ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

	РЖДАЮ ор по УМР	
 		Криницин В.В.
"	"	200 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ (шифр СД.02)

Специальность 230401 "Прикладная математика"				
Факультет ФПМ и BT				
Кафедра прикладной математики				
Курс 3, Форма обучения - дневная, Семестр - 5				
Общий объем дисциплины	144 час.			
Общий объем учебных часов	68 час.			
Лекции	44 час.			
Практические занятия	24 час.			
Лабораторные занятия	нет			
Самостоятельная работа	76 час.			
Курсовой проект	нет			
Курсовая работа	нет			
Контрольная работа	нет			
Домашнее задание	нет			
Зачет	нет			
Экзамен	3 курс, 5 семестр			

Рабочая программа составлена в соответствии с Государственным образовательным стандартом для студентов, обучающихся по направлению "Прикладная математика", утвержденным 27 марта 2000 г. (регистрационный номер 240 тех/дс) и требованиями к уровню подготовки выпускника по специальности 230401.

	Рабочую программу составила Ерзакова Нина Александровна, профессор, д.фм.н
	Рабочая программа утверждена на заседании кафедры ПМ, протокол N от "" 200 г.
	Заведующий кафедрой Кузнецов Валерий Леонидович,
	проф.,д. т. н
	Рабочая программа одобрена методическим советом специальности 230401 Протокол N от "" 200 г.
	Председатель методического совета Кузнецов Валерий Леонидович, проф., д. т. н.
(УІ	Рабочая программа согласована с Учебно-методическим управлением МУ) Начальник УМУ Логачев Виктор Петрович
	Доцент, к.т.н.

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ, ЕЕ MECTO В УЧЕБНОМ ПРОЦЕССЕ.

1.1. Цель преподавания дисциплины

Целью преподавания дисциплины «Уравнения в частных производных» является изложение основных разделов уравнений математической физики.

1.2. Задачи изучения дисциплины (необходимый комплекс знаний и умений):

В результате изучения данной дисциплины студент должен

1.2.1. Иметь

- представление об основных типах задач уравнений математической физики и методах их решения.

1.2.2. Знать

- основные типы задач уравнений математической физики и схемы их решения.

1.2.3. Уметь

- решать основные типы задач уравнений математической физики.

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

- 2.1. Наименование разделов (подразделов), объем в часах. Содержание лекций, ссылки на литературу.
- **Раздел 1.** Вывод основных уравнений математической физики. (Объем 4 часа). [1, 2, 3,4,5].

Лекция 1.1.

Введение. Уравнение колебаний струны.

Лекция 1.2.

Уравнение теплопроводности. Задачи, приводящие к уравнению Лапласа.

Раздел 2. Классификация уравнений второго порядка. (Объем - 4 часа). [5].

Лекция 2.1.

Классификация уравнений в частных производных 2-го порядка. Тип и канонический вид.

Лекция 2.2.

Теорема о приведении к каноническому виду квазилинейного уравнения в частных производных 2-го порядка.

Раздел 3. Уравнение в частных производных первого порядка. (Объем - 2 часа). [1, 2, 3,4].

Лекция 3.1.

Квазилинейные дифференциальные уравнения с двумя независимыми переменными.

Раздел 4. Теория уравнений гиперболического типа. (Объем - 4 часа). [1, 2,

3,4,5,6].

Лекция 4.1.

Решение задачи Коши для волнового уравнения на прямой (формула Даламбера). Решение однородного волнового уравнения на отрезке.

Лекция 4.2.

Решение неоднородного волнового уравнения на отрезке. Теорема единственности для уравнения гиперболического типа.

Раздел 5. Теория уравнений эллиптического типа. (Объем - 16 часов). [1, 2, 3,4,5,6].

Лекция 5.1.

Решение 1-й краевой задачи для уравнения Лапласа в круге. Интеграл Пуассона. Интегральное представление регулярного решения первой краевой задачи для уравнения Лапласа.

Лекция 5.2.

Принцип максимума. Теорема единственности регулярного решения задачи Дирихле эллиптического д.у.

Лекция 5.3.

Понятие функции Бесселя. Свойства функции Бесселя.

Лекция 5.4.

Вторая формула Грина. Пространства Соболева.

Лекция 5.5.

Понятие обобщенной функции, обобщенной производной. δ -функция Дирака.

Лекция 5.6.

Неравенство Фридрихса. Обобщенное решение краевой задачи Дирихле для эллиптического уравнения второго порядка.

Лекция 5.7.

Теорема о фундаментальном решении уравнения Лапласа. Функция Грина.

Лекция 5.8.

Решение уравнения Пуассона в кольце. Решение уравнения Лапласа в цилиндре.

Раздел 6. Теория уравнений параболического типа. (Объем - 14 часов). [1]. **Лекция 6.1.**

Постановка первой начально-краевой задачи для уравнения теплопроводности. Распространение тепла в ограниченном теле.

Лекция 6.2.

Решение однородного уравнения теплопроводности на отрезке. Решение неоднородного уравнения теплопроводности для ограниченного тела.

Лекция 6.3.

Решение уравнения теплопроводности в круге.

Лекция 6.4.

Метод Фурье - преобразований. Решение задачи Коши для уравнения теплопроводности.

Лекция 6.5.

Фундаментальное решение для уравнения теплопроводности. Функция Грина.

Лекция 6.6.

Решение уравнения теплопроводности для полубесконечного стержня.

Лекция 6.7. Теорема единственности регулярного решения для уравнения теплопроводности.

- 2.2. Перечень тем практических и семинарских занятий, и их объем в часах: (объем каждого ПЗ 2 часа; общий объем 24 час.).
 - ПЗ 1. Классификация уравнений в частных производных 2-го порядка. Тип и канонический вид.
- ПЗ 2. Приведение к каноническому виду квазилинейного уравнения в частных производных 2-го порядка.
- ПЗ 3. Решение задачи Коши для волнового уравнения на прямой (формула Даламбера).
 - ПЗ 4. Решение однородного волнового уравнения на отрезке.
 - ПЗ 5. Решение неоднородного волнового уравнения на отрезке.
 - ПЗ 6. Решение 1-й краевой задачи для уравнения Лапласа в круге.
 - ПЗ 7. Решение уравнения Пуассона в кольце.
 - ПЗ 8. Решение уравнения Лапласа в цилиндре.
 - ПЗ 9. Решение однородного уравнения теплопроводности на отрезке.
 - ПЗ 10. Решение уравнения теплопроводности в круге.
- ПЗ 11. Метод Фурье преобразований. Решение задачи Коши для уравнения теплопроводности.
- ПЗ 12. Решение уравнения теплопроводности для полубесконечного стержня.
 - 2.3. Лабораторные работы не предусмотрены
 - 2.4. Тематика курсовых работ:

Курсовые работы в данной дисциплине не предусмотрены.

2.5. Тематика контрольных работ (домашних заданий):

Контрольные работы (домашние задания) в данной дисциплине не предусмотрены.

2.6. Перечень деловых игр:

Деловые игры в данной дисциплине не предусмотрены.

3. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

$N_{\underline{0}}$	Автор	Наименование, издательство, год издания		
1	2	3		
Основная литература				
1	Шубин М.А.	Лекции об уравнениях математической физики. – 2-		
		е изд., испр М.: МЦНМО, 2003.		
2	Владимиров В.С.	Уравнения математической физики. М.: Наука,		
		1981.		
Дополнительная литература				
3	Арсенин В.Я.	Математическая физика. Основные уравнения и		
		специальные функции. М.: Наука, 1966.		
4	Тихонов А.Н.,	Уравнения математической физики. М.: Наука,		
	Самарский А.А.	1966.		
Учебно-методическая литература				
5	Кошляков Н.С.	Уравнения в частных производных математической		
		физики. Учеб. пособие для мехмат. фак. ун-тов.		
		М.: Высшая школа, 1970.		
Для практических занятий				
6	Под ред. А.И.	Высшая математика. Специальные разделы -		
	Кириллова.	М.: Изд-во физмат.литературы, 2001.		

4. РЕКОМЕНДУЕМОЕ РАЗДЕЛЕНИЕ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ НА БЛОКИ:

- 5 семестр: разделы 1, 2 и 3 – первый блок; разделы 4,5 и 6 – второй блок;

Рабочая программа периодически корректируется, и изменения вносятся в лист изменений (форма 1).