ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

«УТВЕЖДАЮ»

	Прор	ектор по УМР
		Криницин В.В.
11	11	 2010 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ФИЗИКА, шифр ЕН.Ф.04

Специальность 090106

Факультет авиационных систем и комплексов

Кафедра физики

Курсы 1 и 2 . Форма обучения дневная. Семестры 1, 2 и 3 Общий объем учебных часов на дисциплину 500 часов Лекции 110 (32+32+46) часа Практические занятия 60 (16+16+28) часов Лабораторные занятия 68 (20+20+28) часов

Самостоятельная работа 262 часов

Домашние задания - 9 (3+3+3) Рубежный контроль знаний 9 (3+3+3) Экзамены - 1, 2 и 3 семестры

1, 2 11 5 center p

Рабочая программа составлена на основании требований Государственного образовательного стандарта высшего профессионального образования к обязательному минимуму содержания основной образовательной программы по специальности 090106 "Информационная безопасность телекоммуникационных систем". Индекс ЕН.Ф.04. (ГОС утвержден 5.04.2000 г. Регистрационный номер 285 тех/дс.)

	Рабочую программу составил: Тихомиров Ю.В., доц., к.ф-м.н.
"	Рабочая программа утверждена на заседании кафедры, протокол № от 2010 г Заведующий кафедрой физики Куколева А.А., доц., к.фм.н.
090	Рабочая программа одобрена методическим советом специальности 106.
	Протокол № от ""2010 г.
	Председатель методического совета проф., д.т.н. Емельянов В.В
(УN	Рабочая программа согласована с Учебно-методическим управлением ИУ).
	Начальник УМУ Логачев В.П., доц., к.т.н

УЧЕБНЫЙ ПЛАН (аудиторные часы).						
Семестр	Лекции	Лаб.раб.	Пр.зан.	Зач.	Экз.	Всего:
1	32	20	16	-	+	68
2	32	20	16	ı	+	68
3	46	28	28	ı	+	102
Всего:	110	68	60	-	3	238

1. Цель и задачи дисциплины.

1.1. Цель преподавания дисциплины.

Дать целостное представление о процессах и явлениях, происходящих в природе, о фундаментальных физических законах управляющих ими, о возможностях современных методов познания природы. Дать базовые знания в своей области для общепрофессиональных и специальных дисциплин.

- 1.2. Задачи изучения дисциплины (необходимый комплекс знаний и умений):
 - 1.2.1. Иметь представление:
 - о Вселенной в целом как физическом объекте и ее эволюции;
- о фундаментальном единстве естественных наук, незавершенности естествознания и возможности его дальнейшего развития;
 - о времени в естествознании;
 - о физическом моделировании.
 - о дискретности и непрерывности в природе;
- о соотношении порядка и беспорядка в природе, упорядоченности строения объектов, переходах в неупорядоченное состояние и наоборот;
 - о динамических и статистических закономерностях в природе;
 - о вероятности как объективной характеристике природных систем;
- об измерениях и их специфичности в различных разделах естествознания;
 - о фундаментальных константах естествознания;
 - о принципах симметрии и законах сохранения;
 - о состояниях в природе и их изменениях со временем;
 - об индивидуальном и коллективном поведении объектов в природе;

1.2.2. Знать и уметь использовать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, статистической физики, термодинамики;
 - методы теоретического и экспериментального исследования в физике.
- 1.2.3. Уметь оценивать численные порядки величин, характерных для различных разделов физики.

А. ПЕРВЫЙ СЕМЕСТР.

Часть 1. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ. ЭЛЕКТРОСТАТИКА

Лекции 32 часа.

Лабораторные занятия 20 часов.

Практические занятия 16 часов.

Домашние задания - 3.

Экзамен

Всего: 68 часа.

А.2. Содержание дисциплины.

А.2.1. Наименование разделов, объем в часах. Содержание лекций, ссылки на литературу.

Раздел 1. Истоки современной физики. Системы отсчета и измерение физических характеристик (6 часов).

- 1. Лекция 1.1. Предмет физики. Роль физики в развитии техники. Структура курса физики и цели обучения. Методы физической науки: теория и эксперимент. Физические величины. Система единиц СИ. Пространство и время фундаментальные физические понятия. Эталоны длины и времени. Модели физических объектов. Материальная точка. Мгновенное событие. [1, введение].
- 2. Лекция 1.2. Векторы. Производные и интегралы. Описание движения в неподвижных системах отсчета. Система отсчета. Радиус-вектор и скорость материальной точки. Измерения в сдвинутых и повернутых СО.
- 3.Лекция 1.3. Описание движения МТ в движущихся СО. Инерциальные системы отсчета. Принцип относительности в механике. Преобразования Галилея. Инвариантность масштаба длины и промежутка времени. Закон сложения скоростей. [1, т.1, гл.2, п.п.6, гл.7, п.п.44].

Принципы специальной теории относительности. Преобразования Лоренца и следствия из них. Единое пространственно-временное описание. Интервал и его инвариантность. [1, т.1, гл.7, п.п.45-49].

Раздел 2. Кинематика материальной точки (4 часа).

4. Лекция 2.1. Основные и дополнительные кинематические характеристики МТ. Задачи кинематики. Кинематическое описание движения. Закон движения материальной точки. Вектор перемещения. Скорость и ускорение. Движения

ние с заданным ускорением. Движение с постоянным ускорением [1, т.1, гл.1, п.п.1-3].

5. Лекция 2.2. Дополнительные кинематические характеристики. Траектория. Нормальное и тангенциальное ускорение. Путь и средняя скорость.

Кинематика движения МТ по окружности. Угловая скорость. Угловое ускорение. Равномерное движение по окружности. [1, т.1, гл.1, п.п.4-5].

Раздел 3. Релятивистская и нерелятивистская динамика материальной точки (4 часа).

6.Лекция 3.1. Инерциальные системы отсчета. Динамические характеристики движения и динамические уравнения. Импульс. Закон сохранения импульса. Масса, ее измерение. Релятивистская масса, релятивистский импульс. Сила как характеристика воздействия. Уравнения Ньютона-Эйнштейна. Решение основной задачи динамики. Виды сил в механике. Нерелятивистская динамика как частный случай релятивистской динамики. [1, т.1, гл.2, п.п.7-14, гл.8, п.п.55-56, гл.7, п.п.54].

7. Лекция 3.2. Релятивистская (полная) энергия. Энергия покоя и кинетическая энергия. Фундаментальная связь массы и энергии. Мощность. Работа силы. Потенциальная энергия. [1, т.1, гл.7, п.п.50-54]. Консервативные и неконсервативные силы. Потенциальные взаимодействия. Закон сохранения полной механической энергии замкнутой системы. [1, т.1, гл.3, п.п.19-24].

Лекционные демонстрации:

а) закон сохранения импульса.

Раздел 6. Механические колебания (6 часов).

- 8. Лекция 4.1. Гармонические колебания. Гармонический и ангармонический осциллятор. Уравнение гармонических колебаний и его решение. Амплитуда, частота, фаза. Роль начальных условий. Пружинный и математический маятники [1, т1, гл.6, п.п.41-43, т.2, гл.10, п.п. 63-65].
- 9.Лекция 4.2. Затухающие колебания, дифференциальное уравнение и закон движения. Коэффициент и логарифмический декремент затухания. Апериодические процессы [1, т.2, гл.10, п.п. 67-69].
- 10. Лекция 4.3. Вынужденные колебания. Резонанс. Добротность. Принцип суперпозиции и сложение колебаний. Биения. Фигуры Лиссажу. [1, т.2, гл.10, п.п. 70-71].

Лекционные демонстрации:

Раздел 5. Механика СМТ, абсолютно твердого тела, жидкостей и газов. (6 часа).

- 11. Лекция 5.1. Законы сохранения в механике. Замкнутые системы частиц. Закон сохранения импульса в системе частиц. Центр инерции системы материальных точек и закономерности его движения. Система центра инерции. Упругие и неупругие столкновения. Реактивное движение. [1, т.1, гл.3, п.п.15,16].
- 12. Лекция 5.2. Момент импульса материальной точки. Момент силы. Закон сохранения момента импульса. [1, т.1, гл.3, п.п.26-27].

Абсолютно твердое, абсолютно упругое и абсолютно неупругое тело как модели реального физического объекта. Поступательное и вращательное движение абсолютно твердого тела. Мгновенная ось вращения. Момент инерции. Теорема Штейнера. [1, т.1, гл.4, п.п.28-35].

13. Лекция 5.3. Уравнение динамики вращательного движения абсолютно твердого тела. Момент импульса и момент силы относительно точки и относительно оси. Закон сохранения момента импульса в системе взаимодействующих частиц. Кинетическая энергия вращательного движения. Закон сохранения полной механической энергии абсолютно твердого тела. Гироскоп. Применение гироскопов в гражданской авиации [1, т.1, гл.4, п.п.28-35].

Лекционные демонстрации:

- а) маятник Обербека;
- б) скамья Жуковского;
- в) гироскоп;

Раздел 6. Электростатика (6 часов).

- 14. Лекция 6.1. Электрический заряд и его свойства. Закон сохранения заряда. Электрическое поле, напряженность, принцип суперпозиции. Поток электрического поля. Теорема Остроградского-Гаусса для электрического поля в вакууме [1, т.2, гл.1, п.п.1-7].
- 15. Лекция 6.2. Потенциал электростатического поля. Энергия взаимодействия зарядов. Потенциал точечного заряда и системы зарядов. Связь между напряженностью электростатического поля и потенциалом. Циркуляция электростатического поля. Поток. Закон Гпусса [1, т.2, гл.1, п.п.8-9].

16.Лекция 6.3. Проводники в электростатическом поле. Поле внутри проводника и у его поверхности. Электроемкость. Энергия системы зарядов, проводника и конденсатора. Энергия электростатического поля [1, т.2, гл.3, п.п.18-20, гл.4, п.п.21-23].

А.2.2. Перечень тем практических занятий и их объем в часах:

В первом семестре 8 практических занятий по 2 часа каждое.

- ПЗ-1. Системы отсчета. Следствия из преобразований Лоренца.
- ПЗ-2. Кинематика движения МТ.
- ПЗ-3. Законы Ньютона и уравнения движения.
- ПЗ-4. Импульс и закон сохранения импульса.
- ПЗ-5. Энергия. Закон сохранения энергии.
- ПЗ-6. Гармонические колебания.
- ПЗ-7. Механика абсолютно твердого тела.
- ПЗ-8. Электростатика в вакууме. Движение заряженной частицы в электростатическом поле. Электроемкость.

А.2.3. Перечень лабораторных работ и их объем в часах:

(Каждый студент в 1-ом семестре выполняет 5 лабораторных работ продолжительностью 4 часа каждая по индивидуальному графику).

- ЛБ-1. Исследование кинематических характеристик поступательного движения.
 - ЛБ-2. Движение тела под действием постоянной силы.
 - ЛБ-3. Изучение вращательного движения твердого тела.
 - ЛБ-4. Гироскоп.
 - ЛБ-5. Математический маятник.
 - ЛБ-6. Оборотный маятник.
 - ЛБ-7. Исследование собственных колебаний струны.
 - ЛБ-8. Исследование электростатического поля.
 - ЛБ-9. Движение заряженной частицы в электростатическом поле.

А.2.4. Темы домашних заданий.

Каждый студент в течении семестра выполняет 3 домашних задания по литературе [14-17].

- ДЗ 1. Механика материальной точки [14].
- ДЗ 2. Механика системы частиц [15].
- ДЗ 3. Механические колебания [16,17].

Б. ВТОРОЙ СЕМЕСТР.

Часть 2. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ВОЛНЫ МАТЕРИИ (ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ).

Лекции 32 часа.

Лабораторные занятия 20 часа.

Практические занятия 16 часов.

Домашние задания - 3.

Экзамен.

Всего: 68 часа.

- Б.2. Содержание дисциплины.
- Б.2.1. Наименование разделов, объем в часах. Содержание лекций, ссылки на литературу.

Раздел 1. Электрическое поле и вещество. Постоянный ток (6 часов).

- 1.Лекция 1.1. Электрическое поле в диэлектриках. Полярные и неполярные молекулы. Поляризация диэлектриков, связанные и свободные заряды. Поле внутри диэлектрика, вектор электрического смещения. Изменение силы взаимодействия зарядов и энергия поля в присутствии диэлектрика. Условия на границе диэлектрика. Сегнетоэлектрики [1, т.2, гл.1, п.п.10-11, гл.2. п.п. 12-17].
- 2. Лекция 1.2. Электрический ток, его характеристики и условия существования. Уравнение непрерывности. Классическая электронная теория электропроводности металлов. Законы Ома и Джоуля-Ленца в локальной (дифференциальной) форме [1, т.2, гл.5, п.п. 24-30].
- 3. Лекция 1.3. Закон Ома для участка цепи. Закон Джоуля-Ленца для участка цепи. Мощность тока. Электродвижущая сила. Источники ЭДС. Электрическая цепь. Законы Кирхгофа. [1, т.2, гл.5, п.п. 24-30].

Вопросы эксплуатационной направленности по разделу: электрические заряды в атмосфере, передача информации при полете воздушных судов в условиях электрической активности.

Лекционные демонстрации по разделу:

- а) силовые линии электрического поля в диэлектрике;
- б) закон Ома.

Раздел 2. Магнитостатика (6 часов).

- 4. Лекция 2.1. Взаимодействие токов. Магнитное поле в вакууме. Поле движущегося заряда. Закон Био-Савара-Лапласа. Сила Лоренца. Магнетизм как релятивистский эффект. Сила Ампера [1, т.2, гл.6, п.п.35-37].
- 5. Лекция 2.2. Поле прямолинейного тока. Циркуляция вектора магнитной индукции. Магнитное поле соленоида. Магнитный поток. Магнитный момент кругового тока. Работа перемещения контура с током в магнитном поле [1, т.2, гл.6, п.п.38-41].
- 6.Лекция 2.3. Магнитное поле в веществе. Магнитные моменты атомов и молекул. Напряженность магнитного поля. Парамагнетизм, диамагнетизм, ферромагнетизм. Явление гистерезиса [1, т.2, гл.7, п.п.47-52].

Вопросы эксплуатационной направленности по разделу: ферромагнитные методы диагностики состояния конструкционных материалов воздушных судов.

Лекционные демонстрации по разделу:

а) Закон Ампера.

Раздел 3. Электродинамика. Квазистационарные токи.(6 часов).

- 7. Лекция 3.1. Явление электромагнитной индукции. Закон Фарадея-Ленца. Закон Фарадея-Максвелла. Явление самоиндукции. Индуктивность. Энергия магнитного поля. Эффект Холла [1, т.2, гл.8, п.п. 53, 55, 57, 58].
- 8.Лекция 3.2. Магнитоэлектрическая индукция. Ток смещения. Закон Ампера-Максвелла. Уравнения Максвелла для стационарных полей в интегральной и дифференциальной форме. Система уравнений Максвелла в интегральной и дифференциальной форме для произвольных полей в вакууме и в веществе. Материальные уравнения. Принцип относительности в электродинамике [1, т.2, гл.9, п.п.59-62].
- 9. Лекция 3.3. Условие квазистационарности. Квазистационарные токи. Коплексное сопротивление. Реактивное сопротивление катушки и конденсатора. Электрические колебания в цепи переменного тока с сосредоточенными элементами. [1, т.2, гл.8, п.п. 56, гл.10, п.п.66].

Лекционные демонстрации по разделу:

- а) резонанс в колебательном контуре;
- б) фигуры Лиссажу.

- 10. Лекция 4.1. Система уравнений Максвелла в дифференциальной форме. Волновое уравнение. Плоская электромагнитная волна. Энергия и импульс плоской электромагнитной волны. Излучение диполя [1, т.2, гл.11, п.п. 74, 80-82].
- 11. Лекция 4.2. Когерентные волны. Интерференция световых волн от двух и N источников. Способы наблюдения интерференции [1, т.2, гл.12, п.п.84-89]. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля от простейших преград. Дифракция Фраунгофера от щели. Дифракционная решетка [1, т.2, гл.13, п.п.90-94].
- 12. Лекция 4.3. Естественный и поляризованный свет. Двойное лучепреломление. Закон Малюса. Типы поляризации. Вращение плоскости поляризации [1, т.2, гл.14, п.п.98-101].

Группы волн. Элементы Фурье-оптики. Нормальные моды. Физический смысл спектрального разложения. Групповая и фазовая скорости. Элементарная теория дисперсии света. Поглощение и рассеяние света [1, т.2, гл.15, п.п.102,103].

Раздел 5. Основные проблемы квантовой механики (8 часов).

13. Лекция 5.1. Противоречия классической физики. Проблема стабильности атома. Гипотеза Планка о квантовом характере излучения [1, т.3, гл.1, п.п.1-5].

Квантовые свойства электромагнитного излучения. Фотоэлектрический эффект и его законы. Фотоны. Эффект Комптона. Энергия и импульс световых квантов. Корпускулярно-волновой дуализм фотонов. Понятие об амплитуде вероятностей [1, т.3, гл.2, п.п.7-10].

- 14. Лекция 5.2. Квантовые свойства частиц вещества. Дифракция электронов. Гипотеза де-Бройля. Волновые пакеты. Волны де-Бройля как амплитуды вероятностей. Соотношение неопределенностей Гейзенберга. Волновые функции свободных частиц [1, т.3, гл.3, п.п.11-14].
- 15. Лекция 5.3. Вероятность местоположения микрочастиц. Волновая функция и ее статистический смысл. Задание состояния микрочастицы. Уравнение Шредингера для стационарных состояний. Частица в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. [1, т.3, гл.3, п.п.15].

Примеры расчета вероятности для частицы в одномерной яме. Частица в трехмерной прямоугольной потенциальной яме. Прохождение частицы над и под барьером. Туннельный эффект. Потенциальные ямы конечной глубины.

Уровни энергии и основное состояние гармонического осциллятора [1, т.3, гл.3, п.п.16, гл.4, п.п.20].

16. Лекция 5.4. Опыты Франка и Герца. Уравнение Шредингера и его решение для частицы в сферически симметричном поле. Энергетические уровни электрона в атоме водорода. Квантовые числа. Пространственное распределение электрона в атоме водорода. Главное, орбитальное и магнитное квантовые числа. Понятие о спине электрона [1, т.3, гл.5, п.п.22-23].

Лекционные демонстрации:

- а) волны на поверхности воды;
- б) продольные и поперечные волны;
- в) поляризация электромагнитных волн;
- г) интерференция ЭМВ;
- д) дифракция;
- е) дисперсия света.
- ж) дифракция электронов
- Б.2.2. Перечень тем практических занятий и их объем в часах:

Во втором семестре 10 практических занятий по 2 часа каждое.

- ПЗ-1. Законы Ома и Джоуля-Ленца в локальной и интегральной формах.
- ПЗ-2. Цепи постоянного тока.
- ПЗ-3. Законы Био-Савара-Лапласа и Ампера.
- ПЗ-4. Магнитное поле прямого провода, витка и соленоида.
- ПЗ-5. Электромагнитная индукция.
- ПЗ-6. Комплексные сопротивления. Колебательный контур.
- ПЗ-7. Интерференция волн.
- П3-8. Дифракция волн.
- ПЗ-9. Фотоэффект
- ПЗ-10. Основы квантовой механики (волны материи).
- Б.2.3. Перечень лабораторных работ и их объем в часах:

(Каждый студент во 2-ом семестре выполняет 5 лабораторных работ продолжительностью 4 часа каждая по индивидуальному графику).

- ЛР-1. Цепи постоянного тока.
- ЛР-2. Исследование магнитного поля.
- ЛР-3. Колебательный контур.
- ЛР-4. Изучение явления дифракции света.
- ЛР-5. Исследование вращения плоскости поляризации.
- ЛР-6. Фотоэффект

ЛР-7. Эффект Комптона

Б.2.4. Темы домашних заданий.

Каждый студент в течении семестра выполняет 3 домашних задания по литературе [18-20].

- ДЗ 1. Магнитное поле. Электромагнитная индукция. [19].
- ДЗ 2. Волновая оптика. [20].
- ДЗ 3. Элементы квантовой механики. [22]

В. ТРЕТИЙ СЕМЕСТР.

Часть 3. КВАНТОВАЯ И СТАТИСТИЧЕСКАЯ ФИЗИКА.

Лекции 46 часа.

Лабораторные занятия 28 часов.

Практические занятия 28 часов.

Домашние задания - 3.

Экзамен.

Всего: 102 часа.

В.2. Содержание дисциплины.

В.2.1. Наименование разделов, объем в часах. Содержание лекций, ссылки на литературу.

Раздел 1. Операторы физических величин. Электроны в атомах и молекулах (4 часа).

- 1.Лекция 1.1. Средние значения координаты и потенциальной энергии. Понятие о квадратичном отклонении. Понятие об операторах физических величин. Собственные функции и собственные значения операторов. Средние значения импульса, кинетической и механической энергии. Оператор момента импульса и проекции момента импульса. Квантование проекции момента импульса и квадрата модуля момента импульса [1, т.3, гл.4, п.п.18-19].
- 2. Лекция 1.2. Принцип Паули. Распределение электронов в атоме по состояниям. Многоэлектронные атомы. Периодическая система элементов Д.И. Менделеева [1, т.3, гл.5, п.п. 27,28].

Молекула водорода. Обменное взаимодействие. Физическая природа химической связи. Энергетический спектр молекул. [1, т.3, гл.6, п.п.30-31].

Нестационарные состояния. Нестационарное уравнение Шредингера. Соотношение неопределенностей для энергии и времени. Принцип суперпозиции. [1, т.3, гл.6, п.п.29].

- Раздел 2. Взаимодействие атомов и ЭМИ. Атомные ядра и элементарные частицы (12 часов).
- 3.Лекция 2.1. Процессы в атомах, взаимодействующих с ЭМИ. Тормозное и характеристическое рентгеновское излучение. [1, т.3, гл.6, п.31].

- 4.Лекция 2.2. Атомарные спектры. Спины и магнитные моменты атомов. Эффект Зеемана. Спонтанное и вынужденное излучение. Трехуровневые лазеры [1, т.3, гл.6, п.п.32-33].
- 5. Лекция 2.3. Состав и свойства ядер. Ядерное взаимодействие. Масса и энергия связи в ядре. Модели ядра. Формула Вайцзеккера. Изотопы. Магические числа. [1, т.3, гл.9, п.п.48-49].
- 6.Лекция 2.4. Ядерные реакции и законы сохранения. Реакции распада ядер. Закон радиоактивного распада. Практическое использование [1, т.3, гл.9, п.п.50-52].
- 7.Лекция 2.5. Деление и синтез ядер. Ядерный реактор. Термоядерные реакции [1, т.3, гл.9, п.п.53-54].
- 8. Лекция 2.6. Элементарные частицы. Вещество при сверхвысоких температурах и плотностях. Понятие об эволюции Вселенной. Физическая картина мира как философская категория [1, т.3, гл.10, п.п.55-58].

Раздел 3. Элементы статистической физики (8 часов).

9. Лекция 3.1. Модель макросистема. Энтропия.

Закон Авогадро. Стационарное состояние и его свойства. Изолированные макросистемы. Микро и макросостояния. [1, т.1, гл.13, п.п.81-82].

Вероятности микросостояний. Доступные микросостояния. Микроканоническое распределение Гиббса. Статистический вес и энтропия. Закон возрастания энтропии.

10. Лекция 3.2. Статистическая температура и химический потенциал. Эмпирическая температура и ее измерение. Энтропия и хаос. [1, т.1, гл.11, п.п. 73,74].

11. Лекции 3.3. Случайные величины и функции распределения.

Понятие о функции распределения вероятностей. Распределение Максвелла. Распределение частиц по абсолютным значениям скорости. Средняя кинетическая энергия частицы [1, т.1, гл.11, п.п. 73,74].

12. Лекция 3.4. (продолжение).

Распределение Гиббса. Средние значения и флуктуации в тепловом равновесии. Распределение Бозе-Эйнштейна и Ферми-Дирака. [1, т.3, гл.7, п.п.34-36].

- 13. Раздел 4. Элементы квантовой статистики. Конденсированное состояние (6 часов).
- 14. Лекция 4.1. Фотонный газ. Формула Планка. Модель абсолютно черного тела. Законы Вина и Стефана-Больцмана [1, т.3, гл.1, п.п.1-5].

15.Лекция 4.2. Элементы квантовой теории кристаллов. Электронный ферми-газ. Энергия Ферми. Энергетические зоны кристаллической решетки. Фононный спектр кристаллов. Средняя энергия и теплоемкость колебаний решетки [1, т.3, гл.7, п.п.34-36].

16. Лекция 4.3. Зонная теория электропроводности. Проводники и диэлектрики. Собственные и примесные полупроводники. Температурная зависимость проводимости [1, т.3, гл.7, п.п.38-39, гл.8, 42-43].

Сверхпроводимость - макроскопический квантовый эффект. Куперовское спаривание. Ферромагнетики и антиферромагнетики. Спиновая природа ферромагнетизма. Доменная структура. Кривая намагничивания [1, т.3, гл.7, п.п.41].

Раздел 5. Классический газ. Основы термодинамики (12 часов).

17. Лекция 5.1 Модель классического идеального газа. Давление газа с точки зрения молекулярно-кинетической теории. Молекулярно-кинетический смысл температуры [1, т.1, гл.9, п.п.62-64].

Равновесие идеального газа в поле тяготения. Барометрическая формула. Распределение Больцмана. Распределение Максвелла-Больцмана.

18. Лекция 5.2. Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия и теплоемкость многоатомных газов. Классические и квантовые степени свободы [1, т.1, гл.11, п.п.75-76].

Отступления от законов идеальных газов. Реальные газы. Уравнение состояния газа Ван-дер-Ваальса. Изотермы газа Ван-дер-Ваальса. Критические параметры. Фазовые переходы. [1, т.1, гл.14, п.п.87-89].

19. Лекция 5.3. Состояние системы и его параметры. Понятие о тепловом равновесии. Уравнения состояния. Контакт систем и условия равновесия. Равновесные процессы. Макроскопическая работа. Теплота. Первое начало термодинамики. Теплоемкость системы. Уравнение Майера. Адиабатический процесс [1, т.1, гл.9, п.п.59-61, т.1, гл.10, п.п.65-72].

20. Лекция 5.4. Энтропия и теплота. Основные законы термодинамики [1, т.1, гл.13, п.п.83-84].

21. Лекция 5.5. Второе начало термодинамики. Циклические процессы. К.П.Д. цикла. Неравенство Клаузиуса. Тепловой двигатель. Цикл Карно и его КПД [1, т.1, гл.13, п.п.85-86].

22. Лекция 5.6. Термодинамические потенциалы и условия равновесия. Фазовые равновесия и фазовые превращения. Уравнение Клапейрона-Клаузиуса. Условие равновесия в химических реакциях.

Лекционные демонстрации:

а) модели газа.

Раздел 6. Явления переноса (2 часа).

23. Лекция 6.1. Понятие о физической кинетике. Уравнения диффузии и теплопроводности. Среднее число столкновений и средняя длина свободного пробега молекул газа [1, т.1, гл.12, п.п.78-79].

Молекулярно-кинетическая теория явлений переноса. Коэффициент вязкости газов и жидкостей [1, т.1, гл.12, п.п.80].

Лекционные демонстрации:

а) теплопроводность.

В.2.2. Перечень тем практических занятий и их объем в часах:

В третьем семестре 14 практических занятия по 2 часа каждое.

- ПЗ-1. Стационарное уравнение Шредингера.
- ПЗ-2. Электрон в атоме водорода.
- ПЗ-3. Многоэлектронные атомы.
- ПЗ-4. Ядра атомов. Ядерные реакции.
- ПЗ-5. Элементарные частицы.
- ПЗ-6. Макросистемы. Расчет статвеса.
- ПЗ-7. Фотонный и электронный газы.
- ПЗ-8. Полупроводники
- ПЗ-9. Распределения Максвелла и Больцмана.
- ПЗ-10. Первое начало термодинамики.
- ПЗ-11. Энтропия. Второе начало термодинамики.
- ПЗ-12. Циклические процессы.
- ПЗ-13. Диффузия.
- ПЗ-14. Вязкость.

В.2.3. Перечень лабораторных работ и их объем в часах:

(Каждый студент в 3-м семестре выполняет 7 лабораторных работ продолжительностью 4 часа каждая по индивидуальному графику)

- ЛР-1. Взаимодействие ЭМИ с веществом.
- ЛР-2. Спектр излучения абсолютно черного тела.
- ЛР-3. Спектр излучения атома водорода.
- ЛР-4. Опыты Резерфорда.
- ЛР-5. Ядра атомов.
- ЛР-6. Изучение зависимости скорости звука от температуры.

- ЛР-7. Диффузия в газах
- ЛР-8. Распределение Максвелла.
- ЛР-9. Адиабатический процесс.
- ЛР-10. Изотермы газа ван-дер-Ваальса.
- ЛР- 11. Исследование вязкости воздуха методом Пуазейля.

В.2.4. Темы домашних заданий.

Каждый студент в течении семестра выполняет 3 домашних задания по литературе [20-23].

- ДЗ 1. Физика атомного ядра и элементарных частиц.[23]
- ДЗ 2. Первое начало термодинамики. Распределения Максвелла и Больцмана.[20]
 - ДЗ 3. Элементы квантовой статистики и физики твердого тела.[22]

3. Рекомендуемая литература:

N_0N_0	Авторы	Наименование, издательство, год издания.				
1	2	3				
	Основная литература:					
1	Савельев И.В.	Курс общей физики: Учеб.:Т.1-5М.: Наука.				
		Гл. ред. физ-мат. лит.1998.				
2	Трофимова Т.И.	Курс физикиМ.: Высшая школа,1990478 с.				
	Учебно	-методическая литература:				
	Дл	я лабораторных работ.				
3	Тихомиров Ю.В.	Лаб. работы с элементами компьютерного мо-				
		делирования (1 ^й и 2 ^й сем.). М.: МГТУ ГА. 2000.				
4	Тихомиров Ю.В.	Лаб. работы с элементами компьютерного мо-				
		делирования (3 ^й и 4 ^й сем.). М.: МГТУ ГА. 2000.				
5	T 10 D	Лаб. работы с элементами компьютерного мо-				
	Тихомиров Ю.В.	делирования (3 ^й и 4 ^й сем.). М.: МГТУ ГА. 2000.				
6	Власов М.Ю.,	Методические указания к выполнению лабора-				
	Камзолов С.К., и	торных работМ.: МГТУ ГА, 1993. Часть 1.				
	др.					
7	Бутюгин М.А.,	Методические указания к выполнению лабора-				
	Камзолов С.К., и	торных работМ.: МГТУ ГА, 1993. Часть 2.				
	др.					
8	Камзолов С.К. и др.	Методические указания к выполнению лабора-				
		торных работМ.: МГТУ ГА, 1994. Часть 3.				
9	Курочкин В.А.,	Методические указания к выполнению лабора-				
	Бутюгин М.А. и др.	торных работМ.: МГТУ ГА, 1995. Часть 4.				

	T	
10	Курочкин В.А., Лы-	1
	сенко С.А.	торных работМ.: МГТУ ГА, 1996. Часть 5.
11	Курочкин В.А.,	Методические указания к выполнению лабора-
	Бутюгин М.А., и	торных работМ.: МГТУ ГА, 1997. Часть 6.
	др.	
12	Курочкин В.А.,	Методические указания к выполнению лабора-
	Бутюгин М.А., и	торных работМ.: МГТУ ГА, 1998. Часть 7.
	др.	
13	Курочкин В.А.,	Пособие по выполнению лабораторных работ.
		- М.: МГТУ ГА, 2000. Часть 8.
		практических занятий.
14	Новиков С.М.	Сборник заданий по общей физике М.:
		ОНИКС. Мир и образование. 2006512 с.
		ля домашних заданий.
15	Новиков С.М	Пособие " Механика материальной точки". М.:
		МГТУ ГА. 2000
16		Пособие "Механика системы частиц". М.:
	золов С.К.	МГТУ ГА. 2001.
1	2	3
17	Новиков С.М	Пособие. "Элементы механики сплошной сре-
		ды". М.: МГТУ ГА.2000
18	Новиков С.М	Пособие "Колебательные процессы". М.:
		МГТУ ГА.1999
19	Новиков С.М.	Учебное пособие «Электричество и
		магнетизм». М.: МГТУ ГА. 1997.
20	Новиков С.М., Му-	<u> </u>
	зафаров Л.М.	МГТУ ГА. 1999.
21	Новиков С.М.,	Учебное пособие "Статистическая физика и
	Камзолов С.К.,	термодинамика"М.: МГТУГА, 2002 с.
	Разумовский А.Н.	
22	Кузнецов В.Л.,	Метод. указ. и типовые задания по курсу физи-
	Новиков С.М.	ки "Элементы квантовой механики"М.: РИО
	II CM	МИИГА, 199744 с.
23	Новиков С.М.,	Пособие "Элементы квантовой статистики".
24	Кузнецов В.Л.	-М.:МГТУГА, 2003.
24	Новиков С.М.,	Пособие "Физика атомного ядра и элементар-
	Козлов В.Д.	ных частиц"М.: МГТУГА, 2004.
25		олнительная литература.
25	Козлов В.Д.	Пространство, время, движение. М.: МГТУ ГА,
		1994.

26	Козлов В.Д.	Осн. принципы динамического описания пове-		
		дения объектов. М.: МГТУ ГА.1999.		
27	Киттель Ч., Найт	МеханикаМ.: Наука. Гл. ред. физ-мат.		
	У., Рудерман М.	лит.1975480 с. 1999.		
28	Парселл Э.	Электричество и магнетизмМ.: Наука. Гл.ред.		
		физ-мат.лит.1975440 с.		
29		Фейнмановские лекции по физикеМ.: Мир.		
	тон Р., Сэндс М.	1977. Вып.1-10.		

- 4. Рекомендуемые программные средства и компьютерные системы обучения и контроля знаний студентов:
- 4.1. Компьютерное приложение к учебнику физики для ВТУЗов (Ю.В.Тихомиров, 1995 г.).
- 4.2. Система компьютерного тестирования знаний (Ю.В.Тихомиров, 1993 2006 г.г.).
- 4.3. Система компьютерного допуска и контроля знаний в лабораторном практикуме (Ю.В.Тихомиров, 2007 г.).
- 4.4. Мультимедийный конспект лекций по курсу физики (Ю.В. Тихомиров, 2009 г.)
- 4.5. Система подготовки к сдаче интернет-экзамена (Ю.В. Тихомиров, $2009 \, \Gamma$.).
- 4.4. Компьютерные лабораторные работы по курсу физики (Ю.В.Тихомиров, 1994 2010 г.).
- 4.4. Система компьютерной обработки результатов лабораторных работ в среде MathCAD и Excel.

5. Рекомендуемое разделение содержания дисциплин на блоки:

Часть 1.

Блок 1. Разделы 1, 2 и 3.

Блок 2. Разделы 4 и 5.

Блок 3. Разлел 6

Часть 2

Блок 1. Разделы 1 и 2.

Блок 2. Разделы 3 и 4.

Блок 3. Раздел 5 и 6

Часть 3.

Блок 1. Разделы 1 и 2.

Блок 2. Раздел 3 и 4.

Блок 3. Раздел 5 и 6

ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ

Карта обеспеченности учебной и учебно-методической литературой (эталонный комплект)

Учебная дисциплина: ФИЗИКА

Специальность: 131000, 1 курс. Кафедра: физики.

	Специальность. 151000, 1 курс. Кафедра. физики.					
No	Автор	Наименование, издательство	Год из-	Шифр	Кол-во	Обеспе-
			дан.	библ.	экз.	ченность
		1.Учебники, учебные пос	собия.			
1	Трофимова Т.И.	Курс физикиМ.: Высшая шко-	1990	53	110	100%
		ла.		T70		
		2. Электронные учебники и учеб	ные посо	б ия.	•	•
2	Тихомиров Ю.В.	Лаб. Работы с элементами	2000	1462,	500	100%
		компьютерного моделирования.		535		
		М.: МГТУ ГА.				
3	Новиков С.М.	Физика (КДЗ, лабораторные ра-	2002			100%
		боты, контрольные вопросы).				
	3.	Литература по выполнению лабо	раторных	работ.		
4		Пособие по выполнению лабо-		958, 994,	400	100%
	др.	раторных работ. Части 1-3. М.:		1015,		
	, a	МГТУ ГА.		,		
5	Тихомиров Ю.В.	Лаб. Работы с компьютерными	2001	1535	500	100%
	1	моделями Win95.M.: МГТУ ГА.				
	4	Литература по проведению практ	ических з	анятий.	•	
7	Новиков С.М	Пособие « Механика материаль-	2000	354	700	100%
		ной точки». М.: МГТУ ГА.				
8	Новиков С.М.,	Пособие «Механика системы	2001.	1466	600	100%
	Камзолов С.К.	частиц». М.: МГТУ ГА.				
9	Новиков С.М	Метод. Указ. "Элементы меха-	2000	1155	600	100%
ники сплошной среды". М.:						
		МГТУ ГА.				
10	Новиков С.М	Пособие «Колебательные про-	1996,	996 и	600	100%
		цессы». М.: МГТУ ГА.	1999	1113		
11	Новиков С.М.	Учебное пособие «Электриче-	1997	537	650	100%
		ство и магнетизм». М.: МГТУ		H73		
		ΓА.				
6	1	Пособие "Электромагнитные	1999	166	500	100%
	Музафаров Л.М.	волны". М.: МГТУ ГА.				
7	Кузнецов В.Л.,	Метод.указ. "Элементы кванто-	1997	1271	345	100%
	Новиков С.М.	вой механики"М.: МИИГА.				
5	Новиков С.М.,	"Статистическая физика и тер-	2002	530.1	500	100%
		модинамика"М.: МГТУ ГА.		H73		
	зумовский А.Н.					
6	Кузнецов В.Л.,	Метод.указ. "Элементы кванто-	1997	1271	345	100%
	Новиков С.М.	вой механики"М.: МИИГА.				

7	Новиков С.М.,	Пособие"Элементы квантовой	2003	802	345	100%
	Кузнецов В.Л.	статистики"М.: МГТУ ГА.				
8	Новиков С.М.,	Пособие «Физика атомного ядра	2004	988	200	100%
	Козлов В.Д.	и элементарных частиц»				
5. Дополнительная лите			атура.			
9	Фейнман Р., Лей-	Фейнмановские лекции по фи-	1977	530.1	200	100%
	тон Р., Сэндс М.	зике т.4. М.: Мир.	и т.д.	Ф365		

3. Рекомендуемая литература:

N_0N_0	Авторы	Наименование, издательство, год издания.
1	2	3
	C	Основная литература:
1	Савельев И.В.	Курс физики: Учеб.:Т.1,2,3М.: Наука. Гл. ред.
		физ-мат. лит.1989.
2	Савельев И.В.	Курс общей физики: Пособие: Кн.1-5М.: Нау-
		ка. Физматлит.1998.
		-методическая литература:
		я лабораторных работ.
3	Тихомиров Ю.В.	Лаб. работы с элементами компьютерного мо-
		делирования (1 ^й и 2 ^й сем.). М.: МГТУ ГА. 2000.
4	Тихомиров Ю.В.	Лаб. работы с элементами компьютерного мо-
		делирования (3 ^й и 4 ^й сем.). М.: МГТУ ГА. 2000.
5	Тихомиров Ю.В.	Лаб. работы с компьютерными моделями Win-
		dows 95. М.: МГТУ ГА. 2002.
6	Бутюгин М.А.,	Методические указания к выполнению лабора-
	Камзолов С.К., и	торных работМ.: МГТУ ГА, 1993. Часть 2.
	др.	
7	Камзолов С.К. и др.	Методические указания к выполнению лабора-
		торных работМ.: МГТУ ГА, 1994. Часть 3.
8	Курочкин В.А.,	Методические указания к выполнению лабора-
	Бутюгин М.А. и др.	торных работМ.: МГТУ ГА, 1995. Часть 4.
9	Курочкин В.А., Лы-	Методические указания к выполнению лабора-
	сенко С.А.	торных работМ.: МГТУ ГА, 1996. Часть 5.
10	Курочкин В.А.,	Методические указания к выполнению лабора-
	Бутюгин М.А., и	торных работМ.: МГТУ ГА, 1997. Часть 6.
	др.	
11	Курочкин В.А.,	Методические указания к выполнению лабора-
	Бутюгин М.А., и	торных работМ.: МГТУ ГА, 1998. Часть 7.
	др.	

12	Курочкин В.А.,	Пособие по выполнению лабораторных работ.
	Бутюгин М.А., и	- М.: МГТУ ГА, 2000. Часть 8.
	др.	
	Для	практических занятий.
13	Волькенштейн В.С.	Сборник задач по общему курсу физики М.:
		Наука. Гл. ред. физ-мат. лит.1990400 с.
	Д	ля домашних заданий.
14	Новиков С.М	Пособие " Механика материальной точки". М.:
		МГТУ ГА. 2000
15	Новиков С.М., Кам-	Пособие "Механика системы частиц". М.:
	золов С.К.	МГТУ ГА. 2001.
16	Новиков С.М	Пособие. "Элементы механики сплошной сре-
		ды". М.: МГТУ ГА.2000
17	Новиков С.М	Пособие "Колебательные процессы". М.:
		МГТУ ГА.1999
18	Новиков С.М.	Учебное пособие «Электричество и
		магнетизм». М.: МГТУ ГА. 1997.
19	Новиков С.М., Му-	Пособие "Электромагнитные волны". М.:
	зафаров Л.М.	МГТУ ГА. 1999.
20	Новиков С.М.	Метод. указ. и типовые задания по курсу физи-
		ки "Молекулярная физика и термодинамика".
		-M.: РИО МИИГА, 199461 c.
21	Кузнецов В.Л.,	Метод. указ. и типовые задания по курсу физи-
	Новиков С.М.	ки "Элементы квантовой механики"М.: РИО
		МИИГА, 199744 с.
22	Новиков С.М.,	Метод. указ. и типовые задания по курсу физи-
	Кузнецов В.Л.	ки "Элементы квантовой статистики"М.:
		РИО МИИГА, 199828 с.
23	Музафаров Л.М.,	Метод. указ. и типовые задания по курсу физи-
	Новиков С.М.	ки "Физика атомного ядра и элементарных ча-
		стиц"М.: РИО МИИГА, 199336 с.
	T ' '	олнительная литература.
24	Козлов В.Д.	Пространство, время, движение. М.: МГТУ ГА.
25	Козлов В.Д.	Осн. принципы динамического описания пове-
	70	дения объектов. М.: МГТУ ГА.1994.
26	Киттель Ч., Найт	
	У., Рудерман М.	лит.1975480 с. 1999.
27	Парселл Э.	Электричество и магнетизмМ.: Наука. Гл.ред.
		физ-мат.лит.1975440 с.
28	Фейнман Р., Лей-	Фейнмановские лекции по физикеМ.: Мир.

СТЕНДОВЫЕ (НАТУРНЫЕ) ЛАБОРАТОРНЫЕ РАБОТЫ

- М-1 (1.2.Н) ИССЛЕДОВАНИЕ КИНЕМАТИКИ РАВНОУСКОРЕННОГО ДВИЖЕНИЯ М-2 (1.1.Н) ИЗУЧЕНИЕ КИНЕМАТИЧЕСКИХ ХАРАКТЕРИСТИК ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ
- M-3 (4.10) ИЗУЧЕНИЕ КИНЕМАТИЧЕСКИХ ХАРАКТЕРИСТИК ДВИЖЕНИЯ АБ-СОЛЮТНО ТВЕРДОГО ТЕЛА НА УСТАНОВКЕ МАЯТНИК МАКСВЕЛЛА
- М-4 ИЗУЧЕНИЕ КИНЕМАТИЧЕСКИХ ХАРАКТЕРИСТИК ДВИЖЕНИЯ НА УСТА-НОВКЕ «МАЯТНИК ОБЕРБЕКА»
- М-5 (2.2.Н) ИССЛЕДОВАНИЕ ДИНАМИКИ РАВНОУСКОРЕННОГО ДВИЖЕНИЯ М-8 ИЗУЧЕНИЕ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НА УСТАНОВКЕ МАЯТНИК ОБЕРБЕКА
- М-9 (4.1.Н) МАЯТНИК ОБЕРБЕКА
- М-10 (4.11) ИЗУЧЕНИЕ ЗАКОНОВ ДИНАМИКИ АБСОЛЮТНО ТВЕРДОГО ТЕЛА М-11 ГИРОСКОП
- МК-1 (2.1.Н) МАТЕМАТИЧЕСКИЙ МАЯТНИК
- МК-2 (3.1.Н) НАКЛОННЫЙ МАЯТНИК
- МК-3 (4.6) ФИЗИЧЕСКИЙ МАЯТНИК
- МК-4 (1.3) ИССЛЕДОВАНИЕ КОЛЕБАНИЙ В СИСТЕМЕ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ
- ЭЧ-1 (1.4) ОПРЕДЕЛЕНИЕ МАССЫ И ВРЕМЕНИ ЖИЗНИ К МЕЗОНОВ И Λ ГИ-ПЕРОНОВ
- ЭМ-1 ИЗУЧЕНИЕ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ ЗАРЯЖЕННЫХ ТЕЛ
- ЭМ-2 ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ПРОВОДНИКА
- ЭМ-3 ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ МАГНЕТРОНА
- ЭМ-4 ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ
- 2.1. МАГНИТНОЕ ПОЛЕ
- 1.6. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ ВОЗДУХА МЕТОДОМ ЗВУКОВЫХ ВОЛН
- 5.2. ИССЛЕДОВАНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА
- 5.3. ИССЛЕДОВАНИЕ ВЯЗКОСТИ ВОЗДУХА КАПИЛЛЯРНЫМ МЕТОДОМ ПУА-ЗЕЙЛЯ
- 2.11.Н ДИФРАКЦИЯ НА УЗКОЙ ЩЕЛИ
- 2.12.Н ПОЛЯРИЗАЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН
- 3.5. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ МЕТАЛЛОВ
- В 4. ДИФРАКЦИЯ СВЕТА
- В 5. ЕСТЕСТВЕННОЕ ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ СВЕТА КС 3. ТОЧКА КЮРИ

КОМПЬЮТЕРНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- К 1.2. ДВИЖЕНИЕ С ПОСТОЯННЫМ УСКОРЕНИЕМ
- К 1.3. ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ ПОСТОЯННОЙ СИЛЫ
- К 1.4. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ
- К 1.5. УПРУГИЕ И НЕУПРУГИЕ УДАРЫ
- К 1.6. СОУДАРЕНИЯ УПРУГИХ ШАРОВ
- К 2.1. ДВИЖЕНИЕ ЗАРЯЖЕННОЙ ЧАСТИЦЫ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ
- К 2.2. ЦЕПИ ПОСТОЯННОГО ТОКА
- К 2.3. СВОБОДНЫЕ КОЛЕБАНИЯ В КОНТУРЕ
- К 2.4. ДИФРАКЦИЯ И ИНТЕРФЕРЕНЦИЯ
- К 2.5. ДИФРАКЦИОННАЯ РЕШЕТКА
- К 2-6. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ТОЧЕЧНЫХ ЗАРЯДОВ
- 2-7. МАГНИТНОЕ ПОЛЕ
- 2-8. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
- 2-9. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ В RLC-КОНТУРЕ
- 3.1. ВНЕШНИЙ ФОТОЭФФЕКТ
- 3.2. ОПЫТ РЕЗЕРФОРДА по рассеянию α-частиц
- 3.3. СПЕКТР ИЗЛУЧЕНИЯ АТОМАРНОГО ВОДОРОДА
- 3.4. ЭФФЕКТ КОМПТОНА
- 3.5. ЯДРА АТОМОВ
- 3.6. ВЗАИМОДЕЙСТВИЕ ЭМИ С ВЕЩЕСТВОМ
- 3.7. ДИФРАКЦИЯ ЭЛЕКТРОНОВ
- 4.1. АДИАБАТИЧЕСКИЙ ПРОЦЕСС
- 4.2. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА
- 4.3. ДИФФУЗИЯ В ГАЗАХ
- 4.4. УРАВНЕНИЕ СОСТОЯНИЯ ВАН-ДЕР-ВААЛЬСОВСКОГО ГАЗА