ФЕДЕРАЛЬНАЯ СЛУЖБА ВОЗДУШНОГО ТРАНСПОРТА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

В.В. Андрианов

ПОСОБИЕ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

по дисциплине «Управленческие решения»

для студентов Ш – IV курса специальности 08.05.07 дневного обучения

Москва – 2007

ББК 33.07

A65

Печатается по решению редакционно-издательского совета

Московского государственного технического университета ГА

Рецензент: канд.эконом.наук, доц.Н.И.Степанова

Андрианов В.В. ПОСОБИЕ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ по дисциплине «Управленческие решения» для студентов Ш — IV курса специальности 08.05.07 дневного обучения.

Учебное пособие написано в соответствии с учебным планом подготовки студентов дневного обучения по специальности 08.05.07.

Рассмотрено и одобрено на заседаниях кафедры 6.03.2007 и методического совета 14.04.2007.

І. Введение

Управленческие решения (УР) на практике разрабатываются и оцениваются с использованием алгоритмов экономико-математического моделирования и системного подхода (СП), отображающих внутренние и внешние взаимосвязи объекта управления (ОУ).

Дисциплина «Управленческие решения» направлена на формирование у студентов знаний о современном уровне состояния теории и практики разработки, оценки и принятия УР с использованием современных экономико-математических методов и моделей, реализуемых с помощью ЭВМ. В дисциплине изучаются принципы формулирования концептуальных постановок, алгоритмы формализации и решения управленческих задач (УЗ). В ходе изучения дисциплины осуществляется выработка практических умений и навыков ручной и компьютерной реализации алгоритмов разработки и оценки УР в процессе решения конкретных управленческих задач типовыми алгоритмами, изучаемыми в рамках данной программой. Объектом изучения в дисциплине являются методы, алгоритмы и модели, используемые при разработке, оценке и принятии УР в управленческих ситуациях (УС), возникающих в ГА. По окончании изучения дисциплины студенты должны знать:

- наиболее ценные методы формирования управленческих решений;
- особенности их применения на воздушном транспорте,

уметь: - сформулировать словесную постановку управленческой задачи;

- выбрать метод и алгоритм ее решения;
- воспользовавшись готовым программным средством, решить задачу на
 ЭВМ и оценить адекватность и достоверность полученных результатов.

Цикл лабораторных работ (ЛР) направлен на формирование практических навыков прогнозирования критических факторов, оптимизации сети воздушных линий и парка ВС, оптимизации численности персонала, технических средств, спецмашин, сооружений и элементов наземного комплекса. Скорость и точность решения задач ЛР обеспечиваются

программными средствами, написанными на алгоритмическом языке Turbo Pascal. Для оценки степени усвоения учебного материала по ключевым темам дисциплины используются компьютерные средства контроля знаний.

2. Требования к оформлению отчета о выполнении работы

Отчет по итогам выполнения ЛР оформляется после выполнения ЛР. На титульном листе отчета указываются: - название кафедры; - фамилия, имя, отчество студента; - номер и тема ЛР; - номер зачетки; - номер варианта; - дата выполнения. В отчет о выполнении ЛР включаются: - постановка задачи и модели; - условные обозначения; - схема алгоритма задачи; - исходные данные; - листинг результатов; - выводы.

3. Порядок защиты лабораторных работ

Защита ЛР осуществляется в дисплейном классе сразу после выполнения и завершается сдачей отчетов. В ходе защиты студент должен показать теоретические знания по теме работы, продемонстрировать личные умения и практические навыки решения поставленной задачи на ЭВМ. Уровень знаний оценивается путем компьютерного тестирования, а умения и практические навыки - в процессе выполнения ЛР.

4. Этапы выполнения лабораторной работы

В ходе выполнения лабораторных работ реализуются следующие этапы:

- 1. Изучение цели, постановки, модели и алгоритма решения задачи.
- 2. Получение у преподавателя программу и ввести ее в ЭВМ.
- 3. Создание файла тестовых исходных данных.
- 4. Отладка и тестирование программы.
- 5. Решение индивидуального задания.
- 6. Выбор адекватной модели, формирование прогноза, поиск оптимума.
- 7. Защита теории по теме лабораторной работы.
- 8. Оформление и сдача отчета о результатах выполнения работы.

Этап 1 выполняется в ходе домашней подготовки к выполнению лабораторной работы, а этапы 2-10 - в дисплейном классе.

Тема: Однофакторное прогнозирование

Цели работы:

- 1. Выработка практических навыков уравнений однофакторной регрессии.
- 2.Запуск, отладка и тестирование программы расчета коэффициентов и оценки адекватности уравнения однофакторной регрессии.
- 3. Расчет адекватной однофакторной модели и прогнозирование критического фактора по программе [4, с.66].

Словесная постановка задачи

Авиакомпания выполняет перевозки по воздушной линии. В табл.1.1 приведены исходные данные об изменении фактора \mathbf{x}_2 , оказывающего влияние на объем перевозок по ВЛ за 10 лет.

Задание на лабораторную работу

Для заданного варианта исходных данных необходимо

I. Выполнить моделирование динамики фактора x_2 , оказывающего влияние на суммарный объем перевозок у с помощью однофакторных регрессионных

моделей
$$y = a + b * t;$$
 (1.1) $y = a * t^b;$ (1.2)

$$y = a * t^{b};$$
 (1.2)
 $y = a * b^{t};$ (1.3)

$$y = a + b * t + c * t^{2};$$
 (1.4)

2. Найти адекватную модель и спрогнозировать фактор x_2 .

Методические рекомендации

Расчетные коэффициенты а, в и с моделей (1.1 - 1.4) определяются по алгебраическим зависимостям [2] методом наименьших квадратов, минимизирующим критерий

$$K = \sum_{i=1}^{n} \left(y_i^{\phi a \kappa m} - y_i^{pac \gamma} \right)^{2} \rightarrow \min_{\delta}, \qquad (1.5)$$

где $y_{i}^{\phi_{a\kappa m}}$ - фактические значения моделируемого показателя;

 $y_{i}^{_{pac^{\prime}}}$ - расчетные значения моделируемого показателя;

n - количество наблюдений, использованных для расчетов.

Выбор модели для прогнозирования выполняется по критерию Фишера $F_{^{*p}}^{^{*}}$

$$F_{\kappa p}^{*} = \frac{\sigma_{y}^{2}}{\sigma_{ocm}^{2}} \geq F_{[k1,k2,1-pd]}^{ma6n} , \qquad (1.6)$$

где $\sigma_y^2 = \frac{\sum_{i=1}^n \left(y_i^{\phi a \kappa m} - \overline{y}\right)^2}{(n-1)}$ - дисперсия моделируемого показателя у . (1.7)

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 - математическое ожидание у; (1.8)

$$\sigma_{ocm}^{2} = \frac{\sum_{i=1}^{n} \left(y_{i}^{\phi a \kappa m} - y_{i}^{p a c u} \right)^{2}}{\left(n - p \right)} - \text{остаточная дисперсия,}$$
 (1.9)

р - число расчетных коэффициентов в модели;

 $F_{[k1,k2,l-pd]}^{ma\delta n}$ - табличное значение квантили критерия Фишера при доверительной вероятности p_d =90% и входах в табл.3 [1] : k1=n-1; k2=n-p-1. Наиболее приемлемой является модель, если $F_{\kappa p}^*$ максимален и $\geq F_{[k1,k2,l-p]}^{ma\delta n}$ и все коэффициенты модели (a, в, c) значимы.

О точности модели свидетельствует критерий

$$\Delta_{\mathcal{E}} = \sum_{i=1}^{n} \frac{\left| y_{i}^{\phi a \kappa m} - y_{i}^{pacq} \right|}{y_{i}^{\phi a \kappa m}} *100\% \le 2\%$$
 - средняя ошибка аппроксимации. (1.10)

О нелинейности или линейности модели свидетельствуют

$$\eta = \sqrt{1 - \frac{\sigma_{ocm}^2}{\sigma_y^2}} \quad (1.11) \qquad \text{if} \qquad r_{x,y} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2 \sum_{i=1}^n (y_i - \overline{y})^2}} \quad (1.12)$$

где η - корреляционное отношение ; $\gamma_{x,y}$ - коэффициент парной корреляции.

Если $\eta >_{\varUpsilon_{x,y}}$ - зависимость нелинейная, если $\eta <_{\varUpsilon_{x,y}}$ - линейная.

Значимость расчетных коэффициентов модели оценивается по моделям

$$t_a^* = \frac{|a|}{\sigma_a} \ge t_{\nu,\rho} ; \qquad t_b^* = \frac{|b|}{\sigma_b} \ge t_{\nu,\rho} ; \qquad t_{ca}^* = \frac{|c|}{\sigma_c} \ge t_{\nu,\rho} ; \qquad (1.13)$$

где
$$\sigma_a^* = \sigma_y^* \sqrt{\frac{n+1}{n} + \frac{\overline{x}^2}{(n-1)\sigma_x^2}};$$
 (1.14) $\sigma_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{(n-1)};$ (1.15)

$$\sigma_{y}^{\hat{}} = \sigma_{ocm} \sqrt{\frac{\sum_{i=1}^{n} \left(y_{i} - \overline{y}\right)^{2}}{\left(n - p\right)}}; \quad (1.16) \qquad \sigma_{b(c)}^{*} = \frac{\sigma_{y}^{\hat{}}}{\sigma_{x} p^{2} \sqrt{\left(n + p - 1\right)}}. \quad (1.17)$$

Исходные данные к выполнению работы – приведены в табл.1.1.

<u>Исходные данные к выполнению лабораторной работы 1</u> Динамика критического фактора x₂ Таблица 1.1.

	Bap	ианты	I								
Годы	1	2	3	4	5	6	7	8	9	10	11
1 2 3 4 5 6 7 8 9 10	18 35 53 71 89 107 125 143 161 179	26 37 47 58 69 80 90 101 112 122	88 89 91 92 93 95 96 97 99 100	105 115 127 139 153 168 185 204 224 247	29 58 88 119 150 180 211 243 274 305	33 42 52 61 71 80 90 99 109 118	101 102 103 104 105 106 108 109 110	132 144 157 171 186 203 221 241 263 287	13 27 41 57 72 88 104 121 137 154	32 43 55 66 77 89 100 112 123 134	93 95 97 99 102 104 106 108 110
	Bapı	ианты									
Годы	12	13	14	15	16	17	18	19	20	21	22
1 2 3 4 5 6 7 8 9	120 131 143 155 169 185 201 219 239 261	23 51 83 117 153 190 228 267 307 348	48 56 63 71 79 87 94 102 110	82 83 84 86 87 88 90 91 92 94	24 28 34 40 48 57 68 81 96 114	32 73 119 168 219 272 326 382 440 499	59 68 76 85 94 103 111 120 129 137	71 73 74 75 77 78 79 81 82 83	36 43 51 60 72 85 102 121 144 171	42 86 129 174 218 262 307 352 397 442	100 110 119 129 139 149 158 168 178
Годы	Bapı 23	ианты 24	25	26	27	28	29	30	31	32	33

1 2 3	52	55	32	18	22	50	62	40	16	25	58
	53	60	67	22	58	58	63	52	34	37	59
	54	65	102	27	102	65	64	67	52	48	60
4 5	56	71	138	33	152	73	65	86	71	60	62
	57	77	174	41	208	80	67	111	91	72	63
6 7	59 60	84 92 100	211 248	50 61	268 332 400	88 96 103	68 70	144 185	110 130	83 95 107	64 65 67
8 9 10	61 63 64	100 109 119	286 323 361	74 90 110	400 471 545	103 111 118	71 72 74	239 309 398	150 170 190	118 130	68 69

Тема: Многофакторное прогнозирование

Цели работы:

- 1. Выработка практических навыков расчета и оценки адекватности уравнения многофакторной регрессии .
- 2. Запуск, отладка и тестирование программы расчета коэффициентов и оценки адекватности уравнения многофакторной регрессии.
- 3. Расчет параметров адекватной многофакторной модели и прогнозирование объема перевозок АК с помощь программы [4,с.76].

Словесная постановка задачи

Имеются исходные данные о величинах $x_1, x_2, x_3, \dots x_p$ за n лет, влияющих на объем авиаперевозок $y_i^{\phi_{a\kappa m}}$. Модель $y_i^{\phi_{a\kappa m}}$ имеет вид

$$y = F (x_1, x_2, ... x_i, ... x_p) = a_0 + a_1x_1 + ... + a_i x_i + ... + a_p x_p,$$
 (2.1)

где $a_0, \, a_1, \, a_2, \, ... \, a_i, \, ... \, a_p$ - расчетные коэффициенты уравнения.

Задание на лабораторную работу

В лабораторной работе необходимо:

- 1. Ввести программу в ЭВМ и создать файл исходных данных.
- 2. Вычислить модель вида (2.1), используя программу mn_reg.pas.
- 3. Оценить адекватность модели вида (2.1) и силу факторов x_1 и x_2 .
- 4. Сформировать прогноз объема перевозок АК.

Методические рекомендации

В классическом регрессионном анализе для расчета коэффициентов уравнения регрессии вида (1.1) используется метод

наименьших квадратов (МНК), в основу которого положен алгоритм,

минимизирующий
$$K = \sum_{i=1}^{n} (y_i^{\phi a \kappa m} - y_i^{pac \nu})^2 \rightarrow \min$$
 (2.2)

где п - количество наблюдений исходных данных ;

Уравнение для определения вектора расчетных коэффициентов уравнения регрессии $y = F(x_1, x_2, ... x_i, ... x_p)$ имеет вид

$$B = (\overline{X}^T \overline{X})^{-1} \overline{X}^T \overline{Y} \qquad , \tag{2.3}$$

где \overline{X} - матрица исходных значений факторов;

 $\overline{\gamma}$ - вектор исходных значений моделируемого показателя у.

Алгоритм МНК, решающий уравнение (1.2), имеет вид:

Шаг 1. Транспонируется матрица исходных данных $\overline{\chi}$

$$\overline{M}_1 = \overline{X}^T \qquad . \tag{2.4}$$

Шаг 2. Умножается транспонированная матрица $\overline{X}^{\scriptscriptstyle T}$ справа на матрицу

$$\overline{X}$$
 $\overline{M}_2 = (\overline{X}^T \overline{X})$ (2.5)

Шаг 3. Обращается матрица $(\overline{X}^T \overline{X})$

$$\overline{M}_3 = \left(\overline{X}^T \overline{X}\right)^{-1} \tag{2.6}$$

Шаг 4. Умножается справа матрица M3 на матрицу M1

$$\overline{M}_4 = \left(\overline{X}^T \overline{X}\right)^{-1} \overline{X}^T \qquad (2.7)$$

Шаг 5. Умножается справа матрица М4 на вектор У

$$\vec{M}_5 = (\overline{X}^T \overline{X})^{-1} \overline{X}^T \overline{Y} \qquad (2.8)$$

ЭВМ-программа вычислят коэффициенты регрессии a_0, a_1 и a_2 и критерии оценки адекватности уравнения. Адекватность - понятие многоаспектное, оцениваемое совокупностью качественных и количественных критериев. Так, (2.1) адекватно, если знаки при коэффициентах a_i совпадают с физическим смыслом $y_i^{\phi_{akm}}$. При многофакторном регрессионном моделировании

рассматриваются варианты моделей (2.1) и отбирается адекватный вариант модели, который лучшим образом отображает особенности изменения $y_i^{\phi_{a\kappa m}}$.

Модель (2.1) можно считать адекватной, если имеется полное соответствие структур фактических $y_i^{\phi_{a\kappa m}}$ и расчетных значений $y_i^{\rho_{a\kappa m}}$, вычисленных по модели (2.1). Для оценки совпадения $y_i^{\phi_{a\kappa m}}$ и $y_i^{\rho_{a\kappa m}}$ используется несколько критериев оценки статистической адекватности и достоверности многофакторной модели, в число которых входят:

1. Критерий Фишера, оценивающий однородность дисперсий

$$F_{\kappa p}^{*} = \frac{\sigma_{y}^{2}}{\sigma_{ocm}^{2}} \ge F_{[k1,k2,1-pd]}^{ma6n}$$
 (2.9)

$$\sigma_{y}^{2} = \frac{\sum_{i=1}^{n} \left(y_{i}^{\phi a \kappa m} - \overline{y} \right)^{2}}{(n-1)} - \text{дисперсия показателя y;}$$
(2.10)

при
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$
 - математическое ожидание у; (2.11)

$$\sigma_{ocm}^{2} = \frac{\sum_{i=1}^{n} \left(y_{i}^{\phi a \kappa m} - y_{i}^{p a c u}\right)^{2}}{\left(n - p\right)}$$
 - остаточная дисперсия;

р - количество расчетных коэффициентов в модели;п - объем выборки;

 $F_{{}_{[k1,k2,1-pd]}}^{{}_{ma\delta n}}$ - табличное значение квантили критерия Фишера

при доверительной вероятности p_d =90% и входах в табл.3 [1] : k1=n-1; k2=n-p-1. Уравнение регрессии считается адекватным при

$$F_{\kappa p}^* \max \ \mathsf{u} \ge F_{[k1,k2,1-p]}^{\mathsf{magn}}$$
 (2.12)

2. Коэффициент множественной корреляции R

$$R = \sqrt{1 - \frac{\sigma_{ocm}^2}{\sigma_y^2}} \qquad , \qquad (2.13)$$

оценивающий гипотезу о линейности формы связи между У и X . Гипотеза не отвергается при R >= 0.8 .

Значимость коэффициента R оценивается с помощью статистики

$$t_{R} = \frac{R}{\mu_{P}} = \frac{R\sqrt{n-p-1}}{1-R^{2}}$$
 (2.14)

где n - объем выборки;

р - число параметров в модели;

 $\mu_{\scriptscriptstyle R}$ - ошибка коэффициента R .

Коэффициент R считается значимым при

$$t_R \ge t_{q,k} \tag{2.15}$$

где k = n - 1 - число степеней свободы;

q - уровень значимости (рекомендуется выбирать 97.5 - 95%).

3. Коэффициент множественной детерминации

$$D = R^2 \tag{2.16}$$

Так, если D =0.87,то факторы, включенные в модель, отображают 87% дисперсии У, а 13% приходятся на долю факторов, не включенных в модель.

4. Средняя ошибка аппроксимации

$$\Delta_{\mathcal{E}} = \sum_{i=1}^{n} \frac{\left| \mathcal{Y}_{i}^{\phi a \kappa m} - \mathcal{Y}_{i}^{\rho a c u} \right|}{\mathcal{Y}_{i}^{\phi a \kappa m}} * 100 \% \tag{2.17}$$

Адекватной считается модель, у которого $\Delta_{\mathcal{E}} <= 2 \%$.

5. Статистические оценки значимости коэффициентов а

$$t_{ai} = \frac{|a_i|}{\sigma_{ocm} \sqrt{c_{11}}} \ge t_{q,k} \tag{2.18}$$

где c_{11} - диагональный элемент матрицы $\overline{M}_3 = (\overline{X}^{\scriptscriptstyle T} \overline{X})^{\!\scriptscriptstyle -1}$

 $t_{a,k}$ - табличное значение критерия Стьюдента (q=0.95,k=n-1).

При незначимости a_i из X надо удалить x_i с min t_{ai} и повторить расчет a_i .

6. Критерий Дарбина-Уотсона, показывающий на наличие автокорреляции,

если
$$D \le 2$$
.
$$D = \frac{\sum_{j=1}^{n} \Delta y_{j} \Delta y_{j+1}}{\sum_{j=1}^{n} y_{j}^{2}}$$
 (2.19)

где
$$\Delta y_j = y_j^{\phi a \kappa m} - y_j^{pacq}$$
.

<u>7. Матрица коэффициентов парной корреляции</u> $R = \| r_{xk,xj} \|$,

где γ_{x_k,x_j} - коэффициент парной корреляции между факторами x_k и x_j

$$r_{xk,xj} = \frac{\sum_{i=1}^{n} (x_{ik} - \overline{x}_{k})(x_{ij} - \overline{x}_{j})}{\sqrt{\sum_{i=1}^{n} (x_{ik} - \overline{x}_{k})^{2} \sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})^{2}}}, \qquad (2.20)$$

Если хотя бы для одной пары x_k и x_j в матрице X коэффициент парной корреляции >0.8, то из X необходимо удалить x_k или x_j . Уравнение адекватно, если выполняется весь комплекс качественных условий и количественных критериев, при $n \approx 6*p$. (2.21)

Исходные данные к выполнению работы – приведены в табл.2.1.

Исходные данные к выполнению лабораторной работы 2

Таблица 2.1.

Динамика У (млн	ткм.) и критических	факторов x_1 и x_2
-----------------	---------------------	------------------------

y	-	\mathbf{x}_1	X ₂	\mathbf{y}	-	\mathbf{x}_1	\mathbf{X}_2	y	-	\mathbf{x}_1	\mathbf{X}_2
Вариант	r 1	Вариант 2 Вариант 3									
401 405 409 412 417 421 467 .?.	1 1 1 1 1 1 1	6 8 10 12 14 16 23 27	71 89 107 125 143 161 179	213 234 256 265 287 294 305	1 1 1 1 1 1 1	10 12 13 14 13 12 11 10	58 69 80 90 101 112 122 .?.	210 220 240 260 270 280 294	1 1 1 1 1 1 1	30 32 35 37 36 34 33 32	91 92 93 95 96 99 100
Вариант	Вариант 4 Вариант 5 Вариант 6										

211 222 233 245 255 267 278 .?.	1 1 1 1 1 1 1 1 1	32 34 36 38 36 34 32 30	127 139 153 168 185 204 247	412 424 436 448 450 462 475 .?.	1 1 1 1 1 1 1 1 1	35 44 46 48 46 49 52 50	119 150 180 211 243 274 305 .?.	331 344 357 369 382 393 408 .?.	1 1 1 1 1 1 1 1 1	48 46 44 42 40 38 34 32	52 61 71 80 99 109 118 .?.
Вариант		2.4	104	Вариант		20	1.55	Вариант		10	
202 204 208 213 216 221 233	1 1 1 1 1 1	24 25 26 27 27 26 25 24	104 105 106 108 109 110 111	412 424 434 446 454 466 478 .?.	1 1 1 1 1 1	20 19 19 20 19 20 19 19	157 171 186 203 241 263 287	412 424 438 443 456 461 472 .?.	1 1 1 1 1 1	19 24 27 29 31 29 27 23	57 72 88 104 121 137 154 .?.
								Продол	жени	ие таб	бл.2.1
Вариант	10			Вариант	r 11			Вариант	r 12		
408 414 421 430 446 461 480 .?.	1 1 1 1 1 1	22 24 26 28 33 28 25 23	66 77 89 100 112 123 134 .?.	308 314 321 330 346 361 380 .?.	1 1 1 1 1 1 1	22 24 29 28 30 28 23 27	97 99 102 104 106 110 113	561 545 529 513 496 480 466 .?.	1 1 1 1 1 1 1	22 24 26 28 29 28 25 23	155 169 185 201 219 239 261
Вариант	13			Вариант	r 14			Вариант	г 15		
459 447 435 423 411 398 386 .?.	1 1 1 1 1 1	18 22 25 28 30 33 35 37	83 117 153 190 228 267 307	559 547 534 521 512 506 499	1 1 1 1 1 1 1	21 22 23 20 19 12 12 11	71 79 87 94 102 110 117	229 237 240 251 262 276 280	1 1 1 1 1 1 1	17 20 28 22 28 20 28 32	84 86 87 88 90 92 94
-									-10		
Вариант				Вариант		4.5	4.55	Вариант			
512 524 532 544 562 575 587 ?.	1 1 1 1 1 1 1	14 17 16 16 12 11 13 11	34 48 57 68 81 96 114	412 424 432 444 462 474 483 .?.	1 1 1 1 1 1 1	10 12 13 15 18 20 20 23	168 219 272 326 382 440 499 .?.	420 430 440 450 460 470 480 .?.	1 1 1 1 1 1 1	36 41 44 45 47 50 51 52	85 94 103 111 120 129 137 .?.
Вариант	19			Вариант	r 20			Вариант	r 21		

380 370 360 350 340 330 315 .?.	1 1 1 1 1 1 1	22 25 27 29 30 31 26 24	75 77 78 79 81 82 83 .?.	590 580 570 560 550 540 530	1 1 1 1 1 1 1	28 30 32 36 38 41 44 47	60 72 85 102 121 144 171 .?.	397 388 379 361 352 343 334 .?.	1 1 1 1 1 1 1	28 30 32 36 37 35 33 31	174 218 262 307 352 397 442 .?.
Вариант	22	ı		Вариант	23	ı		Вариант	24		
295 286 273 262 253 244 232	1 1 1 1 1 1 1	28 30 32 36 37 35 33 31	119 129 139 149 158 178 187 .?.	295 286 273 262 253 244 232 .?.	1 1 1 1 1 1 1	27 25 23 21 20 19 17 15	56 57 59 60 61 63 64 .?.	401 405 409 412 417 421 467 .?.	1 1 1 1 1 1 1	6 8 10 12 14 16 23 27	71 77 84 92 100 109 119

Тема: Поиск ложной информации

Цели работы:

- 1. Выработка практических навыков оценки закона распределения случайной величины о определения наличия ложной информации.
- 2. Запуск, отладка и тестирование программы.
- 3. Оценка наличия ложной информации с помощь программы [4,с.45].

Словесная постановка задачи

Имеется массив X_1 = $\{x_i\}$ наблюдений о временах обслуживания BC. Необходимо оценить наличие ложной информации в $\{x_i\}$ путем оценки вида закона распределения X .

Задание на лабораторную работу

В лабораторной работе необходимо:

- 1. Ввести программу в ЭВМ и создать файл исходных данных.
- 2. Оценить закон распределения X программой fu_ras.pas.
- 3. Дать заключение об отсутствии или наличии ложной информации.

Методические рекомендации

Решение задачи поставленной задачи осуществляется по алгоритму:

Шаг 1. Вычислить точечную оценку математического ожидания случайной

величины
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad , \tag{3.1}$$

где n - объем выборки; x_i - i-е наблюдение случайной величины (i=1,n). Шаг 2. Определить точечную оценку дисперсии σ_{x}^2

$$\sigma_{x}^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{\left(n-1\right)}$$
(3.2)

и среднеквадратического отклонения σ_x случайной величины X.

Шаг 3. Вычислить оценки $\sigma_{\bar{x}}$ и σ_{σ}

$$\sigma_{x} = \frac{\sigma_{x}}{\sqrt{n_{i}}} \quad \text{if} \quad \sigma_{\sigma} = \frac{\sigma_{x}}{\sqrt{2(n_{i}-1)}}$$
(3.2)

Шаг 4. Определить интервальную оценку математического ожидания $\bar{\chi}$

$$\overline{x}^{u} = \overline{x} \pm t_{a,k} \sigma_{\overline{x}} \tag{3.3}$$

где $t_{a,k}$ - теоретическое значение квантиля критерия Стьюдента табл.1[1]

либо как
$$t_{a,k} = 1.96 + \frac{2.4}{k} + \frac{3}{k^2}$$
 (3.4)

при k = n-1 и доверительной вероятности $\alpha = 0.95$, входах в табл.1 [1] Шаг 5. Определить количество интервалов n_u , на которое необходимо разбить статистический ряд значений случайной величины

$$n_{\text{\tiny M}} = 5 \log(n) \tag{3.5}$$

где n - число наблюдений случайной величины X.

Шаг 6. Вычислить размер интервала разбиения статистического ряда значений случайной величины X

$$\Delta \chi = \frac{\chi_{\text{max}} - \chi_{\text{min}}}{n_u} \qquad , \tag{3.6}$$

где $\chi_{\text{max,min}}$ - максимальное и минимальное значения случайной величины.

Шаг 7. Определить количества попаданий значений случайной величины в каждый интервал n_i i=1,m;

Шаг 8. Вычислить вероятности попадания в і-й интервал $p_i^* = \frac{n_i}{n}$, (3.7)

Шаг 9. Проверить условие для каждого интервала $n p_i^* > 5$. Если для і-го интервала условие не выполняется, его объединяют с і-1-м интервалом.

Шаг 10. Определить значения функции распределения $F^*(x)$ по статистическим значениям выборки наблюдений

$$F^{*}(x) = \sum_{x \in x} p_{i}^{*}, \tag{3.8}$$

Шаг 11. Вычислить значения функции плотности распределения

$$f_{i}^{*}(x) = \frac{p_{i}^{*}}{\Delta x}, \qquad (3.9)$$

Шаг 12. Построить гистограммы для $F^*(x)$ и $f^*(x)$.

Шаг 13. Сформировать гипотезу Но о принадлежности выборки значений случайной величины к одному из законов распределения (табл.3.1)

Шаг 14. Для гипотетического закона распределения определить точечные оценки расчетных параметров и значений $F_{\tau}(x)$

Математические модели законов распределения Таблица 3.1.

Вид закона	Параметры	Модель F(х)	Модель f(x)
Нормальный закон	$\mu = \overline{\chi}$ $\sigma^2 = \sigma_x^2$	$F_T^{t}(x) = \int_{-\infty}^{x} f(x) dx$	$f_T(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$
Экспоненциальный закон	$\lambda = 1/\overline{\chi}$	$F_T^{'}(x) = 1 - e^{-\lambda x}$	$f_T(x) = \lambda e^{-\lambda x}$
Закон Пуассона	$\lambda = \sum_{i=1}^{n_u} (i * n_i) / n$	$F_T^{t}(x) = \sum_{k=0}^{n} \frac{\lambda^k}{k!} e^{-\lambda}$	$f_T(x) = \frac{\lambda^k}{k!} e^{-\lambda}$
Закон Эрланга	$\lambda = \mu / \sigma^2$ $k = \inf\left(\frac{\mu^2}{\sigma^2}\right) - 1$	$F_T^{t}(x) = 1 - P_K(x)$ $P_K^{t}(x) = \sum_{n=0}^{k} \frac{(\lambda x)^n}{n!} e^{-\lambda x}$	$f_T(x) = \frac{\lambda (\lambda x)^{\kappa}}{k!} e^{-\lambda x}$ $\kappa = 1, 2;$

Релея
$$\sigma = \mu/1.253$$
 $\frac{x^2}{F'(x)=1-e^{-\frac{x^2}{2\sigma^2}}}$ $F'(x)=1-e^{-\frac{x}{\sigma^2}}$

Шаг 19. Определить вероятности p_{Ti} попадания случайной величины ві-й интервал, используя значения F_{Ti} (x), вычисленные на этапе 18 по теормоделям F_{Ti} (x) табл.3.1 $p_{T(i)}$ (x) = F_{Ti} (x) - $F_{T(i-1)}$ (x) (3.10)

Шаг 20. Вычислить статистическую оценку χ^2 критерия хи-квадрат Пирсона

$$\chi^2 = \sum_{i=1}^{n_u} \frac{(n_i - n \ p_{Ti})^2}{n p_{Ti}} , \qquad (3.11)$$

где $p_{\text{т}i}$ - вероятность попадания случайной величины в i-й интервал;

n_и - общее количество интервалов;

n_i - количество попаданий в i-й интервал.

Шаг 21. Сравнить
$$\chi^2$$
 и $\chi^2_{ma6\pi}$ (3.12)

где $\chi^2_{madn}(\alpha,k)$ - табличное значение квантиля критерия хи-квадрат Пирсона;

k = $(n_{\text{\tiny M}}$ - $n_{\text{\tiny p}}$ -1) - степени свободы; α =0.95 - вероятности достоверности;

 n_{p} - количество расчетных параметров в модели закона.

Гипотеза Но не отвергается при $\chi^2 \ge \chi^2_{ma\delta n}$, а при $\chi^2 \le \chi^2_{ma\delta n}$ необходимо оценить гипотезу о другом законе.

Исходные данные к выполнению лабораторной работы 3

Выборка А/общая для всех вариантов/

54 52 52 36 53 47 54 53 51 52 35 3951 57 54 56 47 53 46 58 56 59 55 59 43 56 31 56 46 4553 56 34 51 41 54

Выборка С

Вариант 1	Вариант 2	Вариант 3	Вариант 4
40 58 52 32 57 43	57 34 36 32 62 52	46 43 66 59 64 26	31 42 45 56 45 41
30 47 30 56 47 50	56 56 31 33 41 56	49 63 57 51 47 57	59 35 53 47 41 52
54 42 58 42 59 30	43 36 42 58 64 57	37 56 40 66 30 52	37 30 66 49 31 45
45 37 40 37 49 30	46 62 49 56 63 61	53 47 28 40 42 50	58 49 42 59 58 58
59 31 42 59 40 59	57 53 54 56 40 43	31 30 38 53 31 63	56 28 34 35 40 51
59 37 51 58 51 47	64 45 31 42 50 56	65 35 27 64 35 48	46 33 54 58 32 58
Вариант 5	Вариант 6	Вариант 7	Вариант 8
58 62 59 40 54 54	51 43 62 57 63 65	50 50 58 54 54 57	53 5136 55 67 54
55 47 65 57 47 60	53 59 57 44 50 52	35 68 51 58 51 51	34 3250 55 59 53
36 62 52 43 54 54	58 54 56 34 54 49	44 56 33 58 68 58	31 6057 57 59 51

35 56 56 47 58 59	52 47 49 57 59 56	59 50 48 46 54 59	49 4559 41 38 35
64 57 33 67 59 56	53 58 59 58 58 29	57 45 39 57 30 59	53 5557 50 55 43
53 38 59 53 67 53	40 54 57 33 52 59	50 51 47 43 52 65	57 6857 65 38 54
Вариант 9	Вариант 10	Вариант 11	Вариант 12
52 57 51 57 55 40	50 44 50 52 42 57	43 65 55 59 60 42	64 56 43 37 50 36
51 59 56 61 60 52	51 52 41 50 36 57	58 54 53 43 56 53	58 41 41 49 43 42
52 48 56 52 46 57	58 57 30 41 54 47	64 56 55 48 31 42	57 57 57 54 37 58
48 66 56 57 51 41	37 43 54 46 48 58	53 43 42 60 59 31	42 56 57 54 37 58
54 61 52 37 49 41	47 34 49 58 53 52	52 54 41 33 49 45	36 45 39 43 58 46
41 33 56 41 47 57	66 53 56 42 54 45	66 56 52 54 47 32	48 64 39 43 58 46
Вариант 13	Вариант 14	Вариант 15	Вариант 16
43 54 55 49 51 54	66 55 52 69 51 38	37 43 54 58 68 58	57 38 57 45 58 51
50 54 55 71 59 40	33 40 39 55 55 62	46 47 53 58 38 57	54 36 32 49 56 50
40 63 55 41 60 55	58 55 50 36 45 58	42 61 33 59 58 55	39 53 60 51 48 57
49 52 59 55 42 46	31 52 36 56 56 40	54 32 40 59 59 48	37 39 51 48 57 55
55 61 43 48 36 31	51 51 51 65 39 59	58 33 32 59 53 51	61 54 65 32 56 36
54 61 67 68 55 36	35 38 63 34 51 55	28 33 32 53 59 33	59 58 65 32 56 36
Вариант 17	Вариант 18	Вариант 19	Вариант 20
43 54 44 68 35 65	32 54 51 30 54 31	31 61 60 30 56 56	55 30 34 39 30 60
36 55 43 59 54 38	49 55 26 30 54 55	53 70 56 43 51 48	56 35 39 30 60 68
57 43 62 44 34 57	37 36 44 54 64 60	61 46 67 55 43 33	51 32 54 41 48 60
63 31 64 49 57 44	32 34 61 43 54 40	59 30 54 66 35 48	37 68 39 30 60 68
32 38 39 45 42 47	64 38 67 30 62 31	53 63 58 56 33 50	33 58 54 41 48 60
44 58 56 57 35 31	48 57 49 35 59 68	53 30 54 36 51 31	57 36 49 39 46 38
Вариант 21	Вариант 22	Вариант 23	Вариант 24
44 32 59 31 53 57	50 54 37 55 54 54	40 45 33 56 55 30	59 50 32 67 57 34
54 54 58 42 43 54	60 59 59 66 66 56	57 57 33 54 45 35	31 57 50 63 66 57
61 31 36 37 40 40	34 51 38 56 50 55	30 31 34 37 56 39	38 55 56 42 41 25
66 32 28 57 55 59	48 62 50 49 60 38	46 64 65 37 49 69	36 54 42 41 25 56
30 46 61 62 51 46	63 55 55 63 50 53	56 52 58 55 58 59	51 60 65 69 57 57
32 55 61 54 58 51	54 42 34 58 41 36	67 54 45 56 41 55	38 36 69 57 57 36

Тема: Оптимизация использования ресурсов

Цели работы:

- 1. Выработка практических навыков оптимизации использования ресурсов.
- 2. Запуск, отладка и тестирование программы [4,с.95].

Словесная постановка задачи

Авиаремонтное предприятие располагает п видами ресурсов в количествах b_i i=1,n. Расходуя имеющиеся ресурсы, предприятие может производить m видов продукции j=1,m. Реализация 1 единицы j-й продукции дает

предприятию c_j денежных единиц. На производство 1 единицы j-го продукта расходуется a_{ij} единиц i-го ресурса. Надо найти оптимальный план производства продукции x_i , обеспечивающий max суммарную прибыль.

Задание на лабораторную работу

В лабораторной работе необходимо:

- 1. Ввести программу в ЭВМ и создать файл исходных данных.
- 2. Решить задачу оптимизации.

Методические рекомендации

Целевая функция задачи — максимум суммарной прибыли предприятия, имеет следующий вид $K = c_1 x_1 + c_2 x_2 + ... + c_m x_m = \sum_{j=1}^m C_j x_j \rightarrow \max$ (4.1)

В процессе производства предприятие, расходуя на каждую единицу j-го вида продукции a_{ij} единиц i-го ресурса, оно не может израсходовать больше имеющегося у него запаса b_i i-го ресурса. Вышесказанное является словесным описанием ограничения задачи, математическая модель которого имеет вид

$$\sum_{i=1}^{m} a_{ij} \chi_{j} \leq b_{i} \text{ при } i=1,n.$$
 (4.2)

Вся произведенная продукция – реальна, то есть $\chi_{\scriptscriptstyle j} \! \geq \! 0$.

Решение задачи поставленной задачи осуществляется по алгоритму:

Этап 1. Приведение задачи к каноническому виду, при котором

- 1) все ограничения представляют собой алгебраические уравнения;
- 2) правые части уравнений положительны или равны 0;
- 3) BCE $\chi_j \ge 0$;
- 4) целевая функция максимизируется;
- 5) в ограничениях есть базис.

В качестве исходных данных в программу simplex.pas вводятся:

- вектор коэффициентов целевой функции со своими знаками;
- матрица коэффициенты ф со своими знаками;
- вектор свободных членов А.

Этап 2. Заполнение симплекс-таблицы.

Этап 3. Оценка оптимальности опорного плана.

Этап 4. В случае не оптимальности плана поиск опорного столбца, опорной строки, опорного элемента, и преобразование симплекс таблицы алгоритмом Жордана-Гаусса. Если план не оптимален — перейти на этап 3, если план оптимален — перейти на этап 5.

Этап 5. Вывод результатов в файл simplex.txt.

Исходные данные к выполнению лабораторной работы 4 Таблица 4.1.

САОДПЫ	е данные	K DDIIIO	шсши	io mao	oparo	phon	paoorb	<u>14</u> таолица		
Вари	Pecypc	Нормы р	Нормы расхода ресурсов аіј							
-ант		x1	x2	x 3	x4	x5	x6	ресурсов b _i		
1	i=1 2 3 K ->	1.0 2.0 1.1 5.0	2.0 1.0 2.1 6.0	3.0 2.0 3.2 3.0	1.0 2.0 3.0 2.0	1.2 1.5 1.7 4.0	2.0 3.0 1.0 4.0	350 440 560		
				Продо	лжен	ие та	бл.4.1			
2	i=1 2 3 K ->	2.0 3.0 1.0 2.0	2.0 3.0 1.1 3.0	1.1 4.3 2.2 1.0	2.1 4.2 1.3 3.0	1.0 1.2 1.5 5.0	1.1 3.3 2.5 3.0	300 400 500		
3	i=1 2 3 K ->	2.0 2.0 1.2 2.0	1.0 2.0 1.1 1.0	1.0 1.0 2.2 2.0	2.0 2.0 2.1 4.0	1.1 1.1 1.2 1.0	1.1 1.2 2.3 2.0	220 330 440		
4	i=1 2 3 K ->	2.0 2.0 1.3 3.0	4.0 3.0 2.4 4.0	2.0 3.0 3.4 2.0	4.0 3.0 2.0 1.0	1.0 1.1 1.2 3.0	1.0 5.0 3.0 6.0	210 230 320		
5	i=1 2 3 K ->	2.0 3.0 2.1 2.0	2.0 1.0 3.1 3.0	1.0 2.0 1.2 4.0	4.0 2.0 2.0 2.0 2.0	1.1 1.2 1.3 5.0	2.0 3.0 1.0 2.0	450 540 260		
6	i=1 2 3 K ->	2.0 1.0 3.1 2.0	4.0 3.0 4.1 3.0	4.0 3.0 4.2 2.0	2.0 3.0 1.0 3.0	1.0 1.2 1.2 5.0	1.0 2.0 2.0 2.0	340 350 420		
7	i=1 2 3 K ->	3.0 3.0 2.1 3.4	2.0 2.0 1.1 2.3	1.0 2.0 3.2 3.1	3.0 2.0 3.0 1.5	1.2 2.5 1.7 1.0	1.0 2.0 1.0 2.1	250 440 360		
8	i=1 2 3 K ->	2.0 2.0 1.2 2.2	4.0 3.0 1.5 2.0	4.0 1.0 2.5 1.0	3.0 2.0 4.0 3.1	2.2 0.5 2.7 2.3	1.0 2.0 3.0 1.9	150 240 460		
9	i=1 2 3 K ->	2.0 3.0 1.2 3.0	1.0 2.0 2.4 4.0	2.0 3.0 1.2 2.0	2.0 3.0 2.0 3.0	2.2 2.5 2.7 2.0	1.0 2.0 3.0 1.0	410 330 530		

								1
10	i=1 2 3 K ->	2.0 3.0 1.2 3.0	1.0 2.0 2.4 4.0	2.0 3.0 1.2 2.0	2.0 3.0 2.0 3.0	2.2 2.5 2.7 2.0	1.0 2.0 3.0 1.0	410 330 530
11	i=1 2 3 K ->	2.0 1.0 1.2 8.0	1.0 3.0 2.2 6.0	2.0 3.0 3.4 9.0	2.0 3.0 4.0 10.0	1.5 1.6 1.3 7.0	3.0 3.0 4.0 5.0	650 340 460
12	i=1 2 3 K ->	2.0 1.0 1.2 8.0	4.0 6.0 2.6 3.0	4.0 3.0 2.2 4.0	3.0 2.0 2.0 5.0	1.0 1.1 1.2 3.0	6.1 3.2 5.3 6.0	720 450 650
13	i=1 2 3 K ->	2.0 1.0 1.2 9.0	1.0 3.0 2.1 4.0	2.0 1.0 3.2 5.0	3.0 1.0 3.0 3.0	1.2 1.2 1.3 1.0	2.0 1.0 1.0 3.0	410 340 360
14	i=1 2 3 K ->	3.0 2.0 2.3 2.0	1.0 2.0 2.3 3.0	1.0 1.0 1.1 1.0	2.0 2.0 2.0 2.0 2.0	3.2 2.5 1.7 2.0	1.0 5.0 1.0 4.0	410 320 210
15	i=1 2 3 K ->	3.0 2.0 3.1 5.0	2.0 1.0 3.1 3.0	1.0 3.0 1.2 2.0	2.0 1.0 3.0 3.0	2.2 4.5 1.7 4.0	1.0 4.0 1.0 1.0	650 330 250
16	i=1 2 3 K ->	1.0 1.0 2.3 6.0	2.0 3.0 2.6 4.0	1.0 2.0 2.2 5.0	2.0 1.0 3.0 3.0	3.0 2.1 3.2 3.0	2.0 2.0 2.0 2.0	520 550 450
17	i=1 2 3 K ->	2.0 2.0 3.1 7.0	3.0 2.0 1.1 5.0	1.0 1.0 1.2 4.0	2.0 4.0 2.0 2.0	3.2 1.5 1.3 3.0	3.0 5.0 3.0 6.0	532 440 430
18	i=1 2 3 K ->	2.0 1.0 3.1 2.0	6.0 3.0 4.1 3.0	2.0 3.0 4.2 5.0	2.0 3.0 4.0 3.0	5.2 4.5 2.7 2.0	2.0 2.0 3.0 1.0	340 230 450
19	i=1 2 3 K ->	2.0 2.0 2.1 5.0	1.0 2.0 3.1 3.0	2.0 4.0 2.2 2.0	3.0 2.0 5.0 7.0	4.2 2.5 3.7 4.0	2.0 1.0 2.0 2.0	750 440 560
20	i=1 2 3 K ->	2.0 1.0 1.2 9.0	1.0 3.0 2.1 4.0	3.0 1.0 3.2 5.0	2.0 2.0 3.0 4.0	1.2 2.2 1.3 2.0	2.0 1.0 1.0 3.0	510 640 760
21	i=1 2 3 K ->	2.0 1.0 2.3 1.0	1.0 2.0 2.3 2.0	1.0 1.0 1.4 3.0	2.0 2.0 2.0 2.0 2.0	3.0 3.5 1.7 3.0	1.1 5.2 1.3 4.0	520 310 230
22	i=1 2 3 K ->	1.0 2.0 2.1 5.0	2.0 1.0 2.1 3.0	1.0 3.0 1.2 2.0	2.0 1.0 3.0 4.0	2.2 4.5 1.7 5.0	1.0 4.0 1.0 1.0	450 530 350
23	i=1	1.0	2.0	1.0	2.0	4.0	2.0	650

2 3 K ->	1.0 2.3 6.0	3.0 2.6 4.0	2.0 2.2 3.0	1.0 3.0 3.0	2.1 1.2 2.0	2.0 2.0 2.0	350 540
24 i=1 2 3 K ->	2.0 2.0 3.1 7.0	3.0 2.0 1.1 5.0	2.0 1.0 1.3 3.0	2.0 4.0 2.0 3.0	3.2 2.5 1.3 2.0	3.0 5.0 4.0 4.0	632 540 630

Тема: Оптимизация расстановки парка ВС

Цели работы:

- 1. Выработка практических навыков прогнозирования спроса и оптимизации расстановки парка ВС.
- 2. Запуск, отладка и тестирование программ.
- 3. Подготовка данных для оптимизации расстановки парка ВС.
- 4. Оптимизация расстановки парка ВС.

Словесная постановка задачи

Авиакомпания осуществляет перевозки по m ВЛ j=1,m. Для осуществления перевозок может быть задействовано не более 4-х типов самолетов (n≤4) из списка, приведенного в табл.5.2. Для ВЛ, обслуживаемых предприятием, известна статистика об объемах перевозок за 8 последних лет по каждой ВЛ. Для каждого i-го i=1,n типа ВС известны технико-экономические параметры. Необходимо сформировать оптимальный парк ВС и оптимально расставить его на заданном множестве ВЛ.

Задание на лабораторную работу

В лабораторной работе необходимо:

- 1. Спрогнозировать объемы перевозок по каждой ВЛ b_j .
- 2. Подобрать наилучший тип ВС для каждой ВС.
- 3. Определить значения себестоимости перевозки 1 ткм на i-м типе BC по j-й BЛ c_{ij}. для каждого выбранного типа BC на каждой заданной BЛ.
- 4. Сформировать оптимальный целочисленный парк BC для заданной сети BЛ и прогнозные значения объемов перевозок на i-м типе BC a_i.
- 5. Найти оптимальную расстановку парка ВС по ВЛ.

Методические рекомендации

Экономико-математическая модель задачи имеет вид: необходимо найти χ_{ij} - плановые объемы перевозок на i-м типе BC по j-й BЛ (млн. ткм), обеспечивающие минимум K - суммарных транспортных расходов парка BC

$$K = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} \rightarrow \min ,$$
 (5.1)

где п - количество типов ВС;

т - количество ВЛ;

 c_{ij} - себестоимости перевозок 1 ткм на і-м типе ВС по ј-й ВЛ ;

и выполняющие следующие условия:

1.
$$\sum_{i=1}^{n} \chi_{ij} = a_i$$
 - для $j = 1,m$ - выполнение плана перевозок на i-м типе ВС; (5.2)

$$2.\sum_{i=1}^{n} \chi_{ij} = b_{j}$$
 - для I=1,n - выполнение плана перевозок по j-й ВЛ; (5.3)

3.
$$\sum_{i} b_{i} = \sum_{i} a_{i}$$
 - баланс спроса и потенциала парка ВС . (5.4)

4.
$$\chi_{ij} \ge 0$$
 для всех і и j . (5.5)

Решение задачи осуществляется в табл.5.1 и состоит из этапов, в ходе реализации которых последовательно определяются:

- прогнозы b_i по каждой ВЛ;
- суммы Σ в_і;
- типы BC_j , дающие min $\ C_{ij}$;
- типы ВС і, отобранные в парк ВС;
- себестоимости C_{ij} для отобранных типов BC_{i} ;
- дробные количества ВС каждого і-го отобранного типа ВС;
- целые количества ВС каждого і-го отобранного типа ВСі;
- варианты целочисленных парков BC, обеспечивающие выполнение заданного объема перевозок Σ в $_{j}$.
 - χ_{ij} ≥ 0 планы расстановок BC i-го типа по j-м ВЛ;
- парк BC, обеспечивающий минимум расходов на выполнение всего объема перевозок Σ в $_{\rm i}$.

Алгоритм решения задач лабораторной работы

- 1. По номеру варианта из табл.5.1 выписать номера 6-ти ВЛ, из табл.5.2 их дальности (км), и из табл.5.3 объемы перевозок в млн. ткм. по годам за 8 лет.
- 2. Выполнить однофакторное моделирование и прогнозирование объемов перевозок (B_i) по каждой ВЛ (j=1,6) с помощью программы mono_reg.pas.
 - 3. Нарисовать табл. 5.1.
 - 4. Записать в табл.1 прогнозы b_i по каждой ВЛ.
 - 5. Вычислить суммы $\sum B_i = B_1 + B_2 + B_3 + B_4 + B_5 + B_6$.
- 6. Для каждой j-й ВЛ, введя в программу seb_44.exe ее дальность Lвл, найти все C_{ii} и найти тип BC_{i} , дающий min C_{ij} расходы на дальности L_{i} .
 - 7. Под каждой ј-й ВЛ в табл.5.1. записать тип ВС, дающий min C_{ii} .
- 8. Отобрать из строки (Тип BC_j) по одному разу неодинаковые типы BC и записать в табл.5.1. в столбец (Типы BC_i).
- 9. Рассчитать количество рейсов и BC, необходимых для выполнения плана перевозок и заполнить табл.5.1., разработав несколько вариантов парка BC.

Для каждого типа BC необходимо найти плановые годовые объемы перевозок a_i и записать их в табл.5.1, балансируя величину Σ B_j с объемом перевозок на всех типах BC Σ a_i . Рассмотрим пример, приведенный в табл.5.1.

Таблица расстановки парка ВС Таблица 5.1.

Типы ВС і	ВЛ 1	ВЛ 2	ВЛ3	ВЛ4	ВЛ 5	ВЛ 6	A^{r} $(a_{i)}$ млн.ткм
ИЛ-96 300	$C_{11}=13$	$C_{12}=14$	$C_{13}=15$	$C_{14}=16$	$C_{15}=16$	$C_{16}=13$	$a_1 = 293$
ТУ- 204М	$C_{21}=95$	$C_{22}=13$	$C_{23}=13$	$C_{24}=13$	$C_{25}=13$	$C_{26}=17$	a ₂ =482+7
ТУ-334	$C_{31}=100$	$C_{32}=16$	$C_{33}=15$	$C_{34}=14$	$C_{35}=13$	$C_{36}=22$	$a_3 = 588$
ТУ-214	$C_{41}=60$	$C_{42}=11$	$C_{43}=12$	$C_{44}=13$	$C_{45}=13$	$C_{46}=13$	a ₄ =425
Прогноз млн.ткм	в ₁ =293	в ₂ =225	в ₃ =300	в ₄ =200	в ₅ =370	в ₆ =407	1788+ 7 Σ Qr =1795
Lвл (км)	$L_1 = 8000$	$L_2 = 3000$	$L_3 = 2500$	$L_4 = 2000$	$L_5 = 1500$	$L_6 = 4500$	
Тип ВС _ј	ИЛ-96- 300	ТУ- 204М	ТУ- 204М	ТУ-334	ТУ-334	ТУ-214	

Определение величин a_i – осуществляется следующим образом: для ВЛ протяженностью 8000 км известен прогноз объема перевозок на расчетный

период в =293 млн.ткм. Выбираем для данной ВЛ самолеты типа ИЛ-96-300. В табл. 5.2 находим рейсовую скорость ИЛ-96-300=850 км/час и вычисляем: - время выполнения рейса $t_p = \frac{8000}{870} = 9.2 \text{ ч}.$

Техническо-экономические характеристики ВС Таблица 5.2

Тип ВС	А эк/ч	Нг	Αг	Свс	Gто	Gкмx	Gklm	Veko	Nкр	Тпод	Vp
	ткм/ч	Ч	МЛН. ТКМ	Млн \$	т/ч	Т	Т	км/ч	шт.	Ч.	км/ч
Ил-96-300м Ту-214 Ту-204м Ту-334 Ил-114	34000 20000 17200 10000 2820	4200 4250 2800 2800 2000	142.8 85.0 48.2 28.0 5.6	45 30 28 25 10	7.7 5.0 4.2 2.0 1.2	40.0 25.2 21.0 9.0 6.0	20.0 20.0 13.0 3.0 1.5	850 850 810 800 470	300 210 214 100 64	2.0 2.0 1.0 1.0 1.0	870 850 840 820 500

- производительность полета BC за рейс $A_p = 9.2 * 34 000 = 312644$ ткм.
- общее количество рейсов, необходимых для выполнения 293 млн.ткм.

$$Np = \frac{293*10^6}{312644} = 937.2 \text{ рейсов}.$$

- суммарный годовой налет

$$H^{\Gamma} = 937 * 9.2 = 8620.4 \text{ ч}.$$

- потребное количество самолетов для выполнения b = 293 млн.ткм.

Nbc =
$$\frac{8620.4}{4300}$$
 = 2.0.

- годовая производительность 2 самолетов

$$A^{\Gamma} = 2 * 34000 * 4300 = 285.6 * 10^6$$
ткм = 292.4 млн.ткм.

Аналогичные расчеты выполняются для всех типов ВС, результаты которых позволяют заполнить табл. 5.3.

Формирование вариантов парка ВС

Тип ВС	Qг	Ач	Нг	Qг	Nвс дроб	Nвс цел	Парк 1	Парк 2	Парк	Парк 4
	МЛН.Т КМ	ткм/ч	час	МЛН.Т КМ	шт.	шт.	шт.	шт.	шт.	шт.
ИЛ-96 300	293	34000	4300	146.2	2.00	2	2 293	2 293	2 293	2 293
ТУ- 204М	525	17200	2800	48.2	10.8	10-11	10 482	10 482	11 530	11 530
ТУ- 334	570	10000	2800	28.0	20.36	20-21	21 588	21 588	21 588	20 560
ТУ-	407	20000	4250	85.0	4.79	4-5	4	5	5	5

Таблица 5.3

214					340	425	340	425
			Итог	ΣQ_{Γ}	1703	1788	1751	1808
			-	Δ	-92	-7	-44	+13

Наименьшее отклонение от прогнозного объема 1795 млн.ткм. дает 2-й вариант парка ВС (Δ =1788-1795=-7). Анализ табл.5.3 показывает, что выявленная разность может быть записана на счет самолета ТУ-214, что составляет 7/10 млн.ткм дополнительной работы , которая потребует дополнительного налета в 40.66 часов на каждый самолет

 $2800\48.2 = x\0.7$, откуда $x = 2800*0.7 \48.2 = 40.66$ час.

или $40.66\2800\100 = 1.45$ % от годового налета, что вполне приемлемо и может быть выполнено каждым из 10 самолетов.

10. Используя табл. 5.4 найти все C_{ij} для всех типов BC на всех ВЛ и вписать их в табл. 5.1.

Себестоимость перевозки 1 ткм (руб/ткм) Таблица 5.4.

Тыс. км	0.5	1	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
Ty-334	15	13	13	14	15	16	16	17	22	100	200	300	400	500	600	700
Ту- 154м	17	13	13	13	12	12	12	13	20	50	100	200	300	400	500	600
Ту- 204м	16	13	13	13	13	13	13	13	17	100	200	300	400	500	600	700
Ty-214	17	13	13	13	12	11	11	11	13	15	19	24	27	100	200	300
Ил-96 300	21	16	16	16	15	14	14	13	13	13	13	13	13	12	12	13

- 11. Обеспечить баланс потенциала парка и плана объема работы парка на ВЛ.
- 12. Ввести данные табл.5.1. в ЭВМ и решить задачу оптимизации расстановки парка ВС .

Исходные данные к лабораторной работе 5

Номера воздушных линий

Таблица 5.5.

			N	ВЛ						N	ВЛ		
Вариант							Вариант						
1	2	12	21	3	24	10	13	17	23	19	6	7	10
2	1	3	26	4	23	9	14	11	1	21	5	17	6
3	2	4	23	5	21	8	15	2	12	24	4	27	9
4	13	5	24	6	20	7	16	24	4	17	3	30	11
5	24	6	1	7	19	6	17	11	13	22	2	8	30

6	10	7	2	8	18	5	18	22	15	28	1	3	7
7	3	11	12	9	8	30	19	23	3	25	13	4	19
8	2	13	10	11	7	29	20	30	6	5	24	16	18
9	14	15	13	2	6	28	21	24	9	4	15	17	7
10	5	16	14	1	5	27	22	29	12	3	17	23	6
11	21	23	18	20	4	26	23	23	21	2	21	22	5
12	16	29	26	27	3	25	24	27	23	1	20	30	4

Протяженности ВЛ (км) Таблица 5.6.

	протл	женние	iu bji (к	<u>v1)</u>	таолица 5.0.	
Вариант	ВЛ 1	ВЛ 2	ВЛ 3	ВЛ 4	ВЛ 5	ВЛ 6
1	1230	3200	4500	2355	6200	16291
2	2120	3520	1520	8120	3120	16520
3	2300	4300	8300	6300	4200	13300
4	1450	2750	8750	5250	2450	13750
5	2700	8200	4200	3400	6200	11200
6	3230	2330	5130	1530	7330	14330
7	4120	6420	2420	1320	4120	12420
8	7450	2250	2250	7450	3950	11250
9	1300	3300	3300	2500	8400	11300
10	2400	1400	4400	3600	8300	14400
11	1700	2500	2500	4100	8200	12500
12	2230	4730	1730	5230	7330	12730
13	3120	1520	1420	6320	8320	14420
14	6000	5200	3200	2400	7200	12200
15	7200	2400	1400	8500	3600	11800
16	8400	7400	3400	2600	1300	13400
17	5700	7500	6500	3100	1200	12500
18	6230	1730	8730	4230	2330	13730
19	3120	3520	3420	1320	8320	14420
20	4000	8200	1200	5400	1200	13200
21	3200	5400	4400	1500	3600	12800
22	4400	8400	1400	3600	2300	12400
23	5700	3500	1500	4100	1200	18500
24	3230	4730	1730	4230	2330	12730

Динамика объемов перевозок по ВЛ Таблица 5.7.

ВЛ	Год 1	Год 2	Год 3	Год 4	Год 5	Год 6	Год 7	Год 8	Год 9
1	140	147	152	163	175	181	185	188	.?.
2	100	123	128	136	148	153	160	172	.?.
3	60	70	79	88	96	105	109	116	.?.
4	42	50	57	63	72	80	90	98	.?.
5	61	66	71	77	82	85	90	95	.?.
6	130	139	148	156	167	177	190	201	.?.
7	115	120	129	135	147	158	167	177	.?.

8	90	100	113	121	135	142	150	163	.?.
9	100	111	122	135	144	153	167	172	.?.
10	77	83	88	95	100	109	114	121	.?.
11	140	147	152	163	175	180	190	202	.?.
12	220	225	229	233	240	251	264	275	.?.
13	50	62	69	77	85	92	103	111	.?.
14	142	150	157	165	174	182	190	199	.?.
15	261	266	271	278	283	289	294	302	.?.
16	130	139	144	152	166	175	183	194	.?.
17	215	220	228	233	242	249	251	257	.?.
18	190	205	220	233	241	252	260	271	.?.
19	40	51	52	63	74	85	96	111	.?.
20	177	183	190	197	204	210	217	222	.?.
21	75	77	83	88	93	99	108	112	.?.
22	210	217	212	219	223	229	234	238	.?.
23	130	132	135	139	143	146	150	155	.?.
24	120	130	139	142	151	160	170	180	.?.
25	72	75	77	83	88	95	101	111	.?.
26	141	146	151	157	160	165	170	175	.?.
27	210	219	227	235	241	248	255	261	.?.
28	80	88	95	103	113	120	126	133	.?.
29	91	114	125	135	142	151	159	163	.?.
30	100	107	113	121	129	136	143	152	.?.
30	100	107	113	121	129	130	143	132	.:.

Тема: Оптимизация облика объекта управления

Цели работы:

- 1. Выработка практических навыков оптимизации каналов обслуживания.
- 2. Запуск, отладка и тестирование программы [4,с.88].
- 3. Подготовка данных для оптимизации.
- 4. Оптимизация количества каналов обслуживания.

Словесная постановка задачи

обслуживанию и ремонту (ТО и Р) Лаборатория ПО техническому радиоэлектронного оборудования (РЭО) имеет N стендов .В течение рабочего λ дня на обслуживание в лабораторию в среднем поступает единиц Статистический анализ потока заявок, оборудования. поступающих на обслуживание лабораторию, показывает, онжом что его считать

пуассоновским. Время на проведение ремонта $t_{\text{об}}$ зависит от многих факторов и является случайной величиной.

Задание на лабораторную работу

В лабораторной работе необходимо:

- 1. По номеру варианта задания из табл. 6.1 составить файл исходных данных.
- 2. Вычислить:

- среднее время обслуживания
$$t_{00} = 1/\mu$$
 (6.1)

где µ - интенсивность обслуживания заявки одним каналом;

- коэффициент загрузки канала
$$\alpha = \lambda / \mu$$
 , (6.2)

где λ – интенсивность поступления заявок в СМО;

- коэффициент загрузки СМО
$$\rho = \lambda / (n^* \mu)$$
 , (6.3)

где n - количество каналов обслуживания в СМО;

- вероятность того, что все стенды свободны в момент прибытия заявки

$$P_{0} = \frac{1}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{k!} + \frac{\alpha^{n}}{(n-1)(n-\alpha)}}$$
(6.4)

- вероятность того, что все стенды заняты

$$P_{3aH} = \frac{\alpha^n Po}{(n-1)!(n-\alpha)} \tag{6.5}$$

- среднее количество занятых каналов $n_{3an} = \left(\sum_{k=1}^{n} k * p_{k} - n * p_{3an}\right)$ (6.7)

- среднее число свободных каналов
$$\eta_{cs} = \eta - \eta_{3aH}$$
 (6.8)

- среднее время ожидания начала обслуживания каждого прибора

$$t_{\text{ож}} = \frac{p_{_{3AH}}}{(n-\alpha)} \tag{6.9}$$

- среднюю длину очереди

$$l_{\rm s} = \frac{p_{\rm \tiny 3AH}}{(n-\alpha)^2} \tag{6.10}$$

- среднее количество заявок, находящихся в СМО

$$\overline{n_s} = l_s + \frac{n * p_n}{\left(1 - \frac{\alpha}{n}\right)} + p_o \sum_{k=1}^{n-1} \frac{\alpha^k}{(k-1)!}$$
(6.11)

- среднее количество свободных каналов

$$S_o = p_o \sum_{k=0}^{n-1} \frac{(n-k)}{k!} \alpha^k$$
 (6.12)

- суммарные затраты-потери СМО

$$C_{t} = C_{osc}^{3} + C_{osc}^{\kappa} + C_{osc}^{3} + C_{osc}^{\kappa} + C_{osc}^{\kappa} + C_{yx}^{3} = (c_{osc}^{3} l_{s} + c_{osc}^{\kappa} n_{cs} + c_{osc}^{3} \overline{n_{s}} + c_{osc}^{\kappa} n + c_{yx}^{\kappa} \nu) * t$$
(6.13)

- $\mathcal{C}_{osc}^{^{3}}$ потери от простоя одной заявки в ожидании обслуживания (ден.ед.);
- $\mathcal{C}_{\scriptscriptstyle O\!N\!C}^{^{\kappa}}$ потери от простоя канала в ожидании заявки (ден.ед.);
- $\mathcal{C}_{oo}^{^{3}}$ затраты на обслуживание одной заявки (ден.ед.);
- c_{oo}^{κ} затраты на обслуживание одного канала (ден.ед.);
- c_{yx}^{3} потери от уходы заявки (ден.ед.);
- t продолжительность расчетного периода.
- оптимальное количество стендов $n_{\text{опт}}$.

Методические рекомендации

При моделировании производственных процессов ГА методами теории массового обслуживания основными компонентами сложной системы ГА являются потоки самолетов, пассажиров, багажа, грузов и почты, именуемых "заявок" и обслуживаемых элементами предприятий, термином потоки именуемых термином "каналы обслуживания". Математический аппарат **TMO** обеспечивает определение количественных оценок параметров ,характеризующих облик СМО и ее элементов ,а также взаимосвязи между Вероятности зависимости (6.13) определяются по формулам 6.1ними. 6.12. Варьируя количество каналов и интенсивность поступления заявок в систему λ , а также другие параметры, входящие в (6.13), можно построить семейства кривых, на основании которых и определяется оптимальное количество каналов в СМО.

Исходные данные к выполнению лабораторной работы 6 Таблица 6.1.

Bap	n	λ	t _o	C_{osc}^{3}	c_{osc}^{κ}	$c_{o\delta}^{^{\kappa}}$	Bap	n	λ	t _{oō}	c_{osc}^{3}	c_{oH}^{κ}	$C_{o\delta}^{^{\kappa}}$
1	3	8	2	800	14	111	13	3	15	3	920	16	131
2	2	9	3	700	13	120	14	4	13	2	810	15	233
3	4	11	1	900	12	130	15	2	12	3	730	17	145
4	5	12	4	703	14	200	16	3	16	2	650	14	167
5	3	10	2	830	16	120	17	3	212	1	785	15	155
6	1	5	3	655	15	130	18	4	8	1	675	61	166
7	7	12	4	678	17	145	19	2	11	2	570	13	153
8	4	9	5	876	13	105	20	1	7	3	800	14	132
9	6	10	2	456	18	110	21	3	9	4	920	15	141
10	5	6	3	567	13	150	22	5	12	2	920	14	174
11	3	6	1	690	12	160	23	3	10	3	780	13	180
12	2	15	2	780	11	155	24	5	12	4	820	12	135

Тема: Оптимальная загрузка самолета

Цели работы:

- 1. Выработка практических навыков поиска оптимальной загрузки самолета.
- 2. Запуск, отладка и тестирование программы.
- 3. Оценка оптимальной загрузки самолета.

Словесная постановка задачи

Багажники ВС суммарным объемом V m^3 вмещают G кг груза. На складе п партий грузов ожидают отправки $X=\{x_1,\,x_2\,...\,x_n\,\}$. Для каждой партии груза известны: вес g_i , объем v_i , доход от его перевозки d_i и важность w_i . Необходимо определить, какие партии грузов должны быть погружены в ВС, чтобы суммарная важность W того, что будет загружено, было бы максимальной с учетом ограничений.

Задание на лабораторную работу

В лабораторной работе необходимо:

- 1. Ввести программу в ЭВМ и создать файл исходных данных.
- 2. Решить задачу оптимальной загрузки самолета.

Методические рекомендации

Математическая модель задачи имеет вид:

целевая функция

$$W=\sum w_i^* \chi_i \rightarrow \max i=1,n;$$
 (7.1)

при ограничениях

1)
$$\sum_{i} g_{i}^{*} \chi_{i} \leq G$$
; 2) $\sum_{i} v_{i}^{*} \chi_{i} \leq V$; 2) $\chi_{i} = 1$ - загружается; $\chi_{i} = 0$ - нет.

Исходные данные к выполнению лабораторной работы 7 Таблица 7.1.

Bap \					•									
Вар	Vб	-	1	2	3	4	5	6	7	8	9	10	11	12
1 1	105	\mathbf{g}_{i}	3	4	13	21	23	34	11	23	11	9	10	42
		Wi	1	2	3	7	5	9	4	2	4	5	6	3
2 9	95	\mathbf{g}_{i}	7	8	10	12	9	13	24	28	21	19	10	25
		Wi	2	7	4	2	8	3	1	5	3	8	1	7
3 8	30	g_{i}	14	23	3	14	5	23	7	21	9	20	21	12
		Wi	2	3	3	2	3	4	1	3	1	9	1	2
4 9	90	\mathbf{g}_{i}	3	23	3	7	32	9	23	2	23	5	23	19
		$\mathbf{w}_{\mathbf{i}}$	5	2	1	3	9	4	2	2	2	7	3	2
5 1	110	\mathbf{g}_{i}	1	23	12	2	38	3	13	5	32	8	11	20
		Wi	1	4	3	4	5	6	7	8	9	1	1	2
6 1	110	\mathbf{g}_{i}	2	23	15	1	34	23	1	23	10	9	11	12
		Wi	3	6	3	7	5	9	4	2	4	5	6	3
7 1	100	\mathbf{g}_{i}	4	7	15	2	5	2	1	15	3	2	2	2
		$\mathbf{W_{i}}$	5	1	4	2	8	3	8	5	3	8	1	7
8 1	100	g_{i}	1	7	3	4	2	6	2	5	9	1	1	2
		Wi	9	3	3	1	3	4	1	3	1	9	1	2
9 1	110	\mathbf{g}_{i}	12	4	11	8	13	5	7	14	2	3	13	22
		\mathbf{W}_{i}	4	5	1	2	2	3	1	2	1	9	1	4
10 1	100	\mathbf{g}_{i}	11	23	12	24	10	6	22	13	9	4	14	25
		$\mathbf{W_{i}}$	6	3	1	2	9	3	4	8	2	9	1	5
11 1	115	\mathbf{g}_{i}	10	24	12	2	17	23	8	12	21	8	15	23
		$\mathbf{w}_{\mathbf{i}}$	5	6	3	4	7	5	8	9	3	4	6	4
12 1	105	\mathbf{g}_{i}	3	4	13	21	23	34	11	13	11	9	10	42
		$\mathbf{W_{i}}$	1	2	3	7	5	9	4	2	4	5	6	3
13 9	95	\mathbf{g}_{i}	13	12	11	23	9	23	14	18	11	9	20	15
		$\mathbf{W_{i}}$	2	7	4	2	8	3	1	5	3	8	1	7
14 8	30	g_{i}	24	13	3	24	5	13	7	31	9	10	11	32
		$\mathbf{W_{i}}$	2	3	3	2	3	4	1	3	1	9	1	2
15 9	90	\mathbf{g}_{i}	12	13	12	7	22	9	13	2	13	5	13	29
		Wi	5	2	1	3	9	4	2	2	2	7	3	2
16 1	110	\mathbf{g}_{i}	1	13	22	2	28	3	23	5	12	8	21	10
		Wi	1	4	3	4	5	6	7	8	9	1	1	2
17 1	110	\mathbf{g}_{i}	2	13	25	1	14	13	1	13	20	9	21	22
		Wi	3	6	3	7	5	9	4	2	4	5	6	3

18	140	gi	14	7	15	10	17	10	28	25	13	12	22	16
		Wi	5	1	4	2	8	3	8	5	3	8	1	7
19	100	gi	13	14	12	13	14	15	21	22	13	14	24	13
		Wi	9	3	3	1	3	4	1	3	1	9	1	2
20	130	gi	12	26	11	8	13	23	24	14	29	3	13	22
		Wi	4	5	1	2	2	3	1	2	1	9	1	4
21	100	g_{i}	11	23	12	24	10	6	22	13	9	4	14	25
		Wi	6	3	1	2	9	3	4	8	2	9	1	5
22	125	g_{i}	13	23	12	2	11	22	8	15	26	8	12	21
		Wi	5	6	3	4	7	5	8	9	3	4	6	4
23	100	gi	16	22	12	24	15	6	23	17	12	4	17	19
		Wi	6	3	1	2	9	3	4	8	2	9	1	5
24	105	gi	13	22	13	2	19	25	8	22	31	8	25	23
		Wi	5	6	3	4	7	5	8	9	3	4	6	4

СОДЕРЖАНИЕ

1. Введение
2. Требования к оформлению отчета о выполнении работы
3. Порядок защиты лабораторных работ
4. Этапы выполнения лабораторной работы
5. Методические рекомендации к выполнению лабораторных работ 4
ЛАБОРАТОРНАЯ РАБОТА 1 Однофакторное прогнозирование
Исходные данные к выполнению лабораторной работы 1
ЛАБОРАТОРНАЯ РАБОТА 2 Многофакторное прогнозирование 8
Исходные данные к выполнению лабораторной работы 2
ЛАБОРАТОРНАЯ РАБОТА 3 Поиск ложной информации
Исходные данные к выполнению лабораторной работы 3
ЛАБОРАТОРНАЯ РАБОТА 4 Оптимизация использования ресурсов 18
Исходные данные к выполнению лабораторной работы 4
ЛАБОРАТОРНАЯ РАБОТА 5 Оптимизация расстановки парка ВС 21
Исходные данные к выполнению лабораторной работы 5
ЛАБОРАТОРНАЯ РАБОТА 6 Оптимизация облика объекта управления 28
Исходные данные к выполнению лабораторной работы 6

ЛАБОРАТОРНАЯ РАБОТА 7 Оптимальная загрузка самолета	31
Исходные данные к выполнению лабораторной работы 6	31
Литература	33

ЛИТЕРАТУРА

- 1. Андрианов В.В. Алгоритмы методов разработки управленческих решений. Учебное издание. М.: МГТУ ГА, 2001. 124 с.
- 2. Андрианов В.В. Многофакторное экономико-математическое моделирование систем и процессов ГА: Уч. пос. М. :МГТУ ГА, 1996. 104с.
- 3. Андрианов В.В. Экономико-математические методы и модели. Часть I: Учебное пособие М.: МИИГА, 1993. 137 с.
- 4. Андрианов В.В. Экономико-математические методы и модели. Часть II. Компьютерная реализация: Учебное пособие. М.: МГТУ ГА, 1998. 104с.