2000)			1	800				13	800				1	800					18	00					20	000		
T_4		6	5000)			6	000				10	0000)			6	000					100	000)				10	000		

Таблица 2.3.2 (продолжение)

№варианта	1	2	3	4	5	6	7		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28		30
Коэффициент	1	1,5	2	2,5	3	1	1,5	2 2,5	3	1	1,5	2	2,5	3	1	1,5	2	2,5	3	1	1,5	2	2,5	3	1	1,5	2	2,5	3
Корректировки																													
3 Продолжи-		t _i								Ti		L			+		L			+			<u> </u>	T				 ;i	
3 Продолжи- тельность		ιį		τ_{i}		t _i		$ au_{i}$		Ιį		΄(Ç _i		t _i		τ_{i}			t _i		τ_{i}			i		΄(,I	
t _i ч и трудоем-																													
. •																													
кость τ _і																													
челч ТоиР при																													
периодичности: Т₁	11	14,3	+.	123,8)	1	12,5	237,9		298,	2	20	5,5	1	34,5		350	6	1 /	1,9	1	51,7	7	27	^		57	1,9	
T_2^1		79,6		123,6 194,6			33,3	387,8		290, 529,			5,5 5,2		34,3 04,2		532	-		4,5		'14,7		464				1,9 2,8	
T ₃		16,1		374,8			33,3 80,2	601,5		329, 475			54,9		0 4 ,2 09,3		806			3,6		1 4 , 1 1125		14(,			z,6 7,4	
T ₄		140		2800			140	2800		2795			80		020		511			3,0 300		5000		285				7, 4 50	
4 Продолжи-	- '	t _i			<u>'</u>	t _i				T _i	, 3			-	t _i					t _i			,	<u>203</u>	•			;i	
тельность		ч		τ_{i}		·I		τ_{i}		'		,	Ç _i		ч		τ_{i}			L _I		τ_{i}		ų				/I	
t _i ч и трудоем-																													
кость τ_i чел-ч																													
ТоиР при веро-																													
ятностях пере-																													
ходов:																													
лодов. Р₁=1		50		120		70)	150		90		17	70		100		20	0	1:	20		250		15	0		30	00	
P ₂ =1/2		50		270		10		200		120	,		50		160		35			00		310		25				70	
P ₃ =1/3		200		350		21		500		250			50		260		45			50		600		40				50	
P ₄ =1/4		800		600		35		700		360			50		300		60			60		750		55				10	
P ₅ =1/5		50		800		50		810		400			00		460		85			10		900		62				50	
P ₆ =1/6		20		950		55		950		560			00		500		100			20		1100		75				00	
P ₇ =1/7		'50		1020)	70	0	1200		800		15	00	(086		130	0	7	60	1	1500)	90	0		18	00	

2.4 Цикл практических занятий

Тема: Анализ эффективности процесса технической эксплуатации

ЛА комплексным методом.

Цель: Практическое освоение метода комплексного анализа эффективности ПТЭ ЛА на основе многофакторного анализа

2.4.1 Техническое задание

Цикл практических занятий включает следующие практические занятия:

- Формирование корреляционной матрицы показателей эффективности ПТЭ ЛА для расчета общих факторов комплексным методом.
- Расчет нагрузок первого общего фактора.
- Определение нагрузок второго общего фактора.
- Определение нагрузок следующих общих факторов.

В качестве объектов анализа на практических занятиях выбираются результаты эксплуатационных наблюдений за показателями эффективности ПТЭ парка самолетов Ил-62, осуществляемых ежемесячно в течение одиннадцати лет.

2.4.2. Необходимые теоретические сведения [3÷5]

При управлении ПТЭ ЛА возникает необходимость в анализе показателей эффективности с учетом взаимосвязей между ними. Появляется потребность в методах анализа показателей, которые позволили бы выделить некоррелированные факторы, оказывающие доминирующее влияние на показатели эффективности ПТЭ ЛА. Для решения этих задач следует применить к исходным показателям процедуру выделения общих факторов, основанную на методах многофакторного анализа.

Задача многофакторного анализа:

Известны значения $X_1, X_2, ..., X_n$ – системы коррелированных случайных величин, представляющих собой оценку показателей эффективностей ПТЭ ЛА по данным эксплуатационных наблюдений.;

найти систему некоррелированных случайных величин (общих факторов) $Y_1, Y_2, ..., Y_m$ (m<n) и нагрузок-коэффициентов C_{ij} , i=1,n, j=1,m, таких, чтобы с большой вероятностью выполнялась система равенств

$$X_i = \sum_i C_{ij} Y_{i,i} = 1,n$$

Преимуществом системы случайных величин Y_1, \dots, Y_m является их некоррелированность и меньшее число m < n, недостатоком трудности их содержательной интерпретации.

Если случайные величины X_i , $i=\underline{1,n}$ нормированы, т.е. математическое ожидание $M_{xi}=0$,а дисперсия $D_{xi}=1$. В этом случае дисперсия разлагается на сумму

$$1 = DX_i = h_i^2 + S_i^2 + b_i^2,$$

где h_i^2 - общности, т.е. части дисперсии, обусловленные факторами , общими для всех X_i ;

 S_{i}^{2} - специфическая дисперсия; b_{i}^{2} - часть дисперсии, обусловленная ошибкой.

Характеристикой взаимной зависимости случайных величин X_i , i=1,n является матрица корреляции $R = |R_{ii}|$. Влияние специфических факторов и ошибок отражено в R, так как на главной диагонали R стоят дисперсии

$$Dx_i = 1 = h_i^2 + s_i^2 + b_i^2$$
.

Матрица корреляции, у которой элементы главной диагонали равны 1, называется полной матрицей корреляции

Матрица корреляции, в которой элементы главной диагонали соответствуют общностям h_i, называется редуцированной матрицей

Матрица столбцы которой состоят из нагрузок данного фактора для всех случайных величин X1,.....,Xn, а строки из факторных нагрузок данной случайной величины, называется факторной матрицей

При этом факторная нагрузка C_{ij} имеет вид коэффициента корреляции между i –ой случайной величиной X_i и j –ым фактором Y_i .

Целью факторного анализа является получение факторной матрицы F из исходной корреляционной матрицы R. Для решения этой задачи, т.е. определения факторной матрицы, применим центроидный метод [4], приемуществом которого является достаточно быстрая сходимость.

2.4.3. Практическое занятие №4

Тема: Формирование корреляционной матрицы показателей эффективности ПТЭ ЛА для расчета общих факторов центроидным методом.

2.4.3.1. Последовательность выполнения работы

Получение исходных данных.

В качестве исходных данных используются среднее значения показателей эффективности ПТЭ самолетов Ил-62 [4], полученные в результате эксплуатационных наблюдений, осуществляемых ежемесячно в течение 11 лет:

удельные трудовые затраты на техническое обслуживание $\tau_{yд}$, чел.-ч./ч налета; (табл.2.4.1);

удельные материальные затраты на техническое обслуживание; $C_{yд}$,руб./ч налета; (табл.2.4.2);

коэффициент использования парка K_{u} , (табл.2.4.3); .

коэффициент возможного использования К_{ви}, (табл.2.4.4). .

Вариант заданий формируются в соответствии с данными табл.2.4.5.

Выбор варианта студент производят согласно шифра зачетной книжки по сумме трех последних цифр. Для выбранного номера варианта по табл. 2.4.5 определяется показатели эффективности, месяцы года и номер таблицы для получения исходных данных.

Таблица 2.4.1 Удельные трудовые затраты на техническое обслуживание самолетов $\tau_{yд}$ чел.ч/ч налета

Поряд.	Январь	Февраль	Март	Апрель	Май	Июнь	Июль	Август	Сентябр	Октябрь	Ноябрь	Декабрь	Год
№ года													
11	9,37	11,65	12	10,4	8,81	8,29	7,79	6,73	7,46	8,83	8,88	10,6	9,234
10	11,66	11,2	13,08	12,61	10,17	8,29	8,69	7,25	7,72	9,2	8,88	10,63	9,948
9	12,46	12,36	13,89	12,02	9,74	7,49	7,7	6,74	8,23	10,4	9,5	10,6	10,094
8	11,57	12,21	14,17	12,45	9,34	8,25	7,56	7,11	7,32	8,75	9,93	11,15	9,984
7	12,85	10,43	14,43	10,69	8,05	9,82	8,36	7,51	7,63	8,97	9,21	12,74	10,057
6	12,1	13,47	15,07	13,18	11,07	10,19	9,87	9,81	7,98	9,92	10	12,69	11,279
5	12,68	12,57	13,98	12,73	10,11	9,23	8,74	7,56	8,11	9,23	9,75	12,15	10,57
4	12,81	13,11	14,17	12,81	10,69	9,18	8,51	7,63	8,5	9,63	10,4	11,72	10,763
3	12,93	13,43	14,05	13,26	11,41	9,84	8,91	7,75	8,21	9,87	10,93	12,84	11,119
2	12,76	13,41	14,18	13,61	11,54	10,24	9,73	8,45	8,67	9,94	10,48	12,21	11,268
1	12,88	13,12	14,26	13,73	11,82	10,11	9,56	8,21	8,88	9,75	10,57	12,61	11,292

Удельные материальные затраты на техническое обслуживание $C_{yд}$, руб/ч налета

Поряд.	Январь	Февраль	Март	Апрель	Май	Июнь	Июль	Август	Сентябр	Октябрь	Ноябрь	Декабрь	Год
№ года													
11	51,02	53	55,29	37,5	31,03	24,49	22,5	21,36	23,83	29,48	38,01	59,74	37,271
10	53,12	54,25	45,85	46,76	32,21	23,9	21,45	19,4	27,91	33,87	39,99	35,99	36,225
9	42,3	53,74	45,85	39,2	27,9	20,17	20,21	19,89	23,61	34,1	37,94	43,18	34,007
8	48,41	49,33	46,79	38,21	29,61	24,87	21,68	19,65	24,13	32,16	37,18	37,64	34,136
7	48,9	48,26	52,72	45,21	29,59	36,11	32,12	30,61	31,74	29,68	37,61	42,16	38,751
6	47,31	51,11	52,09	48,88	23,38	36,91	32,11	30,26	32,66	36,28	33,18	46,63	40,9
5	48,3	49,26	50,38	48,91	43,71	37,21	32,89	31,74	33,16	35,94	37,64	45,63	40,9
4	48,56	49,12	51,71	49,12	42,65	37,68	33,26	30,1	31,98	34,18	36,97	44,72	40,837
3	47,26	49,88	51,74	49,68	43,21	38,16	33,44	31,17	32,94	33,67	36,58	44,29	41,002
2	48,39	50,26	52,11	50,35	44,28	38,51	32,85	31,72	33,19	34,67	37,94	46,13	41,616
1	48,65	49,24	51,91	50,11	45,16	39,27	33,68	32,96	33,2	33,97	36,16	44,66	41,664

Таблица 2.4.2

Таблица 2.4.3

Коэффициент использования самолетов Ки

Поряд.	Январь	Февраль	Март	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь	Год
№ года													
11	0.142	0.145	0.134	0.173	0.204	0.305	0.317	0.346	0.316	0.218	0.195	0.141	0.220
10	0.126	0.132	0.129	0.159	0.184	0.267	0.286	0.272	0.257	0.193	0.179	0.151	0.195
9	0.120	0.118	0.121	0.145	0.183	0.257	0.278	0.304	0.265	0.193	0.174	0.139	0.191
8	0.130	0.150	0.130	0.150	0.190	0.250	0.300	0.350	0.290	0.200	0.200	0.140	0.207
7	0.140	0.150	0.190	0.220	0.250	0.280	0.320	0.360	0.340	0.310	0.250	0.170	0.248
6	0.130	0.140	0.160	0.170	0.200	0.270	0.300	0.350	0.320	0.300	0.260	0.200	0.233
5	0.130	0.140	0.150	0.160	0.180	0.250	0.270	0.290	0.260	0.170	0.140	0.140	0.195
4	0.120	0.130	0.130	0.150	0.190	0.260	0.280	0.300	0.270	0.220	0.180	0.150	0.198
3	0.130	0.140	0.130	0.160	0.200	0.240	0.290	0.320	0.300	0.230	0.170	0.140	0.204
2	0.120	0.120	0.140	0.170	0.190	0.270	0.300	0.330	0.280	0.210	0.180	0.130	0.203
1	0.140	0.130	0.130	0.150	0.180	0.250	0.280	0.310	0.300	0.220	0.190	0.150	0.202

Таблица 2.4.4

Коэффициент возможного использования самолетов Кви

Поряд	Январь	Февраль	Март	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь	Год
. № года													
11	0.213	0.242	0.214	0.268	0.335	0.480	0.543	0.594	0.540	0.353	0.303	0.208	0.357
10	0.193	0.220	0.216	0.265	0.314	0.456	0.495	0.478	0.438	0.329	0.301	0.251	0.330
9	0.185	0.191	0.199	0.234	0.301	0.436	0.489	0.546	0.461	0.329	0.297	0.236	0.323
8	0.174	0.228	0.200	0.239	0.296	0.373	0.474	0.528	0.441	0.308	0.332	0.210	0.319
7	0.216	0.224	0.189	0.328	0.378	0.448	0.509	0.565	0.530	0.484	0.380	0.255	0.382
6	0.202	0.220	0.258	0.270	0.326	0.462	0.468	0.543	0.534	0.477	0.416	0.316	0.373
5	0.209	0.230	0.245	0.258	0.297	0.425	0.462	0.505	0.442	0.287	0.234	0.227	0.324
4	0.196	0.215	0.211	0.240	0.312	0.439	0.482	0.525	0.456	0.370	0.299	0.248	0.330
3	0.213	0.227	0.217	0.266	0.332	0.408	0.502	0.560	0.510	0.389	0.284	0.232	0.343
2	0.198	0.194	0.234	0.281	0.319	0.462	0.516	0.574	0.476	0.351	0.293	0.180	0.340
1	0.211	0.213	0.215	0.251	0.306	0.430	0.490	0.546	0.507	0.370	0.308	0.242	0.339

Варианты заданий

			r	ты эадап				
Показате-			№ вари	ианта по м	иесяцам г	ода		
ЛИ								
Эффек-	IVI	IIVII	IIIVIII	IVIX	VX	VIXI	VIIXII	Табл.
тивности								No
ЕТП								
τ _{уд} чел-ч/ч	1	2	3	4	5	6	7	Табл.
налета								2.4.1
Суд, руб/ч	8	9	10	11	12	13	14	Табл.
налета								2.4.2
Ки	15	16	17	18	19	20	21	Табл.
								2.4.3
Кви	22	23	24	25	26	27	28	Табл.
								2.4.4

2) Порядок решения задач

При формировании корреляционной матрицы определяем характиристики случайных величин $X_{i(j)}$ (показатели эффективности за i-й месяц i-го года): математическое ожидание

$$M_{i} = \frac{1}{N} \sum_{i=1}^{N} X_{i(i), i} = \overline{1, k}, j = 1, N,$$
 (2.4.1)

дисперсия

$$D_{i} = \frac{1}{N} \sum_{j=1}^{N} (X_{i}(j) - Mi)^{2}, \qquad (2.4.2)$$

нормированная случайная величина

$$R_{i_1 j_2} = \frac{1}{N} \sum_{i_1} X_{i_1} (j)^* X_{i_2} (j),$$
 (2.4.3)

коэффициент корреляции

$$X_{i(j)} = \frac{1}{\sqrt{D_i}} (X_{i(j)} - M_i),, \qquad (2.4.4)$$

Расчет коэффициентов по формулам 2.4.1-2.4.4 выполняется в таблицах вида Табл . 2.4.6

Определение коэффициента корреляции R_{i_1,i_2}

i	$x_1(j)$	$x_1(j) - M_1$	$(x_1(j) - M_1)^2$	$x_1(j) = \frac{1}{D_1}(x_1(j) - M_1)$	$\dot{x}_2(j)$	$\dot{x}_1(j)\dot{x}_2(j)$
1 2 						
11	11		11			M
	$\sum_{j=1}^{11} x_1(j)$		$\sum_{j=1}^{11} (x_1(j) - M_1)^2$			$\sum_{j=1}^N \dot{x}_1(j)\dot{x}_2(j)$

Для 6 случайных величин требуется оценить коэффициентов корреляции для 15 пар случайных величин:

По результатам расчета коэффициентов корреляции сформируем корреляционную матрицу R_1 (табл. 2.4.7)

Таблица 2.4.7 Корреляционная матрица R_1 (редуцированная ${f R}$)

	1 1		<u> </u>	1 0 1		•
$\dot{x}_i(j)$	$\dot{x}_1(j)$	$\dot{x}_2(j)$	$\dot{x}_3(j)$	$\dot{x}_4(j)$	$\dot{x}_5(j)$	$\dot{x}_6(j)$
$\dot{x}_1(j)$	$1(h_1^2)$	$R_{i_1i_2}$	$R_{i_1i_3}$	$R_{i_1i_4}$	$R_{i_1i_5}$	$R_{i_1i_6}$
$\dot{x}_2(j)$	$R_{i_2i_1}$	$1(h_2^2)$	$R_{i_2i_3}$	$R_{i_2i_4}$	$R_{i_2i_5}$	$R_{i_2i_6}$
$\dot{x}_3(j)$	$R_{i_3i_1}$	$R_{i_3i_2}$	$1(h_3^2)$	$R_{i_3i_4}$	$R_{i_3i_5}$	$R_{i_3i_6}$
$\dot{x}_4(j)$	$R_{i_4i_1}$	$R_{i_4i_2}$	$R_{i_4i_3}$	$1(h_4^2)$	$R_{i_4i_5}$	$R_{i_4i_6}$
$\dot{x}_5(j)$	$R_{i_5i_1}$	$R_{i_5 i_2}$	$R_{i_5i_3}$	$R_{i_5i_4}$	$1(h_5^2)$	$R_{i_5i_6}$
$\dot{x}_6(j)$	$R_{i_6i_1}$	$R_{i_6i_2}$	$R_{i_6i_3}$	$R_{i_6i_4}$	$R_{i_6i_5}$	$1(h_6^2)$

Для удобства изложения дальнейшего решения задач рассмотрим на примере случайных величин x_1, x_6 , являющихся значениями $\mathcal{T}_{y\partial}$ за 6 месяцев $(i=\overline{1,6})$ за 11 лет $(j=\overline{1,11})$. Корреляционная матрица в данном примере имеет вид (табл. 2.4.8)

Таблица 2.4.8 Корреляционная матрица R_1

$\dot{x}_i(j)$	$\dot{x}_1(j)$	$\dot{x}_2(j)$	$\dot{x}_3(j)$	$\dot{x}_4(j)$	$\dot{x}_5(j)$	$\dot{x}_6(j)$
$\dot{x}_1(j)$	1	0,359	0,620	0,597	0,466	0,514
$\dot{x}_2(j)$	0,359	1	0,430	0,800	0,868	0,585
$\dot{x}_3(j)$	0,620	0,430	1	0,543	0,374	0,438
$\dot{x}_4(j)$	0,597	0,800	0,543	1	0,934	0,479
$\dot{x}_5(j)$	0,466	0,868	0,374	0,934	1	0,529
$\dot{x}_6(j)$	0,514	0,438	0,585	0,479	0,529	1

На главной диагонали записываем наибольший коэффициент корреляции в данном столбце h^2 (положительный независимо от знака) и получаем редуцированную матрицу (Табл. 2.4.9)

Таблица 2.4.9 Релуцированная корреляционная матрица R

гедуцированная корреляционная матрица к									
$\dot{x}_i(j)$	$\dot{x}_1(j)$	$\dot{x}_2(j)$	$\dot{x}_3(j)$	$\dot{x}_4(j)$	$\dot{x}_5(j)$	$\dot{x}_6(j)$	$\sum r$		
$\dot{x}_1(j)$	0,620	0,359	0,620	0,597	0,466	0,514	3,176		
$\dot{x}_2(j)$	0,359	0,868	0,430	0,800	0,868	0,585	3,763		
$\dot{x}_3(j)$	0,620	0,430	0,620	0,543	0,374	0,438	3,172		
$\dot{x}_4(j)$	0,597	0,800	0,543	0,934	0,934	0,479	4,287		
$\dot{x}_5(j)$	0,466	0,868	0,374	0,934	0,934	0,529	4,105		
$\dot{x}_6(j)$	0,514	0,438	0,585	0,479	0,529	0,585	3130		
$\sum r$	3,176	3,763	3,172	4,287	4,105	3,130	T = 21,633		
C_{1a}	0,683	0,809	0,682	0,922	0,882	0,673			

 $\sqrt{T} = 4.651$, $1/\sqrt{T} = 0.215$, $T/\sqrt{T} = 4.651$

2.4.4 Практическое занятие № 5

Тема: Расчет нагрузок первого общего фактора

2.4.4.1. Последовательность выполнения работы

Получение исходных данных

В качестве исходных данных используется редуцированная корреляционная матрица сформированная на практическом занятии № 4 (табл.2.4.9)

Порядок решения задачи

Расчет нагрузок первого общего фактора производится следующим образом (табл2.4.9):

- 1) суммируем элементы каждого столбца, включая элементы главной диаганоли, с учетом алгебраических знаков. Суммы записываем под столбцами в строке $\sum r$, для контроля суммы строк записываем в последний столбец таблицы;
 - 2) складываем все суммы столбцов и получаем T, вычисляем \sqrt{T} ;
- 3) суммы столбцов делим на \sqrt{T} , в результате определяем нагрузки первого фактора для 6 случайных величин или их корреляций с этим фактором .

Нагрузка C_1 для переменной а

$$C_{1a} = \frac{\sum r_a}{\sqrt{T}};$$

- 4) значения C_{1a} записываем в последней строке табл. 2.4.9;
- 5) определяем критерий $T\frac{1}{\sqrt{T}} = \sqrt{T}$ правильности расчета.

Другой критерий – сумма всех факторных нагрузок должна быть равна \sqrt{T}

$$\sum C_{1a} = \sqrt{T} \ .$$

Расчет новых коэффициентов корреляции, выражающих ту часть остающейся общей дисперсии («остатков»), которая может быть отнесена на счет других факторов. Расчет этих "остатков" опирается на теорему о том, что корреляция двух случайных величин, вызванная каким либо общим фактором,

равна произведению нагрузок этого фактора для обоих случайных величин, т.е. произведению корреляций с этими факторами.

Поэтому корреляция r между x_1 и x_2 обусловленная первым фактором, равна произведению его нагрузки по этим переменным

$$r_{x_{i1}x_{i2}} = r_{x_{i1}c_1}r_{x_{i2}c_1}. (2.4.5)$$

Для определения остатка нужно от первоначальной величины $r_{x_{1x_{2}}}$ вычесть произведение $r_{x_{i_{1}}c_{1}}r_{x_{i_{2}}c_{1}}$.

$$r_{x_{i_1}x_{i_2}}^{ocm} = r_{x_{1}x_{2}} - r_{x_{i_1}c_1}r_{x_{i_2}c_1}.$$
 (2.4.6)

Вычисление остатков корреляции первого фактора производится в табл. 2.4.10 по формулам (2.4.5), (2.4.6). Пример расчета остатков корреляции произведен в табл. 2.4.11.

Расчет остатков корреляции первого фактора

	C_{ij}	X_1	X_2	X_3	X_4	X_5	X_6
	-	C ₁₁	C ₁₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆
X_1	C ₁₁	r	r	r	r	r	r
		$-C_{11}\cdot C_{11}$	$\frac{-C_{11} \cdot C_{12}}{r_{12}^{ocm}}$	$-C_{11}\cdot C_{13}$	$-C_{11}\cdot C_{14}$	$-C_{11} \cdot C_{15}$	$-C_{11} \cdot C_{16}$
		r ^{ocm}	r_{12}^{ocm}	r_{12}^{ocm}	r. ocm	r_{15}^{ocm}	r_{16}^{ocm}
		'11		13	' 14	7 15	' 16
X_2	C ₁₂	r ₂₁	r ₂₂	r ₂₃	r ₂₄	r ₂₅	r ₂₆
		$-C_{12} \cdot C_{11}$	$-C_{12}\cdot C_{12}$	$-C_{13}\cdot C_{13}$	$-C_{12}\cdot C_{14}$	$-C_{12}\cdot C_{15}$	$-C_{12}\cdot C_{16}$
		r_{21}^{ocm}	$\frac{-C_{12} \cdot C_{12}}{r_{22}^{ocm}}$	r_{23}^{ocm}	r_{24}^{ocm}	r_{25}^{ocm}	r_{26}^{ocm}
				23	24		
X_3	C_{13}	•	•	•	•	•	•
X_4	C ₁₄	•	•	•	•	•	•
V	0						
X_5	C_{15}	•	•	•	•	•	•
X_6	C ₁₆	r ₆₁	R ₆₂	r ₆₃	r ₆₄	r ₆₅	r ₆₆
		$-C_{16}\cdot C_{11}$	$-C_{16} \cdot C_{12}$	$-C_{16} \cdot C_{13}$	$-C_{16}\cdot C_{14}$	$-C_{16} \cdot C_{15}$	$-C_{16}\cdot C_{16}$
		r_{61}^{ocm}	$\frac{R_{62}}{-C_{16} \cdot C_{12}} = \frac{r_{62}^{ocm}}{r_{62}^{ocm}}$	r_{63}^{ocm}	r_{64}^{ocm}	r_{65}^{ocm}	r_{66}^{ocm}

Таблица 2.4.11

Пример расчета остатков корреляции первого фактора

	C_{ij}	X_1	X_2	X_3	X_4	X_5	X_6
		0.683	0.809	0.682	0.922	0.882	0.673
X_1	0.683	0.620	0.359	0.620	0.597	0.466	0.514
		$-0.683 \cdot 0.683$	$-0.683 \cdot 0.809$	$-0.683 \cdot 0.682$	$-0.683 \cdot 0.922$	$-0.683 \cdot 0.882$	$-0.683 \cdot 0.673$
		0.154	-0.193	-0.154	- 0.033	-0.136	-0.054
X_2	0.809		0.868	0.430	0.800	0.868	0.438
			$-0.809 \cdot 0.809$	$-0.809 \cdot 0.682$	$-0.809 \cdot 0.922$	$-0.809 \cdot 0.882$	$-0.809 \cdot 0.673$
			0.214	-0.122	0.054	0.155	-0.106
X_3	0.682			0.620	0.543	0.374	0.585
				$-0.682 \cdot 0.686$	$-0.682 \cdot 0.922$	$-0.682 \cdot 0.882$	$-0.682 \cdot 0.673$
				-0.086	0.601	0.126	0.850
X_4	0.922				0.934	0.934	0.479
					$-0.922 \cdot 0.922$	$-0.922 \cdot 0.882$	$-0.922 \cdot 0.673$
					0.813	- 0.141	0.778
X_5	0.882					0.934	0.529
						$-0.882 \cdot 0.882$	$-0.882 \cdot 0.673$
						-0.064	- 0.064
X_6	0.673						0.685
							$-0.673 \cdot 0.673$
							0.132

Практическое занятие №6

Тема: Процедура обращения алгебраических знаков и определение нагрузок второго фактора

Последовательность выполнения работы.

- І. Процедура обращения алгебраических знаков.
- 1). Алгебраическую сумму элементов по столбцам, включая элемент главной диагонали записываем в строке Σ_0 . Результаты расчета алгебраических сумм элементов по столбцам, опуская элементы главной диагонали записываем в следующей строке Σr_0 . Складываем суммы столбцов и результат Σr_0 записываем в последней клетке указанной строки (пример в табл. 2.4.12).
- 2). Берем столбец с наибольшей отрицательной суммой (в рассматриваемом примере столбец x_2) и переписываем в следующей строке с положительным знаком. Эту строку обозначаем номером столбца, элемент которого меняет знак на противоположенный. Одновременно отмечаем звездочкой номер столбца и строки, элементы которых меняют знаки на противоположный.
- 3). Все элементы новой строки, за исключением того, который уже определен как наибольшая отрицательная сумма по столбцу с обратным знаком (x_2) описываем следующим образом : к сумме соответствующего столбца добавляется с противоположенным знаком удвоенное значение элемента того же столбца стоящего на пересечении с обращенной строкой. Окончательный результат записываем в строке "столбец 2" . Например значение 1-го элемента в строке "столбец 2" получаем удваивая величину стоящую на пересечении строки 2 и столбца 1 (0.193), изменяя ее знак и складывая с числом столбца 1 ($-0.154+2\cdot0.193=0.232$).
- 4). Рассчитав все элементы новой строки (столбец 2), определяем их сумму, которая должна быть равна сумме предшествующей строки плюс 4-х кратная сумма столбца элементам которого изменили знак на противоположенный. Для строки "столбец 2 " получим

Таблица 2.4.12 Изменение знаков в матрице первых основных корреляции 6 переменных и выделение нагрузок 2-го фактора

деление нагрузок 2-10 фактора											
	\mathcal{X}_1	x_2^*	x_3	x_4^{****}	x_{5}^{**}	x_6	\sum_{0}				
	0.193	+		+	+						
x_1	(0.154)	(-)0.193	0.154	(-)0.033	(-)0.136	0.054					
	+	0.193	+			+					
x_2^*	(-)0.193	(0.214)	(-)0.122	0.054	0.155	(-)0.106					
		+	0.227	+	+						
x_3	0.154	(-)0.122	(0.155)	(-)0.086	(-)0.227	0.126					
	+		+	0.141		+					
x_4^{***}	(-)0.033	0.054	(-)0.086	(0.084)	0.121	(-)0.141					
	+		+		0.227	+					
<i>x</i> ₅ **	(-)0.136	0.155	(-)0.227	0.121	(0.156)	(-)0.064					
		+		+	+	0.141					
x_6	0.054	(-)0.106	0.126	(-)0.141	(-)0.064	(0.132)					
\sum_{0}	0	0.002	0	0.005	0.005	0.001	$\sum \sum r_0$				
	-0.154	-0.212	-0.155	-0.085	-0.151	-0.131	-0.888				
$\sum r_0$	(0.193)*2		(0.122)*2	(-0.054)*2	(-0.155)*2	(0.106)*2	0.212*4				
	0.232	0.212	0.089	-0.193	-0.461	0.081	-0.04				
Столб. 2	(0.136)*2	(0.155)*2	(0.227)*2	(-0.121)*2		(0.064)*2	0.461*4				
	0.504	0.522	0.543	<u>-0.435</u>	0.461	0.209	1.804				
Столб. 5	(0.033)*2	(0.054)*2	(0.086)*2		(0.121)*2	(0.141)*2	0.435*4				
	0.5	0.63	0.715	0.435	0.703	0.491	3.544				
Столб. 4											
	0.763	0.823	0.942	0.576	0.930	0.632	T=4.666				
$\sum r_a$											
	0.353	-0.381	0.436	-0.267	-0.430	0.292	$\sqrt{T} =$				
C_2							2.160009				

5). Теперь определяем следующий столбец с наибольшей отрицательной суммой. В нашем примере столбец 5 . Повторим процедуру описанную в пп.1...4, используя изменившиеся итоги столбцов, записанные в предшествующей строке. В столбцах, элементы которых уже поменяли знаки (отмечены звездочкой), перед добавлением удвоенной величины они не меняются (пункт 3) .

Если процедура обращения знаков требует изменения знаков элементов какого либо столбца и соответствующей строки более чем один раз, то в этом

случае при первом и всех дальнейших нечетных изменениях знаков знак удвоенного значения должен меняться (пункт 3). При втором и всех четных изменениях знаков знак удвоенного значения не изменяется. Чтобы легче ориентироваться в номерах столбцов, элементы которых меняют знаки, нужно подчеркивать последовательные суммы столбцов, элементы которых меняют знаки на противоположенные.

6). Процесс изменения знаков повторяется до тех пор, пока все суммы не будут положительными (или нулевыми). В нашем примере для получения сумм потребовалось изменить знаки элементов столбцов 2, 5,4. Критериями правильности вычислений (см. пункт 4) являются для последующих строк равенство суммы соответствующей строки вычисленным величинам:

```
строка "5 столбец" -0.04+0.461\cdot 4=1.804, строка "4 столбец" 1.804+0.435\cdot 4=3.544.
```

- 7). Меняем алгебраические знаки в матрице остатков:
- а) меняются на противоположенные знаки всех коэффициентов в обращенных строках за исключением тех элементов, которые лежат на пересечении с обращенными столбцами;
- б) изменяются знаки всех коэффициентов в обращенных столбцах за исключением тех элементов, которые находятся на пересечении с обращенными строками.

Новые знаки указываем над первоначальными, заключенными в скобки.

- II. Определение нагрузок второго фактора.
- 1). Общности на главной диагонали матрицы остатков корреляции, вычисленные как и все другие остаточные корреляции, заключить в скобки. Их нужно заменить на коэффициенты с максимальной для данного столбца абсолютной величиной, переписывая их с положительными знаками. Новые значения записываем чернилами другого цвета над величинами в скобках.
- 2). Чтобы приступить к определению нагрузок второго центроидного фактора, необходимо учесть общности, записанные на главной диагонали матрицы остатков (табл. 2.4.12). Эти величины, заключенные в скобках были рассчитаны также как и все другие остаточные корреляции. Теперь их нужно заменить коэффициентами с максимальной для данного столбца абсолютной вели-

чиной, присваивая ей положительный знак. Новые значения записываем над величиной в скобках.

- 3). После этого новые значения общностей добавляем к итогам столбцов, полученным по окончании процесса изменения знаков и записанным в строке, обозначенной номером последнего обращенного столбца (столбец 4 в табл. 2.4.12). Результаты сложения записываем в строке $\sum r_0$.
- 4). Следующие действия аналогичны описанным при расчете первого фактора.

Складываем суммы столбцов. Результат обозначенный буквой T, записываем справа. Затем определяем \sqrt{T} .

Итоги столбцов делим на \sqrt{T} для определения нагрузок второго фактора

$$C_{2a} = \sum r_a(\frac{1}{\sqrt{T}}) ,$$

где C_{2a} - нагрузка второго фактора у переменной а ,

 $\sum r_a$ - итог столбца переменной а ,

Т – общая сумма всех коэффициентов матриц

(сумма итогов по столбцам) .

Рассчитанные нагрузки второго фактора записываем в строку C_2 (табл. 2.4.12). Для проверки вычисляется критерий $T\frac{1}{\sqrt{T}}$, который должен быть равен \sqrt{T} . Вторым критерием является сумма факторных нагрузок равная \sqrt{T} . Критерии записываются справа под таблицей.

- 5). Определение алгебраических знаков нагрузок второго фактора зависит от описанной процедуры и производится по следующим правилам:
- а) переменная, которая обращалась нечетное количество раз будет в данной матрице остатков корреляции иметь знак, противоположный ее знаку при предыдущем факторе;
- б) знак переменной, которая не обращалась или обращается четное число раз, будет таким же, что и знак при предыдущем факторе.

В случае 4-х центроидных факторов переменная, знак которой менялся один раз в первой и один раз во второй матрице остатков, будет иметь такую систему знаков

Фактор

Переменные	1	2	3	4
Знаки	+	_	+	+

В нашем примере знаки нагрузок фактора C_2 в столбцах 2, 4, 5 будут положительны, так как знаки этих переменных не менялись, а знаки нагрузок в столбцах 1, 3, 6 будут отрицательными, так как их знаки изменялись.

Практическое занятие №7

Тема: Определение нагрузок остальных факторов.

Последовательность выполнения работы.

Вычисление корреляций, остающихся после выделения второго фактора (табл.2.4.13, 2.4.14).

Аналогичная процедура, но нужно обращать внимание на знаки.

Элементы матрицы остаточных корреляций сохраняют те знаки, которые они получили по окончании процедуры изменения знаков. При вычислении произведений факторных нагрузок знаки всех факторных нагрузок принимаются положительными, что дает положительные произведения (табл.2.4.13). Эти положительные произведения вычитаяются из остатков корреляции, получившихся после выделения первого фактора. Вычисленные величины записываются в новую матрицу вторых остатков корреляции после чего можно приступить к расчету нагрузок третьего фактора (табл.2.4.14).

Остаточные корреляции после расчета нагрузок третьего фактора приведены в табл. 2.4.15.

Остатки в строке этой таблицы снова близки к нулю (табл.2.4.16) . Это свидетельствуют о правильности расчетов (не превышает 0,01).

Когда следует прекратить выделение очередных факторов, т.е. можно быть уверенным, что число их достаточно. Если все элементы корреляционной матрицы очень малы, практически равны нулю, то видно, что все знаки корреляции подчеркнуты.

Таблица 2.4.13 Матрица произведений факторных нагрузок вторых остатков корреляции 6 переменных

		x_1	x_2	x_3	x_4	x_5	x_6
		0.353	0.381	0.436	0.267	0.430	0.292
		0.193	0.193	0.154	0.039	0.136	0.054
x_1	0.353	0.125	0.134	0.154	0.094	0.152	0.104
		0.068	0.059	0	-0.061	-0.016	-0.049
		0.193	0.193	0.122	0.054	0.155	0.106
x_2	0.381	0.134	0.145	0.166	0.102	0.164	0.111
_		0.059	0.048	-0.044	-0.048	-0.009	-0.005
		0.154	0.122	0.227	0.086	0.227	0.126
x_3	0.436	0.154	0.166	0.190	0.116	0.187	0.127
		0	-0.044	0.037	-0.03	0.04	-0.001
		0.033	0.054	0.086	0.141	0.121	0.141
\mathcal{X}_4	0.267	0.094	0.102	0.116	0.071	0.115	0.078
		-0.061	-0.048	-0.03	0.070	0.006	0.063
		0.136	0.155	0.227	0.121	0.227	0.064
X_5	0.430	0.152	0.164	0.187	0.115	0.185	0.125
		-0.016	-0.009	0.04	0.006	0.042	-0.06
		0.054	0.106	0.126	0.141	0.064	0.141
x_6	0.292	0.103	0.111	0.127	0.078	0.125	0.085
		-0.49	-0.005	-0.001	0.063	-0.06	0.056

Это можно проверить по методу Стоундерса:

- 1). Возводим в квадрат и складываем остатки, полученные после выделения к-го фактора, опуская элементы главной диагонали. Полученную величину умножаем на $\frac{2n}{n-1}$ для приведения в соответствие с полной матрицей (n число переменных) . Вычисленную величину обозначим A.
- 2). Делим разницу между числом переменных и числом уже выделенных факторов на число переменных и результат возводим в квадрат. Обозначаем эту величину В.
- 3). Возводим в квадрат все факторные нагрузки, включая нагрузки к-го фактора, и суммируем их (число факторных нагрузок равно К*n) . Результат вычитаем из n и полученную величину возводим в квадрат. Результат делим на число единиц наблюдений N в исходной совокупности. Результат обозначаем С.

4). Если A меньше $B \times C$, выделение факторов прекращаем. Если A> $B \times C$, выделяем следующий фактор, после чего процедура повторяется.

Определение максимального числа переменных п, необходимого для однозначного определения m факторов выполняется по формуле Терстоуна:

$$n=\frac{2m+1+\sqrt{8m+1}}{2}.$$

Соотношение п и m может быть определено из таблицы

M	1	2	3	4	5	6	7	8	9	10
N	3	5	6	8	9	10	12	13	14	15

Таблица 2.4.14 Изменение знаков в матрице вторых остатков и вычисление нагрузок третьего фактора

$\sum \sum r$
-0.31
0.067*4
-0.042
0.165*4
0.618
T=0.925
$\sqrt{T} =$
0.96177

Таблица 2.4.15 Матрица произведений факторных нагрузок третьих остатков

		x_1	x_2	x_3	x_4	x_5	x_6
		0,256	0,233	0,101	0,317	0,028	0,127
x_1	0,256	0,061	0,059	0	0,061	0,016	0,049
		-0,065	-0,060	-0,026	-0,055	-0,007	-0,032
		-0,004	-0,001	-0,026	0,006	0,009	0,017
x_2	0,233	0,059	0,059	0,044	0,048	0,009	0,005
		-0,060	-0,054	-0,023	-0,050	-0,006	-0,029
		-0,001	0,005	0,021	0,002	0,003	-0,024
x_3	0,101	0	0,044	0,044	-0,023	0,040	-0,001
		-0,026	-0,023	-0,010	-0,022	-0,003	-0,013
		-0,026	0,021	0,034	-0,052	0,037	-0,014
x_4	0,217	0,061	0,048	-0,023	0,061	0,006	0,063
		-0,055	-0,050	-0,022	-0,047	-0,006	-0,027
		0,006	0,002	-0,052	0,014	0	0,036
x_5	0,028	0,016	0,009	0,040	0,006	0,016	-0,060
		-0,007	-0,006	-0,003	-0,006	-0,001	-0,004
		0,009	0,003	0,037	0	0,015	0,064
x_6	0,127	0,049	0,005	-0,001	0,063	-0,060	0,063
		-0,032	-0,029	-0,013	-0,027	-0,004	-0,016
		0,017	-0,024	-0,014	0,036	0,064	0,047
	\sum_{0}	0,001	0,002	0	0,002	0	-0,002
	$\sum r_0$	0,005	-0,003	-0,034	-0,012	-0,015	-0,045

Преобразуя приведенную формулу для получения числа факторов m, определяем максимальное число факторов , которые могут быть однозначно рассчитаны при n переменных.

$$m=\frac{2n+1-\sqrt{8n+1}}{2}.$$

На практике необходимо оперирование числом переменных, превышающих линейное необходимое для определения данного числа факторов.

Матрица третьих остатков

	\mathcal{X}_{1}	x_2	x_3	\mathcal{X}_4	x_5	X_6
x_1	(-0.004)	-0.001	-0.026	0.006	0.009	0.017
		0.000001	0.00068	0.00004	0.00008	0.00029
x_2	-0.001	(0.005)	0.021	-0.002	0.003	-0.024
	0.000001		0.00044	0.000004	0.000009	0.0058
x_3	-0.026	0.021	(0.034)	-0.052	0.037	0.014
	0.00068	0.00044			0.00137	0.00020
\mathcal{X}_4	0.006	-0.002	-0.052	(0.014)	0.006	0.036
	0.00004	0.000004	0.00270		0.00004	0.00130
x_5	0.009	0.003	0.037	0.006	(0.015)	-0.064
	0.00008	0.000009	0.00137	0.00004		0.00410
x_6	0.017	-0.024	0.014	0.036	-0.064	(0.047)
	0.00029	0.0058	0.00020	0.00130	0.00410	
\sum_{0}	0.001	0.002	0	0.002	0	-0.002
$\sum r_0$	0001	0.006	0.005	0.001	0.006	0.012

Таблица 2.4.17

Матрица центральных факторов

	Факторы						
Переменные	y_1	y_2	y_3				
x_1	0.683	0.353	-0.256				
x_2	0.809	-0.381	0.233				
x_3	0.682	0.436	0.101				
x_4	0.922	-0.267	-0.217				
<i>x</i> ₅	0.882	-0.430	-0.028				
x_6	0.673	0.292	0.127				

Таблица 2.4.18

Расчет квадратов нагрузок факторов

					1 2 1		
	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	
y_1	0.683	0.809	0.682	0.922	0.882	0.673	3.882
	0.466	0.654	0.465	0.850	0.778	0.453	
y_2	0.353	-0.381	0.436	-0.267	-0.430	0.292	1.401
	0.125	0.145	0.190	0.071	0.185	0.685	
y_3	-0.256	0.233	0.101	-0.217	-0.028	0.127	0.193
	0.065	0.054	0.010	0.047	0.001	0.016	

5.47

Пример проверки по критерию Саундерса (табл.2.4.17).

1.
$$A = 0.031 \cdot \frac{2.6}{6-1} = 0.074$$
. 3. $C = (6-5.477)^2 / 11 = 0.025$.

$$2. \textit{B} = (\frac{6-3}{6})^2 = 0.25 \ .$$
 A>B*C - прекращаются.
$$0.074 > 0.25*0.025 = 0.006 .$$

Результаты расчетов нагрузок центроидных факторов в рассматриваемом примере приведены в табл. 2.4.18.

В выводах необходимо дать содержательную интерпретацию результатов факторного анализа.

Приложение 1 Значения коэффициента Стьюдента t_{β}

			11	β	<i>r</i>		
f = k	0.8	0.9	0.95	0.98	0.99	0.995	0.999
2	1.886	2.920	4.303	6.965	9.925	14.09	31.60
3	1.638	2.353	3.182	4.541	5.841	7.453	12.92
4	1.533	2.132	2.776	3.747	4.604	5.595	8.610
5	1.476	2.015	2.571	3.365	4.032	4.773	6.869
6	1.440	1.943	2.447	3.143	3.707	4.317	5.959
7	1.415	1.895	2.365	2.998	3.500	4.029	5.408
8	1.397	1.860	2.306	2.897	3.355	3.833	5.041
9	1.383	1.833	2.262	2.821	3.250	3.690	4.781
10	1.372	1.813	2.228	2.764	3.169	3.581	4.587
11	1.363	1.796	2.201	2.718	3.106	3.497	4.437
12	1.356	1.782	2.179	2.681	3.055	3.428	4.318
13	1.350	1.771	2.160	2.650	3.012	3.373	4.221
14	1.345	1.761	2.145	2.625	2.977	3.326	4.141
15	1.341	1.753	2.131	2.603	2.947	3.286	4.073
16	1.337	1.746	2.120	2.584	2.921	3.252	4.015
17	1.333	1.740	2.110	2.567	2.898	3.222	3.965
18	1.330	1.734	2.101	2.552	2.878	3.197	3.922
19	1.328	1.729	2.093	2.540	2.861	3.174	3.883
20	1.325	1.725	2.086	2.528	2.845	3.153	3.850
22	1.321	1.717	2.074	2.508	2.819	3.119	3.792
24	1.318	1.711	2.064	2.492	2.797	3.091	3.745
26	1.315	1.706	2.056	2.479	2.779	3.067	3.707
28	1.313	1.701	2.048	2.467	2.763	3.047	3.674
30	1.310	1.697	2.042	2.457	2.750	3.030	3.646
40	1.303	1.684	2.021	2.423	2.705	2.971	3.551
50	1.299	1.676	2.009	2.403	2.678	2.936	3.496
60	1.296	1.671	2.000	2.390	2.660	2.915	3.460
80	1.292	1.664	1.990	2.374	2.639	2.887	3.416
100	1.290	1.660	1.984	2.364	2.626	2.871	3.391
150	1.287	1.655	1.976	2.352	2.609	2.849	3.357
200	1.286	1.653	1.972	2.345	2.601	2.839	3.340
300	1.284	1.650	1.968	2.339	2.592	2.828	3.323
500	1.283	1.648	1.965	2.334	2.586	2.82	3.310
∞	1.282	1.645	1.960	2.326	2.576	2.807	3.291

Значения F₀(X)

X		0	1	2	3	4	5	6	7	8
0	0	5000	5040	5080	5120	5160	5199	5239	5279	5319
0,1	0	5398	5438	5478	5517	5557	5596	5636	5675	5714
0,2	0	5793	5832	5871	5910	5948	5987	6026	6064	6103
0,3	0	6179	6217	6255	6293	6331	6368	6406	6443	6480
0,4	0	6554	6591	6628	6664	6700	6736	6772	6808	6844
,										
0,5	0	6915	6950	6985	7019	7054	7088	7123	7157	7190
0,6	0	7257	7291	7324	7357	7389	7422	7454	7486	7517
0,7	0	7580	7611	7642	7673	7704	7344	7764	7794	7823
0,8	0	7881	7910	7939	7967	7995	8023	8051	8078	8106
0,9	0	8159	8186	8212	8238	8264	8289	8315	8340	8365
1	0	8413	8438	8461	8485	8508	8531	8554	8577	8599
1,1	0	8643	8665	8686	8708	8729	8749	8770	8790	8810
1,2	0	8849	8869	8888	8907	8925	8944	8962	8980	8997
1,3	0,9	0320	0490	0658	0824	0988	1149	1308	1466	1621
1,4	0,9	1924	2073	2220	2364	2507	2647	2785	2922	3056
1,5	0,9	3319	3448	3574	3699	3822	3943	4062	4179	4295
1,6	0,9	4520	4630	4738	4845	4950	5053	5154	5254	5352
1,7	0,9	5543	5637	5728	5818	5907	5994	6080	6164	6246
1,8	0,9	6407	6485	6562	6637	6712	6784	6856	6926	6995
1,9	0,9	7128	7193	7257	7320	7381	7441	7500	7558	7615
	0.0		555 0	5 001	5 000	5 0.22	5 000	0020	0055	0101
2	0,9	7725	7778	7831	7882	7932	7982	8030	8077	8124
2,1	0,9	8214	8257	8300	8341	8382	8422	8461	8500	8537
2,2	0,9	8610	8645	8679	8713	8745	8778	8809	8840	8870
2,3	0,9	8928	8956	8983	9010	9036	9061	9086	9111	9134
2,4	0,99	1802	2024	2240	2451	2656	2857	3053	3244	3431
2.5	0.00	2700	2062	4122	4207	1157	1611	1766	4015	5060
2,5	0,99	3790	3963	4132	4297	4457	4614	4766	4915	5060
2,6	0,99	5339 6533	5473	5603	5731	5855 6928	5975	6093	6207	6319
2,7	0,99		6636	6736	6833	7744	7020 7814	7110 7882	7197 7948	7282
2,8	0,99	7445	7523	7599	7673			8462	8511	8012
2,9	0,99	8134	8193	8250	8305	8359	8411	0402	0311	8559
3	0,99	8650	8694	8736	8777	8817	8856	8893	8930	8965

Значения F₀(X) (продолжение)

X		0	1	2	3	4	5	6	7	8
3.0	0.99	8650	8694	8736	8777	8817	8856	8893	8965	8999
3.1	0.93	0324	0646	0957	1260	1553	1836	2112	2636	2886
3.2	0.93	3129	3363	3590	3810	4024	4230	4429	4810	4991
3.3	0.93	5166	5335	5499	5658	5811	5959	6103	6376	6505
3.4	0.93	6631	6752	6869	6982	7091	7197	7299	7493	7585
3.5	0.93	7674	7760	7842	7922	7999	8074	8146	8282	8347
3.6	0.93	8409	8469	8527	8583	8637	8689	8739	8834	8879
3.7	0.93	8922	8964	9004	9043	9080	9116	9150	9216	9247
3.8	0.94	2765	3052	3327	3593	3848	4094	4331	4777	4988
3.9	0.94	5190	5385	5573	5753	5926	6092	6252	6554	6696
4.0	0.94	6833	6964	7090	7211	7327	7439	7546	7748	7843
4.1	0.94	7934	8022	8106	8186	8264	8338	8409	8542	8605
4.2	0.94	8665	8723	8778	8832	8882	8931	8978	9066	9107
4.3	0.95	1460	1837	2198	2544	2876	3193	3497	4066	4332
4.4	0.95	4588	4832	5065	5288	5502	5706	5902	6268	6439
	0 0 7						-01 0	_ , , ,		
4.5	0.95	6602	6759	6908	7051	7187	7318	7442	7675	7784
4.6	0.95	7888	7987	8081	8172	8258	8340	8419	8566	8634
4.7	0.95	8699	8761	8821	8877	8931	8983	9032	9124	9166
4.8	0.96	2067	2554	2822	3173	3508	3827	4131	4696	4958
4.9	0.96	5208	5446	5673	5888	6094	6289	6475	6821	6981
5.0	0.06	7124	7270	7416	75.40	7670	7701	7004	0112	9210
5.0	0.96	7134	7278	7416	7548	7672	7791	7904	8113	8210
5.1	0.96 0.97	8302	8389	8472	8551	8626	8698	8765	8891	8949
5.2 5.3	0.97	004 421	056 452	105 481	152 509	197 539	240 560	280 584	354 628	388 648
5.4	0.97	667	685	702	718	734	748	762	787	799
3.4	0.97	007	065	702	/10	734	740	702	/6/	199
5.5	0.97	810	821	831	840	849	857	865	880	886
5.6	0.97	893	899	905	910	915	920	924	933	936
5.7	0.98	40	44	47	50	53	55	58	63	65
5.8	0.98	67	69	71	72	74	75	77	79	81
5.9	0.98	82	83	84	85	86	87	87	89	90
	- :5 -						- ·			
6.0	0.98	90	-	-	-	-	-	-	-	-

Приложение 3

Коэффициенты для распределения Вейбулла

Коэффициенты для распределения Вейбулла								
b	Kb	Cb	U					
0,2	120	1900	15.83					
0,3	8,86	46.9	5.29					
0,4	3,32	10.4	3.14					
0,5	2	4.47	2.24					
0,6	1,50	2.61	1.74					
0,7	1.27	1.86	1.46					
0,8	1.13	1.43	1.26					
0,9	1.05	1.17	1.11					
1	1.00	1.00	1.00					
1,1	0.965	0.878	0.910					
1,2	0.941	0.787	0.837					
1,3	0.924	0.716	0.775					
1,4	0.911	0.659	0.723					
1,5	0.903	0.612	0.678					
1,6	0897	0.574	0.640					
1,7	0.892	0.540	0.605					
1,8	0.889	0.512	0.575					
1,9	0.887	0.485	0.547					
2	0.886	0.463	0.523					
2,1	0.886	0.441	0.489					
2,2	0.886	0.425	0.480					
2,3	0.886	0.409	0.461					
2,4	0.887	0.394	0.444					
2,5	0.887	0.380	0.428					
3	0.893	0.326	0.365					
3,5	0.900	0.285	0.316					
4	0.906	0.255	0.281					

 $t=a\cdot K_b$ $\sigma(t)=aC_b$

СПИСОК ЛИТЕРАТУРЫ

- 1. Смирнов Н.Н.. Ицкович А.А. Обслуживание и ремонт авиационной техники по состоянию. 2 –е изд., перераб. и доп.- М.: Транспорт, 1987.
- 2. Ицкович А.А. Управление процессами технической эксплуатации летательных аппаратов. Ч.І: Учебное пособие. -М.:МГТУ ГА,1994.
- 3. Ицкович А.А. Управление эффективностью процесса технической эксплуатации машин. М.: Знание, 1986.
- 4. Ицкович А.А. Оптимизация программ технического обслуживания и ремонта машин. М.: Знание, 1987.
- 5. Окунь Я. Факторный анализ. М.: Статистика, 1974.

- 1. Общие положения
- 2. Практические занятия
- 2.1. Практическое занятие №1. Тема: Управление объемами запасных частей для замены отказавших изделий
- 2.2. Практическое занятие №2. Тема: Управление техническим состоянием изделий, подверженных износу и старению
- 2.3. Практическое занятие №3. Тема: Модели управляемых состояний процесса технической эксплуатации ЛА
- 2.4. Цикл практических занятий. Тема: Анализ эффективности процесса технической эксплуатации ЛА комплексным методом
- 2.4.1 Техническое задание
- 2.4.2 Необходимые теоретические сведения
- 2.4.3 Практическое занятие №4. Тема: Формирование корреляционной матрицы показателей эффективности ПТЭ ЛА для расчета общих факторов центроидным метдом
- 2.4.4 Практическое занятие №5. Тема: Расчет нагрузок первого общего фактра
- 2.4.5 Практическое занятие №6. Тема: Процедура обращения алгебраических знаков и определение нагрузок второго фактора
- 2.4.6 Практическое занятие №7. Тема: Определение нагрузок остальных фактоов

Приложения

Список литературы