МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

А.А. Гусев

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к лабораторным работам ПО ДИСЦИПЛИНЕ «СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПОЛЕТОМ»

Для студентов IV курса специальности 160903 всех форм обучения

Москва – 2009

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра технической эксплуатации авиационных электросистем и пилотажно - навигационных комплексов

А.А. Гусев

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к лабораторным работам ПО ДИСЦИПЛИНЕ «СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПОЛЕТОМ»

Для студентов IV курса специальности 160903 всех форм обучения

Москва – 2009

Данные методические указания издаются в соответствии с учебной программой дисциплины «Системы автоматического управления полетом» для студентов IV курса специальности 160903 всех форм обучения

Рассмотрены и одобрены на заседании кафедры «ТЭАЭС и ПНК» №_ от _____г. и методического совета по специальности 160903 №_ от _____г.

Рецензент профессор Константинов В.Д.

ЛАБОРАТОРНАЯ РАБОТА №1

«Изучение и исследование средств обеспечивающих коррекцию характеристик устойчивости и управляемости самолета»

Основные сведения к лабораторной работе.

К средствам, обеспечивающим улучшение характеристик устойчивости и управляемости самолета относятся:

-демпферы;

-автоматы продольной (боковой) устойчивости;

-автоматы продольного (бокового) управления.

Перечисленные автоматы обеспечивают заданные характеристики устойчивости и управляемости системы «самолет–автомат» при ручном пилотировании самолета.

При управлении такой системой летчик воспринимает ее как самолет с удовлетворительными характеристиками устойчивости и управляемости.

Для реализации системы «самолет–автомат», самолет должен иметь бустерную проводку управления, которая допускает дифференциальное включение рулевой машины сервопривода автомата.

При совместной работе летчика и автомата общее перемещение органа управления самолета δ равно алгебраической сумме перемещений от летчика δ^{p} и рулевой машины используемого автомата δ^{a} .

Данная лабораторная работа состоит из трех частей.

<u>В первой части рассмотрены демферы, во второй части автоматы устойчивости, в третьей части автоматы управления. Лабораторная работа выполняется в течение 8 академических часов.</u>

Цель работы.

Целью работы является изучение и исследование методом математического моделирования свойств, скорректированного средствами автоматики самолета, а также оценка влияния средств коррекции самолета на динамические и статические показатели управляемости.

Программа работы.

- 1. Знакомство с основными теоретическими положениями и подготовка исходных данных для выполнения лабораторной работы.
- 2. Знакомство с персональным компьютером и программой «MARS».
- 3. Экспериментальное исследование скорректированного самолета.
- 4. Анализ полученных результатов, выводы.
- 5. Оформление отчета.

Исходным материалом для подготовки к лабораторной работе являются значения коэффициентов математической модели самолета типа ТУ-154 представленные в табл.1 и табл.2 соответственно для продольного и бокового движений. Номер задания выдается преподавателем при проведении лабораторной работы.

										Табл	ица 1
N⁰		Исходные данные									
зада											
ния											
	$a_{m_{Z}}^{\omega_{Z}}$	$a_{m_{Z}}^{\dot{\alpha}}$	$a_{m_z}^{\alpha}$	$a_{m_z}^{\delta_B}$	a_y^{α}	c _{ym}	c_y^{α}	Ќ _{ШВ}	·ξα	Ωα	$\ddot{X}^{n_y}_{{}_{I\!I\!I\!K}}$
	c ⁻¹	c ⁻¹	c ⁻²	c ⁻²	c ⁻¹	-	-	<u>град</u> мм	-	c ⁻¹	ММ
1	0,8	0,18	3,4	1,9	0,9	0,3	5,2	0,001	0.7	3	-200
2	0,7	0,15	2,4	1,3	0,6	0,6	4,9	0,001	0.8	4	-250
3	0,6	0,17	3,6	1,7	0,8	0,3	5,1	0,001	0.9	5	-300
4	0,5	0,19	2,9	1,6	0,7	0,4	5,2	0,001	1.0	6	-350
5	0,4	0,16	2,2	1,5	0,5	0,5	5,0	0,001	1.0	7	-400

Таблица 2

N⁰	Исходные данные											
зада												
НИЯ									-			
	$a_{m_y}^{\omega_y}$	$a_{m_y}^\beta$	$a_{m_y}^{\delta_H}$	a ^w x _{mx}	$a_{m_{X}}^{\delta_{\vartheta}}$	a_z^β	ќ _{шн}	Ќ _{ШЭ}	ξ _β	$\ddot{\Omega}_{eta}$	\ddot{X}_{π}^{β}	Τ _γ
	c^{-1}	c ⁻²	c ⁻²	c ⁻¹	c ⁻²	c ⁻¹	<u>град</u> мм	<u>град</u> мм	-	c^{-1}	ММ	с
1	0,15	1,22	0,53	1,62	1,3	0,09	0,02	0,03	0,7	3	-300	0,4
2	0,09	0,99	0,39	0,95	1,1	0,09	0,02	0,03	0,7	4	-350	0,5
3	0,17	1,60	0,68	2,45	2,3	0,19	0,02	0,03	0,8	5	-400	0,6
4	0,19	1,40	0,50	1,33	1,6	0,10	0,02	0,03	0,9	6	-350	0,7
5	0,10	1,30	0,43	1,48	1,4	0,13	0,02	0,03	1,0	7	-300	0,8

1. <u>Знакомство с основными теоретическими положениями и подготовка</u> исходных данных для выполнения лабораторной работы.

При подготовке к лабораторной работе прочитать и разобраться в материале изложенном в [1] на страницах 175-243.

По заданию преподавателя, используя исходные данные, приведенные в табл.1 и табл.2, произвести расчет параметров входящих в законы управления автоматических устройств, обеспечивающих коррекцию показателей управляемости самолета.

Методика расчета параметров для законов управления демпферов изложена в приложении 2, для автоматов устойчивости в приложении 3, для автоматов управления в приложении 4.

Результаты расчетов параметров законов управления и показатели управляемости для каждого автоматического устройства и свободного самолета занести в табл. 3-9.

Демпферы.

Таблица 3

	ДЕМПФЕР ТАНГАЖА										
Св	вободні	ый	Закон управления					Зан	сон упр	авлени	я
самолет			$\delta_{\scriptscriptstyle B}^{\scriptscriptstyle {\rm AT}}=\kappa_{\scriptscriptstyle \varpi_{\scriptscriptstyle Z}}\omega_{\scriptscriptstyle Z}$				$\delta_{\scriptscriptstyle B}^{\scriptscriptstyle {\rm ДT}} = \kappa_{\scriptscriptstyle \varpi_{\scriptscriptstyle Z}} \frac{T_{\scriptscriptstyle B} p}{T_{\scriptscriptstyle B} p + 1} \omega_{\scriptscriptstyle Z}$				
ξα	Ω_{lpha}	$X^{n_y}_{_{\rm IIIK}}$	κ_{ω_z}	έ _α	$\dot{\Omega}_{lpha}$	$\dot{X}^{n_y}_{_{I\!I\!I\!K}}$	κ_{ω_Z}	Т	ξ _α	$\dot{\Omega}_{lpha}$	$\dot{X}^{n_y}_{{}_{\rm I\!I\!I\!K}}$
-	c ⁻¹	ММ	С	-	c ⁻¹	MM	c^2	С	-	c ⁻¹	ММ

Таблица 4

	ДЕМПФЕР РЫСКАНИЯ										
Свободный			Закон управления					Закон управления			
самолет $\delta_{\rm H}^{\rm дp} = \kappa_{\omega_y} \omega_y$			$\delta_{\rm H}^{\rm Ap} = \kappa_{\omega_{\rm Y}} \frac{T_{\rm H} p}{T_{\rm H} p + 1} \omega_{\rm Y}$								
ξ _β	Ω_{eta}	X^{β}_{π}	κ _{ωγ}	έ _β	$\dot{\Omega}_{eta}$	\dot{X}_{π}^{β}	κ _{ωy}	Т	έ _β	$\dot{\Omega}_{eta}$	\dot{X}_{π}^{β}
-	c ⁻¹	MM	С	-	c ⁻¹	MM	c^2	с	-	c ⁻¹	ММ

Таблица 5

	ДЕ	МПФЕР КРЕ	EHA				
Свободны	ій самолет	Закон управления					
		$\delta_{\mathfrak{I}}^{\mathfrak{A}\mathfrak{K}} = \kappa_{\omega_{\mathfrak{X}}} \omega_{\mathfrak{X}}$					
Τ _γ	$X_{m}^{\omega_{X}}$	κ _{ωx}	Τ _γ	$\dot{X}_{\mathfrak{m}}^{\omega_{X}}$			
С	ММ	с	с	ММ			

Автоматы устойчивости

Таблица 6

АВТОМАТ ПРОДОЛЬНОЙ УСТОЙЧИВОСТИ						
$\delta_{\rm B}^{\rm A\Pi YC} = \kappa_{\omega_{\rm Z}} \omega_{\rm Z} + \kappa_{\rm n_{\rm Y}} n_{\rm y}$						
1						

Таблица 7

АВТОМАТ БОКОВОЙ УСТОЙЧИВОСТИ							
Свободный самолет			Закон управления $\delta^{A B Y C} = \kappa_{0} \omega_{0} + \kappa_{0} \beta$				
					Сн	α _{ωy} ωy κ	38
ξ_{β}	Ω_{eta}	X^{β}_{π}	κ_{ω_y}	κ _β	 ξ _β	$\ddot{\Omega}_{\beta}$	\ddot{X}_{π}^{β}
-	c ⁻¹	ММ	С	-	-	c ⁻¹	ММ

Автоматы управления

Таблица 8

АВТОМАТ ПРОДОЛЬНОГО УПРАВЛЕИЯ										
Свобо	одный са	молет		Закон управления						
				$\delta_{\rm B}^{\rm A\Pi Y\Pi} = \kappa_{\omega_{\rm Z}} \omega_{\rm Z} + \kappa_{\rm n_y} n_{\rm y} + \kappa_{\rm 1} X_{\rm mk}$						
ξα	Ω_{lpha}	$X^{n_y}_{m\kappa}$	κ_{ω_Z}	к _{ny}	к ₁	ξα	Ω̈́α	$\ddot{X}^{n_y}_{_{I\!I\!K}}$		
-	c ⁻¹	ММ	с	<u>град</u> ед. п _у	<u>град</u> мм	-	c ⁻¹	ММ		

Таблица 9

АВТОМАТ БОКОВОГО УПРАВЛЕИЯ								
Свободный самолет $\delta_{\mu}^{A B Y \Pi} = \kappa_{\omega_{y}} \omega_{y} + \kappa_{\beta} \beta + \kappa_{2} X_{\Pi}$								
ξ _β	Ω_{eta}	X^{β}_{π}	κ _{ωy}	κ _β	к ₂	 ξ _β	Ω̈́ _β	\ddot{X}_{π}^{β}
-	c ⁻¹	ММ	С	-	<u>град</u> мм	-	c ⁻¹	ММ

2. Знакомство с персональным компьютером и программой «MARS».

Лабораторная работа выполняется на персональном компьютере любой конфигурации с использованием программы «MARS». Методика работы с программой изложена в приложении 5.

3. Экспериментальное исследование скорректированного самолета.

В экспериментальной части лабораторной работы необходимо, с использованием программы «MARS», получить серии графиков переходных процессов $n_y = f(t)$, $\beta = f(t)$ или $\omega_x = f(t)$ для системы «самолетдемпфер», «самолет - АПУС (АБУС)» и «самолет - АПУП (АБУП)».

Исходными данными для проведения экспериментального исследования являются передаточные функции продольного и бокового движений самолета, приведенные в приложении 1, а также величины

параметров законов управления, полученные при выполнении пункта 1 настоящего пособия.

В процессе экспериментального исследования оценить влияние изменений передаточных чисел автоматов, а также постоянных времени фильтров на статические и динамические характеристики системы «самолет–автомат». По результатам экспериментального исследования сделать выводы.

4. Анализ полученных результатов, выводы.

полученных результатов включает В себя описание Анализ полученных при моделировании переходных процессов, сравнение результатов теоретических расчетов, выполненных В пункте 1. результатами, полученными при моделировании, выводы о влиянии на динамические и статические показатели управляемости самолета контуров автоматических устройств.

5. Оформление отчета.

Отчет по работе оформляется на отдельных листах формата А4 или в обычной ученической тетради. В отчете должны быть указаны:

- наименование работы;
- цель работы;
- исходные данные, выданные преподавателем;
- таблицы табл. 3-9 с результатами расчетов параметров законов управления;
- законы управления структурные схемы контуров управления самолета с устройствами коррекции и графики переходных процессов соответствующие этим структурам;
- выводы.

Вопросы для самопроверки.

- 1. Каково назначение демпфера тангажа (рыскания, крена)?
- 2. Для чего в закон управления демпферов вводится фильтр?
- 3. Как сказывается введение демпфера на степень устойчивости самолета?
- 4. Как сказывается введение демпфера на расход штурвальной колонки (штурвала, педалей) самолета?
- 5. Как сказывается введение демпфера на усилие прилагаемое к штурвальной колонки (штурвалу, педалям) самолета?
- 6. Как скажется увеличение (уменьшение) передаточного числа демпфера на колебаниях самолета ?
- 7. Как скажется увеличение (уменьшение) постоянной времени фильтра на процессе демпфирования колебаний системы «самолет-демпфер» ?
- 8. Каково назначение автоматов продольной (боковой) устойчивости?
- 9. Каково назначение автоматов продольного (бокового) управления?

- 10. Для коррекции какого показателя управляемости в закон управления АПУП вводится информация о перемещении штурвальной колонки?
- 11. Для коррекции какого показателя управляемости в закон управления АБУП вводится информация об угле скольжения (боковой перегрузке)?
- 12. Как скажется отказ акселерометра при использовании АПУС на динамические показатели управляемости?
- 13. Как влияет на устойчивость системы «самолет-АПУП» контур включающий сигнал перемещения штурвальной колонки?

Приложение 1

Справочный материал по характеристикам устойчивости и управляемости свободного самолета.

1. Продольное движение свободного самолета.

1.1 Контур управления самолета вертикальной перегрузкой представлен на рис. П1-1:

Рис. П1-1. Структурная схема контура управления вертикальной перегрузкой самолета.

1.2 Математическая модель продольного короткопериодического (КПД) движения самолета:

$$\begin{cases} (p^2 + a_{m_Z}^{\omega_z} p)\vartheta + (a_{m_Z}^{\dot{\alpha}} p + a_{m_Z}^{\alpha})\alpha = -a_{m_Z}^{\delta_B}\delta_B + a_{m_Z}^{M_z}M_z + a_{m_Z}^{\dot{\alpha}}p\alpha_B \\ - p\vartheta + (p + a_y^{\alpha})\alpha = p\alpha_B \end{cases}.$$
(II1-1)

Вариация угла атаки и нормальной перегрузки связаны соотношением

$$n_{y} = \frac{C_{y}^{\alpha}}{C_{y \ r\pi}} \alpha \tag{\Pi1-2}$$

1.3 Условия устойчивости самолета по перегрузке:

$$s_{1} = a_{m_{Z}}^{\omega_{Z}} + a_{y}^{\alpha} + a_{m_{Z}}^{\dot{\alpha}} > 0$$

$$s_{2} = a_{m_{Z}}^{\alpha} + a_{m_{Z}}^{\omega_{Z}} a_{y}^{\alpha} > 0$$
(П1-3)

1.4 Показатели управляемости самолета:

К динамическим показателям продольной управляемости относятся : - собственная частота короткопериодического движения самолета

$$\Omega_{\alpha} = \sqrt{s_2} \tag{\Pi1-4}$$

- относительный коэффициент затухания короткопериодического возмущенного движения.

$$\xi_{\alpha} = \frac{s_1}{2\sqrt{s_2}} \tag{\Pi1-5}$$

На рис. П1-2 приведены области оценки управляемости для тяжелых самолетов.

Рис. П1-2. Области оценки продольной управляемости.

К статическим характеристикам продольной управляемости относятся: -градиент усилия по перегрузке

$$P_{_{\rm IIIK}}^{n_{y}} = \frac{c_{_{y\,\Gamma\Pi}}\kappa_{_{\rm IIIB}}M_{_{\rm III}}^{\delta_{B}}(a_{_{m_{z}}}^{\alpha} + a_{_{m_{z}}}^{\omega_{z}}a_{_{y}}^{\alpha})}{c_{_{y}}^{\alpha}a_{_{m_{z}}}^{\delta_{B}}}$$
(Π1-6)

-градиент перемещения по перегрузке

$$X_{IIIK}^{n_{y}} = \frac{c_{y \Gamma \Pi} (a_{m_{z}}^{\alpha} + a_{m_{z}}^{\omega_{z}} a_{y}^{\alpha})}{\dot{\kappa}_{IIIB} c_{y}^{\alpha} a_{m_{z}}^{\delta_{B}}}$$
(II1-7)

2.Боковое движение свободного самолета,

2.1 Контур управления самолета боковой перегрузкой представлен на рис. П1-3.

Рис. П1-3. Структурная схема контура управления боковой перегрузкой самолета.

2.2 Математическая модель движения самолета «Рыскания-Скольжения».

$$\begin{cases} (p^2 + a_{m_y}^{\omega_y} p)\phi + a_{m_y}^{\beta}\beta = -a_{m_y}^{\delta_H}\delta_H + a_{m_y}^{M_y}M_y \\ -p\phi + (p + a_z^{\beta})\beta = p\beta_B \end{cases}$$
(II1-8)

2.3 Условия устойчивости движения модели «Рыскания-Скольжения» $f_1 = a_{m_y}^{\omega_y} + a_z^\beta > 0$

$$f_2 = a_{m_y}^{\beta} + a_{m_y}^{\omega_y} a_z^{\beta} > 0$$
(Π1-9)

2.4 Показатели управляемости бокового движения самолета для модели «Рыскания-Скольжения».

К динамическим показателям боковой управляемости относятся: -собственная частота колебаний

$$\Omega_{\beta} = \sqrt{f_2} , \qquad (\Pi 1-10)$$

-относительный коэффициент затухания

$$\xi_{\beta} = \frac{f_1}{2\sqrt{f_2}},$$
 (II1-11)

На рис. П1-4 приведена область оценки боковой управляемости самолета .

Рис. П1-4. Области оценки боковой управляемости

К статическим характеристикам боковой управляемости модели "Рыскания-Скольжения" относятся:

-градиент перемещения педалей по углу скольжения

$$X_{\pi}^{\beta} = \frac{(a_{m_{y}}^{\beta} + a_{m_{y}}^{\omega_{y}} a_{z}^{\beta})}{\dot{\kappa}_{_{IIIB}} a_{m_{y}}^{\delta_{H}}}, \qquad (\Pi 1-12)$$

-градиент усилия на педалях по углу скольжения

$$P_{\Pi}^{\beta} = \frac{\kappa_{\Pi H} M_{\Pi}^{\delta_{H}} (a_{m_{y}}^{\beta} + a_{m_{y}}^{\omega_{y}} a_{z}^{\beta})}{a_{m_{y}}^{\delta_{H}}}, \qquad (\Pi 1-13)$$

2.5 Контур управления угловой скоростью крена самолета представлен на рис. П1-5.

Рис. П1-5. Структурная схема контура управления угловой скоростью крена самолета.

2.6 Математическая модель бокового движения самолета «Чистый крен».

$$(p^{2} + a_{m_{x}}^{\omega_{x}}p)\gamma = -a_{m_{x}}^{\delta_{9}}\delta_{9} + a_{m_{x}}^{M_{x}}M_{x}.$$
(II1-14)

2.7 Показатели управляемости модели бокового движения самолета «Чистый крен».

К динамическим показателям боковой управляемости модели «Чистый крен» относится:

- постоянная времени угловой скорости крена

$$T_{\dot{\gamma}} = \frac{l}{a_{m_x}^{\omega_x}}.$$
 (II1-15)

Боковая управляемость по параметру $T_{\dot{\gamma}}$ считается удовлетворительной, если $T_{\dot{\gamma}} \leq 1$ с.

К статическим показателям управляемости модели «Чистый крен» относятся:

- градиент перемещения штурвала по угловой скорости крена

$$P_{\rm m}^{\omega_{\rm X}} = \frac{\kappa_{\rm m_3} M_{\rm m}^{\delta_3} a_{\rm m_{\rm X}}^{\omega_{\rm X}}}{a_{\rm m_{\rm X}}^{\delta_3}}.$$
 (Π1-16)

- градиент перемещения штурвала по угловой скорости крена

$$X_{\rm m}^{\omega_{\rm X}} = \frac{a_{\rm m_{\rm X}}^{\omega_{\rm X}}}{\dot{\kappa}_{\rm m_{\rm 9}} a_{\rm m_{\rm X}}^{\delta_{\rm 9}}}.$$
 (Π1-16)

Модель КПД	Модель «Рыскания-	Модель «Чистый
	Скольжения»	крен»
1	2	3
$W_{\frac{9}{\delta_{B}}} = -\frac{a_{m_{Z}}^{\delta_{B}}(p+a_{y}^{\alpha})}{p(p^{2}+s_{1}p+s_{2})}$	$W_{\frac{\phi}{\delta_{H}}} = -\frac{a_{m_{y}}^{\delta_{H}}(p+a_{z}^{\beta})}{p(p^{2}+f_{1}p+f_{2})}$	$W_{\frac{\gamma}{\delta_{9}}} = -\frac{a_{m_{X}}^{\delta_{9}}}{p(p+a_{m_{X}}^{\omega_{X}})}$
$W_{\underline{\omega_z}\atop \underline{\delta_B}} = -\frac{a_{m_z}^{\delta_B}(p + a_y^{\alpha})}{p^2 + s_1 p + s_2}$	$W_{\underline{\omega_y}\atop \overline{\delta_H}} = -\frac{a_{m_y}^{\delta_H}(p + a_z^\beta)}{p^2 + f_1 p + f_2}$	$W_{\underline{\omega_{x}}\atop \overline{\delta_{9}}}=-\frac{a_{m_{x}}^{\delta_{9}}}{p+a_{m_{x}}^{\omega_{x}}}$
1	2	3
$W_{\frac{\vartheta}{\omega_Z}} = \frac{1}{p}$	$W_{\frac{\varphi}{\omega_y}} = \frac{1}{p}$	$W_{\frac{\gamma}{\omega_{x}}} = \frac{1}{p}$
$W_{\frac{\alpha}{\delta_{B}}} = -\frac{a_{m_{Z}}^{\delta_{B}}}{p^{2} + s_{1}p + s_{2}}$	$W_{\underline{\beta}} = -\frac{a_{m_y}^{\delta_H}}{p^2 + f_1 p + f_2}$	
$W_{\frac{\alpha}{\omega_z}} = \frac{1}{p + a_y^{\alpha}}$	$W_{\frac{\beta}{\omega_y}} = \frac{1}{p + a_z^{\beta}}$	
$W_{\underline{\mathbf{n}_{y}}} = \frac{\mathbf{c}_{y}^{\alpha}}{\mathbf{c}_{y\mathrm{rm}}}$	$W_{\underline{n_z}}_{\beta} = \frac{c_z^{\beta}}{c_{y r\pi}}$	
$W_{\frac{n_{y}}{X_{IIIK}}} = -\frac{\dot{\kappa}_{_{IIIB}}a_{m_{Z}}^{\delta_{B}}c_{y}^{\alpha}}{(p^{2}+s_{1}p+s_{2})c_{y_{\Gamma\Pi}}}$	$W_{\frac{\beta}{X_{\Pi}}} = -\frac{\dot{\kappa}_{_{\Pi H}} a_{m_{y}}^{\delta_{_{H}}}}{p^{2} + f_{1}p + f_{2}}$	$W_{\underline{\omega_{x}}} = -\frac{\dot{\kappa}_{\underline{m}3} a_{\underline{m}_{x}}^{\delta_{3}}}{p + a_{\underline{m}_{x}}^{\omega_{x}}}$

3. Передаточные функции свободного самолета

Приложение 2

Расчет параметров в законах управления демпферов.

1. Демпфер тангажа.

 $\delta_{\rm B} = \delta_{\rm B}^{\rm AT} + \delta_{\rm B}^{\rm p}$

Задача расчета демпфера тангажа сводится к определению параметров (κ_{ω_z} , $T_{_B}$) в законе управления демпфера, обеспечивающих потребное для ручного управления значение относительного коэффициента затухания $\dot{\xi}_{\alpha} = (0,7 \div 1)$.

Методика определения передаточного числа $\kappa_{\omega_{z}}$ для закона управления

где:

$$\begin{split} \delta^{\rm AT}_{\rm B} &= \kappa_{\omega_{\rm Z}} \omega_{\rm Z} \\ \delta^{\rm p}_{\rm B} &= \dot{\kappa}_{\rm IIIB} X_{\rm IIIK} \end{split}$$

Структурная схема контура управления нормальной перегрузкой самолета с демпфером тангажа имеет вид изображенный на рис. П2-1

Рис. П2-1. Структурная схема скорректированного демпфером тангажа контура управления нормальной перегрузкой самолета.

Передаточная функция скорректированного контура управления имеет вид:

$$\dot{W}_{\frac{n_{y}}{X_{\text{ШK}}}} = -\frac{\dot{\kappa}_{_{\text{IIB}}} a_{m_{z}}^{\delta_{B}} c_{y}^{\alpha}}{(p^{2} + \dot{s}_{1}p + \dot{s}_{2}) c_{y_{\text{ГП}}}}$$
(Π2-2)

где:

$$\dot{s}_1 = s_1 + a_{m_Z}^{\delta_B} \kappa_{\omega_Z}$$

 $\dot{s}_2 = s_2 + a_{m_Z}^{\delta_B} a_y^{\alpha} \kappa_{\omega_Z}$

Условие устойчивости скорректированного демпфером тангажа самолета определяется неравенствами:

$$\dot{s}_1 > 0, \ \dot{s}_2 > 0$$
 (Π2-3)

Показатели продольной управляемости скорректированного самолета определяются выражениями:

- относительный коэффициент затухания короткопериодического возмущенного движения.

$$\dot{\xi}_{\alpha} = \frac{\dot{s}_{1}}{2\sqrt{\dot{s}_{2}}} = \frac{s_{1} + a_{m_{z}}^{\sigma_{B}} \kappa_{\omega_{z}}}{2\sqrt{s_{2} + a_{m_{z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{z}}}}$$
(Π2-4)

- собственная частота короткопериодического движения самолета

$$\dot{\Omega}_{\alpha} = \sqrt{\dot{s}_2} = \sqrt{s_2 + a_{m_z}^{\delta_B} a_y^{\alpha} \kappa_{\omega_z}}$$
(Π2-5)

- градиент перемещения по перегрузке

$$\dot{X}_{_{\rm IIIK}}^{n_{\rm Y}} = \left[\dot{W}_{_{\overline{X}_{_{\rm IIIK}}}} \right]_{P=0}^{-1} = -\frac{(s_2 + a_{_{m_Z}}^{\delta_{\rm B}} a_y^{\alpha} \kappa_{_{\omega_Z}}) c_{_{y\,\Gamma\Pi}}}{\dot{\kappa}_{_{\rm IIIB}} a_{_{m_Z}}^{\delta_{\rm B}} c_y^{\alpha}}$$
(Π2-6)

Приняв для скорректированного демпфером тангажа самолета величину $\dot{\xi}_{\alpha} = (0.7 \div 1)$ и решив уравнение (П2-4) относительно к_{ω_z} получим выражение для расчета к_{ω_z} для закона управления $\delta_{\rm B}^{\rm AT} = \kappa_{\omega_z} \omega_z$

$$\kappa_{\omega_{Z}} = \frac{-(2s_{1}a_{m_{Z}}^{\delta_{B}} - 4\dot{\xi}_{\alpha}^{2}a_{m_{Z}}^{\delta_{B}}a_{y}^{\alpha}) \pm \sqrt{(2s_{1}a_{m_{Z}}^{\delta_{B}} - 4\dot{\xi}_{\alpha}^{2}a_{m_{Z}}^{\delta_{B}}a_{y}^{\alpha})^{2} - 4a_{m_{Z}}^{\delta_{B}}{}^{2}(s_{1}^{2} - 4\dot{\xi}_{\alpha}^{2}s_{2})}{2a_{m_{Z}}^{\delta_{B}}{}^{2}}$$
(II2-7)

1.2 Методика определения передаточного числа к_{wz} и постоянной времени фильтра Т_в для закона управления

где:

$$\begin{split} \delta_{_{B}} &= \delta_{_{B}}^{_{AT}} + \delta_{_{B}}^{p} \end{split} \tag{\Pi2-8} \\ \delta_{_{B}}^{_{AT}} &= \kappa_{_{\varpi_{Z}}} \frac{T_{_{B}}p}{T_{_{B}}p+1} \omega_{_{Z}} \\ \delta_{_{B}}^{_{AP}} &= \dot{\kappa}_{_{IIB}} X_{_{IIIK}} \end{split}$$

Структурная схема контура управления нормальной перегрузкой с использованием рассматриваемого закона управления представлена на рис. П2-2

Рис. П2-2. Структурная схема скорректированного демпфером тангажа контура управления нормальной перегрузкой самолета.

Система уравнений, описывающая движение самолета с демпфером тангажа, имеющего рассматриваемый закон управления, получается присоединением к уравнениям короткопериодического движения самолета (П1-1) уравнения (П2-8) и имеет вид:

$$\begin{cases} (p + a_{m_z}^{\omega_z})\omega_z + (a_{m_z}^{\dot{\alpha}}p + a_{m_z}^{\alpha})\alpha + a_{m_z}^{\delta_B}\delta_B = 0\\ -\omega_z + (p + a_y^{\alpha})\alpha = 0\\ -\kappa_{\omega_z}T_Bp\omega_z + (T_Bp+1)\delta_B^{\text{AT}} = 0\\ \delta_B^{\text{AT}} - \delta_B = -\dot{\kappa}_{\text{IIB}}X_{\text{IIK}} \end{cases}$$
(II2-9)

Характеристическое уравнение системы (П2-9) представляет собой полином:

$$\Delta'(\mathbf{p}) = T_{B} p^{3} + \left[T_{B} (a_{m_{Z}}^{\omega_{Z}} + a_{y}^{\alpha} + a_{m_{Z}}^{\dot{\alpha}}) + T_{B} a_{m_{Z}}^{\delta_{B}} \kappa_{\omega_{Z}} + 1 \right] p^{2} + \left[(a_{m_{Z}}^{\omega_{Z}} + a_{y}^{\alpha} + a_{m_{Z}}^{\dot{\alpha}}) + T_{B} (a_{m_{Z}}^{\omega_{Z}} a_{y}^{\alpha} + a_{m_{Z}}^{\alpha}) + T_{B} a_{m_{Z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{Z}} \right] p + (a_{m_{Z}}^{\omega_{Z}} a_{y}^{\alpha} + a_{m_{Z}}^{\alpha})$$
(II2-10)

Система «самолет-демпфер тангажа» с рассматриваемым законом управления является системой третьего порядка, поэтому зададим характеристический полином эталонной системы в виде:

$$\Delta'(\mathbf{p}) = (\mathbf{T}_{\mathfrak{g}}\mathbf{p}+1)(\mathbf{p}^{2}+2\dot{\xi}_{\alpha}\dot{\Omega}_{\alpha}\mathbf{p}+\dot{\Omega}_{\alpha}^{2}) =$$

$$\mathbf{T}_{\mathfrak{g}}\mathbf{p}^{3}+(1+2\mathbf{T}_{\mathfrak{g}}\dot{\xi}_{\alpha}\dot{\Omega}_{\alpha})\mathbf{p}^{2}+(2\dot{\xi}_{\alpha}\dot{\Omega}_{\alpha}+\mathbf{T}_{\mathfrak{g}}\dot{\Omega}_{\alpha}^{2})\mathbf{p}+\dot{\Omega}_{\alpha}^{2}$$
(II2-11)

Приравнивая соответствующие коэффициенты полиномов (П2-10) и (П2-11) получим систему уравнений (П2-12), решив которую определим значения параметров рассматриваемого закона управления.

$$\begin{cases} T_{_{9}} = T_{_{B}} \\ (1 + 2T_{_{9}}\dot{\xi}_{\alpha}\dot{\Omega}_{\alpha}) = T_{_{B}}(a_{m_{z}}^{\omega_{z}} + a_{y}^{\alpha} + a_{m_{z}}^{\dot{\alpha}}) + T_{_{B}}a_{m_{z}}^{\delta_{B}}\kappa_{\omega_{z}} + 1 \\ (2\dot{\xi}_{\alpha}\dot{\Omega}_{\alpha} + T_{_{9}}\dot{\Omega}_{\alpha}^{2}) = (a_{m_{z}}^{\omega_{z}} + a_{y}^{\alpha} + a_{m_{z}}^{\dot{\alpha}}) + T_{_{B}}(a_{m_{z}}^{\omega_{z}}a_{y}^{\alpha} + a_{m_{z}}^{\alpha}) + T_{_{B}}a_{m_{z}}^{\delta_{B}}a_{y}^{\alpha}\kappa_{\omega_{z}} \end{cases}$$
(II2-12)

При работе над решением системы (П2-12) необходимо принять во внимание, что

$$\begin{split} s_1 &= a_{m_Z}^{\omega_Z} + a_y^{\alpha} + a_{m_Z}^{\dot{\alpha}} \\ s_2 &= a_{m_Z}^{\alpha} + a_{m_Z}^{\omega_Z} a_y^{\alpha} \end{split}$$

и кроме того следует учесть что:

$$\begin{split} \dot{\Omega}_{\alpha} &= \Omega_{\alpha} = \sqrt{s_2} \\ \dot{\xi}_{\alpha} &= (0,7 \div 1) \\ \dot{X}^{n_y}_{\scriptscriptstyle \rm IIIK} &= X^{n_y}_{\scriptscriptstyle \rm IIIK} \end{split}$$

а также

В результате решения системы (П2-12)были получены выражения для определения параметров рассматриваемого закона управления:

$$T_{\rm B} = \frac{1}{a_{\rm y}^{\alpha}} \tag{\Pi 2-13}$$

$$\kappa_{\omega_{Z}} = \frac{2\dot{\xi}_{\alpha}\sqrt{s_{2}} - s_{1}}{a_{m_{Z}}^{\delta_{B}}} \tag{\Pi2-14}$$

2. Демпфер рыскания

где:

Назначением демпфера рыскания является коррекция относительного коэффициента затухания бокового движения свободного самолета $\dot{\xi}_{\beta}$ до значения $\dot{\xi}_{\beta} = 0,4 \div 1$.

Законы управления демпферов рыскания используемых на самолетах ГА имеют вид:

$$\begin{split} \delta_{_{H}} &= \delta_{_{H}}^{_{A}p} + \delta_{_{H}}^{p} \\ \delta_{_{H}}^{_{A}p} &= \dot{\kappa}_{_{MH}} X_{_{\Pi}} \\ \delta_{_{H}}^{_{A}p} &= \kappa_{_{\omega_{y}}} \omega_{_{y}} \qquad \text{или} \\ \delta_{_{H}}^{_{A}p} &= \kappa_{_{\omega_{y}}} \frac{T_{_{H}}p}{T_{_{H}}p+1} \omega_{_{y}} \end{split}$$

Выражения для определения параметров в законах управления демпферов рыскания выводятся по аналогии с соответствующими законами управления демпферов тангажа.

Так для закона управления $\delta_{\mu}^{дp} = \kappa_{\omega_y} \omega_y$ структурная схема, скорректированного демфером рыскания контура управления углом скольжения, представлена на рис. П2-3

Рис. П2-3. Структурная схема скорректированного демпфером рыскания контура управления углом скольжения самолета.

Передаточное число κ_{ω_V} определяется по выражению

$$\kappa_{\omega_{y}} = \frac{-\left(2f_{1}a_{m_{y}}^{\delta_{H}} - 4\dot{\xi}_{\beta}^{2}a_{m_{y}}^{\delta_{H}}a_{z}^{\beta}\right) \pm \sqrt{\left(2f_{1}a_{m_{y}}^{\delta_{H}} - 4\dot{\xi}_{\beta}^{2}a_{m_{y}}^{\delta_{H}}a_{z}^{\beta}\right)^{2} - 4a_{m_{y}}^{\delta_{H}}^{2}(f_{1}^{2} - 4\dot{\xi}_{\beta}^{2}f_{2})}{2a_{m}^{\delta_{H}}^{2}} \tag{II2-16}$$

Показатели управляемости скорректированного демпфером рыскания самолета определяются выражениями:

- относительный коэффициент затухания

$$\dot{\xi}_{\beta} = \frac{\dot{f}_{1}}{2\sqrt{\dot{f}_{2}}} = \frac{f_{1} + a_{m_{y}}^{\sigma_{H}} \kappa_{\omega_{y}}}{2\sqrt{f_{2} + a_{m_{y}}^{\delta_{H}} a_{z}^{\beta} \kappa_{\omega_{y}}}}$$
(Π2-17)

- собственная частота движения самолета

$$\dot{\Omega}_{\beta} = \sqrt{\dot{f}_2} = \sqrt{f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y}}$$
(Π2-18)

- градиент перемещения по углу скольжения

$$\dot{X}_{\pi}^{\beta} = \left[\dot{W}_{\frac{\beta}{X_{\pi}}}\right]_{P=0}^{-1} = -\frac{f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y}}{\dot{\kappa}_{_{IIIH}} a_{m_y}^{\delta_H}}$$
(Π2-19)

Структурная схема контура управления углом скольжения с использованием закона управления $\delta_{\mu}^{Ap} = \kappa_{\omega_y} \frac{T_{\mu}p}{T_{\mu}p+1} \omega_y$ представлена на рис. П2-4

Рис. П2-4. Структурная схема скорректированного демпфером рыскания контура управления углом скольжения самолета.

Показатели управляемости для рассматриваемого закона управления определяются выражениями :

$$\dot{\Omega}_{\beta} = \Omega_{\beta} = \sqrt{f_2}$$
$$\dot{\xi}_{\beta} = (0, 4 \div 1)$$
$$\dot{X}_{\pi}^{\beta} = X_{\pi}^{\beta}$$

Параметры рассматриваемого закона управления определятся по выражениям:

$$T_{\rm H} = \frac{1}{a_z^{\beta}} \tag{\Pi 2-20}$$

$$\kappa_{\omega_{y}} = \frac{2\dot{\xi}_{\beta}\sqrt{f_{2}} - f_{1}}{a_{m_{y}}^{\delta_{H}}} \tag{\Pi2-21}$$

3. Демпфер крена

Демпфер крена необходим в том случае, когда значение постоянной времени угловой скорости крена свободного самолета \dot{T}_{γ} превышает 1 с.

Закон управления демпферов крена имеет вид:

$$\delta_{9} = \delta_{9}^{\pi\kappa} + \delta_{9}^{p} \tag{\Pi2-22}$$
$$\delta^{p} = \dot{\kappa} \quad X$$

где:

$$\begin{split} \delta^{p}_{\mathfrak{S}} &= \dot{\kappa}_{\mathfrak{M}\mathfrak{S}} X_{\mathfrak{M}} \\ \delta^{\mathfrak{K}}_{\mathfrak{S}} &= \kappa_{\omega_{X}} \omega_{X} \end{split}$$

Структурная схема контура управления угловой скоростью крена самолета с использованием рассматриваемого закона управления демпфера крена представлена на рис. П2-5

Рис. П2-5. Структурная схема скорректированного демпфером крена контура управления угловой скоростью самолета.

Передаточная функция скорректированного контура имеет вид:

$$\dot{W}_{\frac{\omega_{x}}{X_{\text{III}}}} = -\frac{K}{\dot{T}_{\dot{\gamma}} p+1} \tag{\Pi2-23}$$

где:

$$\dot{K} = \frac{\dot{\kappa}_{_{II3}} a_{m_{X}}^{\sigma_{3}}}{a_{m_{X}}^{\omega_{X}} + a_{m_{X}}^{\delta_{3}} \kappa_{\omega_{X}}}$$
(Π2-24)

$$\dot{\Gamma}_{\dot{\gamma}} = \frac{1}{a_{m_{X}}^{\omega_{X}} + a_{m_{X}}^{\delta_{3}} \kappa_{\omega_{X}}} \tag{\Pi2-25}$$

Принимая во внимание, что $\dot{T}_{\dot{\gamma}} < 1 \, c$, получим выражение для определения передаточного числа

$$\kappa_{\omega_{\rm X}} = \frac{1 - \dot{\mathrm{T}}_{\dot{\gamma}} a_{\mathrm{m_{\rm X}}}^{\omega_{\rm X}}}{\dot{\mathrm{T}}_{\dot{\gamma}} a_{\mathrm{m_{\rm X}}}^{\delta_9}} \tag{\Pi2-26}$$

Статический показатель управляемости для кренового движения самолета с использованием демпфера крена определится выражением:

$$\dot{X}_{\mathrm{III}}^{\omega_{\mathrm{X}}} = \left[\dot{W}_{\frac{\omega_{\mathrm{X}}}{X_{\mathrm{III}}}}\right]_{\mathrm{p}=0}^{-1} = \frac{a_{\mathrm{m}_{\mathrm{X}}}^{\omega_{\mathrm{X}}} + a_{\mathrm{m}_{\mathrm{X}}}^{\delta_{\mathrm{3}}} \kappa_{\omega_{\mathrm{X}}}}{\dot{\kappa}_{\mathrm{III}} a_{\mathrm{m}_{\mathrm{X}}}^{\delta_{\mathrm{3}}}}$$
(II2-27)

Расчет параметров в законах управления автоматов устойчивости.

1.Автомат продольной устойчивости (АПУС).

Автомат продольной устойчивости обеспечивает коррекцию динамических показателей управляемости до потребных для ручного управления величин, обеспечивающих комфортное управление самолетом.

Закон управления автомата продольной устойчивости имеет вид:

Где:

$$\delta_{B} = \delta_{B}^{A\Pi YC} + \delta_{B}^{p}$$
ГДе:
 $\delta_{B}^{A\Pi YC} = \kappa_{\omega_{Z}} \omega_{Z} + \kappa_{n_{y}} n_{y}$
 $\delta_{B}^{p} = \dot{\kappa}_{B} X_{BK}$
ача расчета АПУС сводится к определению передаточных чи

Задача расчета АПУС сводится к определению передаточных чисел (κ_{ω_z} , κ_{n_y}) в законе управления автомата, обеспечивающих потребные для ручного управления показатели динамической управляемости скорректированного самолета. Величины динамических показателей управляемости задаются областями оценки продольной управляемости представленными в приложении 1 на рис. П1-2.

Структурная схема скорректированного с помощью АПУС самолета представлена на рис. ПЗ-1

Рис. ПЗ-1. Структурная сема скорректированного с помощью АПУС самолета.

Для вывода выражений, позволяющих определить передаточные числа закона управления, определим передаточную функцию скорректированного АПУС самолета, которая имеет вид:

$$\ddot{W}_{\frac{n_{y}}{X_{IIIK}}} = -\frac{\dot{\kappa}_{_{IIB}} a_{m_{z}}^{\delta_{B}} c_{y}^{\alpha}}{(p^{2} + \ddot{s}_{1}p + \ddot{s}_{2}) c_{y_{\Gamma\Pi}}}$$
(Π3-2)

где: $\ddot{s}_1 = \dot{s}_1 = s_1 + a_{m_z}^{\delta_B} \kappa_{\omega_z}$

$$\ddot{s}_{2} = \dot{s}_{2} + a_{m_{Z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y r \pi}} \kappa_{n_{y}} = s_{2} + a_{m_{Z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{Z}} + a_{m_{Z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y r \pi}} \kappa_{n_{y}}$$

Показатели управляемости скорректированного с помощью АПУС самолета определятся выражениями:

- относительный коэффициент затухания короткопериодического возмущенного движения.

$$\ddot{\xi}_{\alpha} = \frac{\ddot{s}_{1}}{2\sqrt{\ddot{s}_{2}}} = \frac{s_{1} + a_{m_{Z}}^{\sigma_{B}} \kappa_{\omega_{Z}}}{2\sqrt{s_{2} + a_{m_{Z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{Z}} + a_{m_{Z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y \Gamma \Pi}} \kappa_{n_{y}}}}$$
(II3-3)

8

- собственная частота короткопериодического движения самолета

$$\ddot{\Omega}_{\alpha} = \sqrt{\ddot{s}_2} = \sqrt{s_2 + a_{m_Z}^{\delta_B} a_y^{\alpha} \kappa_{\omega_Z} + a_{m_Z}^{\delta_B} \frac{c_y^{\alpha}}{c_{y \, r\pi}} \kappa_{n_y}} \tag{II3-4}$$

- градиент перемещения по перегрузке

$$\ddot{X}_{\text{шк}}^{n_{y}} = \left[\ddot{W}_{\frac{n_{y}}{X_{\text{шк}}}} \right]_{P=0}^{-1} = -\frac{(s_{2} + a_{m_{z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{z}} + a_{m_{z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y^{\Gamma\Pi}}} \kappa_{n_{y}}) c_{y^{\Gamma\Pi}}}{\dot{\kappa}_{\text{шB}} a_{m_{z}}^{\delta_{B}} c_{y}^{\alpha}}$$
(Π3-5)

Задаваясь значением $\ddot{\xi}_{\alpha}$ и $\ddot{\Omega}_{\alpha}$ можно найти величины передаточных чисел в законе управления АПУС обеспечивающих потребные для ручного управления показатели управляемости самолета:

$$\kappa_{\omega_{Z}} = \frac{2\ddot{\xi}_{\alpha}\ddot{\Omega}_{\alpha} - s_{1}}{a_{m_{z}}^{\delta_{B}}} \tag{\Pi3-6}$$

$$\kappa_{n_{y}} = \frac{(\ddot{\Omega}_{\alpha}^{2} - s_{2} - a_{m_{z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{z}}) c_{y \Gamma \Pi}}{a_{m_{z}}^{\delta_{B}} c_{y}^{\alpha}}$$
(Π3-7)

2.Автомат боковой устойчивости (АБУС).

Закон управления автомата боковой устойчивости имеет вид: $\delta_{_{\rm H}} = \delta_{_{\rm H}}^{\rm A {\it G} {\it YC}} + \delta_{_{\rm H}}^{\rm p}$

(ПЗ-8)

где:

$$\delta_{H}^{A \beta Y C} = \kappa_{\omega_{y}} \omega_{y} + \kappa_{\beta} \beta$$
$$\delta_{H}^{p} = \dot{\kappa}_{mH} X_{\pi}$$

Задача расчета АБУС сводится к определению передаточных чисел (κ_{ω_y} , κ_{β}) в законе управления автомата, обеспечивающих потребные для ручного управления показатели динамической управляемости скорректированного самолета. Величины динамических показателей управляемости задаются областями оценки продольной управляемости представленными в приложении 1 на рис. П1-2.

Структурная схема скорректированного с помощью АБУС самолета представлена на рис. ПЗ-2.

Рис.П3-2. Структурная сема скорректированного с помощью АБУС самолета.

Поскольку порядок вывода выражений для определения передаточных чисел для АБУС ничем не отличается от порядка вывода соответствующих выражений для АПУС, ниже приводятся без вывода необходимые выражения:

-передаточная функция скорректированного с помощью АБУС самолета

$$\ddot{W}_{\frac{\beta}{X_{\Pi}}} = -\frac{\dot{\kappa}_{\mu\mu}a_{m_{y}}^{\delta_{H}}}{(p^{2} + \ddot{f}_{1}p + \ddot{f}_{2})}$$
(Π3-9)

где: $\ddot{f}_1 = \dot{f}_1 = f_1 + a_{m_y}^{\delta_H} \kappa_{\omega_y}$ $\ddot{f}_2 = \dot{f}_2 + a_{m_y}^{\delta_H} \kappa_{\beta} = f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y} + a_{m_y}^{\delta_H} \kappa_{\beta}$

-относительный коэффициент затухания короткопериодического возмущенного движения.

$$\ddot{\xi}_{\beta} = \frac{\ddot{f}_{1}}{2\sqrt{\ddot{f}_{2}}} = \frac{f_{1} + a_{m_{y}}^{\delta_{H}} \kappa_{\omega_{y}}}{2\sqrt{f_{2} + a_{m_{y}}^{\delta_{H}} a_{z}^{\beta} \kappa_{\omega_{y}} + a_{m_{y}}^{\delta_{B}} \kappa_{\beta}}}$$
(Π3-10)

- собственная частота короткопериодического движения самолета $\ddot{\Omega}_{\beta} = \sqrt{\ddot{f}_2} = \sqrt{f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y} + a_{m_y}^{\delta_H} \kappa_{\beta}}$ (ПЗ-11)

- градиент перемещения по перегрузке

$$\ddot{X}_{\pi}^{\beta} = \left[\ddot{W}_{\frac{\beta}{X_{\pi}}}\right]_{P=0}^{-1} = -\frac{f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y} + a_{m_y}^{\delta_H} \kappa_{\beta}}{\dot{\kappa}_{\mu\mu} a_{m_y}^{\delta_H}}$$
(Π3-12)

Задаваясь значением $\ddot{\xi}_{\beta}$ и $\ddot{\Omega}_{\beta}$ определяем величины передаточных чисел в законе управления АБУС, обеспечивающих потребные для ручного управления показатели управляемости самолета по выражениям:

$$\kappa_{\omega_{y}} = \frac{2\ddot{\xi}_{\beta}\ddot{\Omega}_{\beta} - f_{1}}{a_{m_{y}}^{\delta_{H}}}$$
(Π3-13)

$$\kappa_{\beta} = \frac{\ddot{\Omega}_{\beta}^2 - f_2 - a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y}}{a_{m_y}^{\delta_H}}$$
(Π3-14)

Приложение 4

Расчет параметров в законах управления автоматов управления.

1.Автомат продольного управления (АПУП).

Автомат продольного управления обеспечивает коррекцию как динамических так и статических показателей управляемости до потребных для ручного управления величин, обеспечивающих комфортное управление самолетом.

Закон управления автомата продольного управления имеет вид:

где:

$$\begin{split} \delta_{_{B}} &= \delta_{_{B}}^{A\Pi Y\Pi} + \delta_{_{B}}^{p} \\ \delta_{_{B}}^{A\Pi Y\Pi} &= \kappa_{\omega_{Z}} \omega_{_{Z}} + \kappa_{_{n_{y}}} n_{_{y}} + \kappa_{_{1}} X_{_{IIK}} \\ \delta_{_{B}}^{p} &= \dot{\kappa}_{_{IIB}} X_{_{IIK}} \end{split}$$
(II4-1)

Задача расчета АПУП сводится к определению передаточных чисел (κ_{ω_z} , κ_{n_y} , κ_1) в законе управления автомата, обеспечивающих потребные для ручного управления показатели динамической и статической управляемости скорректированного самолета. Величины динамических показателей управляемости задаются областями оценки продольной управляемости представленными в приложении 1 на рис. П1-2. Величины статических показателей управляемости приведены в «Единых нормах летной годности воздушных судов» (ЕНЛГС)

Структурная схема скорректированного с помощью АПУП самолета представлена на рис. П4-1.

Рис. П4-1. Структурная схема скорректированного АПУП самолета

Для вывода выражений, позволяющих определить передаточные числа закона управления, определим передаточную функцию скорректированного АПУП самолета, которая имеет вид:

$$\ddot{W}_{\frac{n_y}{X_{IIIK}}} = -\frac{(\dot{\kappa}_{IIIB} + \kappa_1)a_{m_z}^{\delta_B}c_y^{\alpha}}{(p^2 + \ddot{s}_1p + \ddot{s}_2) c_{y \Gamma\Pi}}$$
(Π4-2)

где: $\ddot{s}_1 = \ddot{s}_1 = \dot{s}_1 = s_1 + a_{m_Z}^{\delta_B} \kappa_{\omega_Z}$

$$\ddot{s}_{2} = \ddot{s}_{2} = \dot{s}_{2} + a_{m_{Z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y \, r \pi}} \kappa_{n_{y}} = s_{2} + a_{m_{Z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{Z}} + a_{m_{Z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y \, r \pi}} \kappa_{n_{y}}$$

Показатели управляемости скорректированного с помощью АПУП самолета определятся выражениями:

- относительный коэффициент затухания короткопериодического возмущенного движения.

$$\ddot{\xi}_{\alpha} = \ddot{\xi}_{\alpha} = \frac{\ddot{s}_{1}}{2\sqrt{\ddot{s}_{2}}} = \frac{s_{1} + a_{m_{Z}}^{\sigma_{B}} \kappa_{\omega_{Z}}}{2\sqrt{s_{2} + a_{m_{Z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{Z}} + a_{m_{Z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y \, r \pi}} \kappa_{ny}}}$$
(II4-3)

- собственная частота короткопериодического движения самолета

$$\ddot{\Omega}_{\alpha} = \ddot{\Omega}_{\alpha} = \sqrt{\ddot{s}_2} = \sqrt{s_2 + a_{m_Z}^{\delta_B} a_y^{\alpha} \kappa_{\omega_Z} + a_{m_Z}^{\delta_B} \frac{c_y^{\alpha}}{c_{y \, \Gamma \Pi}} \kappa_{n_y}} \tag{\Pi4-4}$$

- градиент перемещения по перегрузке

$$\ddot{X}_{\mathfrak{M}\kappa}^{n_{y}} = \ddot{X}_{\mathfrak{M}\kappa}^{n_{y}} = \left[\ddot{W}_{\frac{n_{y}}{X_{\mathfrak{M}\kappa}}}\right]_{P=0}^{-1} = -\frac{(s_{2} + a_{m_{z}}^{\delta_{B}}a_{y}^{\alpha}\kappa_{\omega_{z}} + a_{m_{z}}^{\delta_{B}}\frac{c_{y}^{\alpha}}{c_{y^{\Gamma\Pi}}}\kappa_{n_{y}})c_{y^{\Gamma\Pi}}}{(\dot{\kappa}_{\mathfrak{M}\mathfrak{B}} + \kappa_{1})a_{m_{z}}^{\delta_{B}}c_{y}^{\alpha}} \qquad (\Pi4-5)$$

Задаваясь значением $\ddot{\xi}_{\alpha}$, $\ddot{\Omega}_{\alpha}$ и $\ddot{X}^{n_y}_{m\kappa}$ можно найти величины передаточных чисел в законе управления АПУП обеспечивающих потребные для ручного управления показатели управляемости самолета:

$$\kappa_{\omega_{z}} = \frac{2\ddot{\xi}_{\alpha}\ddot{\Omega}_{\alpha} - s_{1}}{a_{m_{z}}^{\delta_{B}}} \tag{\Pi4-6}$$

$$\kappa_{n_{y}} = \frac{(\ddot{\Omega}_{\alpha}^{2} - s_{2} - a_{m_{z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{z}}) c_{y r \pi}}{a_{m_{z}}^{\delta_{B}} c_{y}^{\alpha}}$$
(II4-7)

$$\kappa_{1} = -\frac{\left(s_{2} + a_{m_{Z}}^{\delta_{B}} a_{y}^{\alpha} \kappa_{\omega_{Z}} + a_{m_{Z}}^{\delta_{B}} \frac{c_{y}^{\alpha}}{c_{y r \pi}} \kappa_{n_{y}}\right) c_{y r \pi}}{a_{m_{Z}}^{\delta_{B}} c_{y}^{\alpha} \ddot{X}_{\text{шк}}^{n_{y}}} - \dot{\kappa}_{\text{шB}}$$
(П4-8)

2.Автомат бокового управления (АБУП).

Автомат бокового управления обеспечивает коррекцию как динамических так и статических показателей управляемости до потребных для ручного управления величин, обеспечивающих комфортное управление самолетом.

Закон управления автомата бокового управления имеет вид:

$$\begin{split} \delta_{_{\rm H}} &= \delta_{_{\rm H}}^{\rm A {\rm {\rm B}} {\rm {\rm y}} \Pi} + \delta_{_{\rm H}}^{\rm p} \\ \delta_{_{\rm H}}^{\rm A {\rm {\rm B}} {\rm y} \Pi} &= \kappa_{_{\varpi_{_{\rm Y}}}} \omega_{_{\rm y}} + \kappa_{_{\beta}} \beta + \kappa_{_{2}} X_{_{\Pi}} \\ \delta_{_{\rm H}}^{\rm p} &= \dot{\kappa}_{_{\rm IIIH}} X_{_{\Pi}} \end{split} \tag{\Pi4-9}$$

где:

Задача расчета АБУП сводится к определению передаточных чисел $(\kappa_{\omega_v}, \kappa_{\beta}, \kappa_2)$ в законе управления автомата, обеспечивающих потребные для ручного управления показатели динамической и статической управляемости скорректированного самолета. Величины динамических показателей управляемости областями оценки боковой задаются управляемости представленными в приложении 1 на рис. П1-4. Величины статических показателей управляемости приведены в «Единых нормах летной годности воздушных судов» (ЕНЛГС)

Структурная схема скорректированного с помощью АБУП самолета представлена на рис. П4-2.

Рис. П4-1. Структурная схема скорректированного АБУП самолета

Для вывода выражений, позволяющих определить передаточные числа закона управления, определим передаточную функцию скорректированного АБУП самолета, которая имеет вид:

$$\ddot{W}_{\frac{\beta}{X_{\Pi}}} = -\frac{(\dot{\kappa}_{\Pi H} + \kappa_2)a_{m_y}^{\delta_H}}{(p^2 + \ddot{f}_1 p + \ddot{f}_2)}$$
(Π4-10)

где: $\ddot{f}_1 = \ddot{f}_1 = \dot{f}_1 = f_1 + a_{m_y}^{\delta_H} \kappa_{\omega_y}$ $\ddot{f}_2 = \ddot{f}_2 = \dot{f}_2 + a_{m_y}^{\delta_H} \kappa_\beta = f_2 + a_{m_y}^{\delta_H} a_z^\beta \kappa_{\omega_y} + a_{m_y}^{\delta_H} \kappa_\beta$

Показатели управляемости скорректированного с помощью АБУП самолета определятся выражениями:

- относительный коэффициент затухания короткопериодического возмущенного движения.

$$\ddot{\xi}_{\beta} = \ddot{\xi}_{\beta} = \frac{\ddot{f}_{1}}{2\sqrt{\ddot{f}_{2}}} = \frac{f_{1} + a_{m_{y}}^{\circ_{H}} \kappa_{\omega_{y}}}{2\sqrt{f_{2} + a_{m_{y}}^{\delta_{H}} a_{z}^{\beta} \kappa_{\omega_{y}} + a_{m_{y}}^{\delta_{H}} \kappa_{\beta}}}$$
(II4-11)

- собственная частота короткопериодического движения самолета $\ddot{\Omega}_{\beta} = \ddot{\Omega}_{\beta} = \sqrt{\ddot{f}_2} = \sqrt{f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y} + a_{m_y}^{\delta_H} \kappa_{\beta}}$ (П4-12)

- градиент перемещения по перегрузке

$$\ddot{X}_{\pi}^{\beta} = \ddot{X}_{\pi}^{\beta} = \left[\ddot{W}_{\frac{\beta}{X_{\pi}}}\right]_{P=0}^{-1} = -\frac{f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y} + a_{m_y}^{\delta_H} \kappa_{\beta}}{(\dot{\kappa}_{IIH} + \kappa_2) a_{m_y}^{\delta_H}}$$
(II4-13)

Задаваясь значением $\ddot{\xi}_{\beta}$, $\ddot{\Omega}_{\beta}$ и \ddot{X}_{π}^{β} можно найти величины передаточных чисел в законе управления АБУП обеспечивающих потребные для ручного управления показатели управляемости самолета:

$$\kappa_{\omega_{y}} = \frac{2\ddot{\xi}_{\beta}\ddot{\Omega}_{\beta} - f_{1}}{a_{m_{y}}^{\delta_{H}}} \tag{\Pi4-14}$$
$$\ddot{\Omega}^{2} - f_{1} - a^{\delta_{H}} a^{\beta_{Y}}$$

$$\kappa_{\beta} = \frac{\Omega_{\beta}^{2} - t_{2} - a_{m_{y}}^{\circ_{H}} a_{z}^{\rho} \kappa_{\omega_{y}}}{a_{m_{v}}^{\delta_{H}}}$$
(II4-15)

$$\kappa_2 = -\frac{(f_2 + a_{m_y}^{\delta_H} a_z^{\beta} \kappa_{\omega_y} + a_{m_y}^{\delta_H} \kappa_{\beta})}{a_{m_y}^{\delta_H} \ddot{X}_{\pi}^{\beta}} - \dot{\kappa}_{\text{IIIH}}$$
(Π4-16)

Литература:

- 1. Воробьев В.Г, Кузнецов С.В. Автоматическое управление полетом самолетов. Транспорт, 1995.
- **2.** Михалев И.А., Окоемов Б.Н., Павлина И.Г., Чекулаев М.С. Системы автоматического и директорного управления самолетом. М., "Машиностроение", 1987.