ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математические методы в задачах летно-технической эксплуатации BC (ДНМ.05.1)

(наименование, шифр по ГОС)

Направление <u>160900 – Эксплуатация и испытания авиационной</u> и космической техники (магистры)

(шифр по ГОС)

Образовательная программа Высшего профессионального образования специализированной подготовки магистра 160900(05) — <u>Летно-техническая эксплуатация авиационной и космической техники</u>

(шифр по ГОС)

Факультет Механический

Кафедра Аэродинамики, конструкции и прочности летательных аппаратов

Курс V, Форма обучения

дневная.

Общий объем учебных часов на дисциплину 75 часов

Аудиторные занятия –

50 часов, в том числе:

Лекции

50 часр⊚

Самостоятельная работа

25 часов

Экзамен

V курс, 9 семестр

Рабочая программа составлена на основании примерной учебной дисциплины И С Государственными программы В соответствии требованиями к минимуму содержания и уровню подготовки выпускника по образовательной программе Высшего профессионального образования специализированной подготовки магистра 160900(05) – Летно-техническая эксплуатация авиационной и космической техники направления 160900 авиационной Эксплуатация испытания и космической (магистры)

Рабочую программу составил: <u>Кубланов М.С., профессор, д.т.н.</u> (Ф.И.О., звание, степень)	<u>Миму</u> (подпись)
Рабочая программа утверждена на заседан протокол № <u>7</u> от <u>/3 २०००</u> 2	ии кафедры, 2010 г.
Заведующий кафедрой <u>Ципенко В.Г., профессор, д.т.н.</u> (Ф.И.О., звание, степень)	(подпись)
Рабочая программа одобрена методичела 160900 – Эксплуатация и испытания авиат (наименования Протокол № 4 от 20 спремя 2	<u>ционной и космической техники</u> e)
Председатель методического совета <u>Полякова И.Ф., доцент, к.т.н.</u> (Ф.И.О., звание, степень)	(подпись)
Рабочая программа согласована с Уче (УМУ)	бно-методическим управлением

Начальник УМУ

<u>Логачев В.П.</u> (Ф.И.О.)

- 1. Цель и задачи дисциплины.
- 1.1. Цель преподавания дисциплины.

Учебная дисциплина "Математические методы в задачах летнотехнической эксплуатации" необходима для фундаментальной подготовки магистров по программе "Летно-техническая эксплуатация авиационной и космической техники", способных решать проблемы гражданской авиации с использованием математических методов обработки и анализа информации.

- 1.2. Задачи изучения дисциплины (минимально необходимый комплекс знаний и умений):
- 1.2.1. Иметь представление о современных математических теориях, позволяющих решать задачи летно-технической эксплуатации, обрабатывать и анализировать информацию: методах вычисления, методах контроля и управления случайными процессами, факторном анализе, спектральном анализе, теории информации.
- 1.2.2. Знать основные методы статистического анализа, основные понятия теории эксперимента.
- 1.2.3. Уметь ставить задачи планирования эксперимента и обработки полученной информации, а также строить анализ ее, исходя из практической проблемы исследований.
- 1.2.4. Иметь опыт применения методов обработки и анализа информации о работе системы с целью решения практической проблемы исследований.

- 2. Содержание дисциплины.
- 2.1. Наименование разделов (подразделов), объем в часах. Ссылки на литературу, содержание лекций.

Раздел 1. Введение. 2 часа [1].

Лекция 1.1. Введение.

Цели научных и инженерных исследований в области летнотехнической эксплуатации авиационной и космической техники. Примеры завершенных исследований. Место математического моделирования в них. Основная цель обработки и анализа информации — повышение информативности.

Раздел 2. Применение статистического анализа. 18 часов [2, 19].

Лекция 2.1. Цели и основы статистического анализа.

Цели статистического анализа и их связь с задачей исследования. Основы статистического анализа и его составляющие. Место первичной обработки данных в статистическом анализе. Отбор данных.

Лекция 2.2. Точечные и интервальные оценки.

Применение точечных и интервальных оценок для планирования объема эксперимента и оценки точности данных.

Лекция 2.3. Статистическая проверка гипотез.

Статистическая проверка гипотез для вероятностного обоснования принятия решения. Последовательный анализ и секвенциальные критерии.

Лекция 2.4. Статистический контроль качества технологических процессов.

Постановка вопроса. Регулирование качества. Методы контроля и управления случайными процессами. Приемочный контроль качества.

Лекция 2.5. Применение корреляционного анализа.

Методы корреляционного анализа для оценки связи параметров и их систем.

Лекция 2.6. Применение регрессионного анализа.

Методы регрессионного анализа для выявления функциональной связи параметров. Метод наименьших квадратов для отыскания линии регрессии и сглаживания (аппроксимации) данных.

Лекция 2.7. Дисперсионный анализ.

Проблемы дисперсионного анализа. Основная идея дисперсионного анализа и особенности построения практических выводов.

Лекция 2.8. Основы теории фильтрации.

Основные понятия и методы теории фильтрации. Понятие о спектральном анализе. Пример применения фильтров для исследования данных.

Раздел 3. Задачи планирования эксперимента. 12 часов [2, 21].

Лекция 3.1. Постановка задачи планирования эксперимента.

Проблемы построения эксперимента и методы их разрешения. Назначение плана эксперимента.

Лекция 3.2. Планирование объема эксперимента.

Последовательный анализ. Определение необходимого объема выборки.

Лекция 3.3. Свойства планов эксперимента.

Свойства планов эксперимента и их влияние на выводы.

Лекция 3.4. Назначение неполных и неортогональных планов.

Понятие о планах эксперимента для дисперсионного и регрессионного анализа и принципы их разработки.

Лекция 3.5. Сравнение приемов планирования эксперимента.

Сравнение приемов планирования эксперимента для определенных целей.

Лекция 3.6. Особые методы планирования эксперимента.

Обеспечение требований к плану эксперимента. Минимизация объема. Метод главных компонент. Факторный анализ. Планирование отсеивающих экспериментов. Задачи идентификации.

Раздел 4. Методы математического моделирования. 18 часов [1, 3, 7].

Лекция 4.1. Методы вычисления в задачах летно-технической эксплуатации. (8 часов)

Особенности применения методов вычисления в задачах аэродинамики и динамики полета, конструкции и прочности.

Лекция 4.2. Оптимизационные задачи. (6 часов)

Решение непрерывных и дискретных оптимизационных задач летнотехнической эксплуатации.

Лекция 4.3. Понятие об исследовании операций.

Задачи исследования операций. Виды случайностей. Методы.

Лекция 4.3. Понятие о теории информации.

Основные понятия и задачи теории информации.

Лекция 4.5. Методы экспертных оценок.

Применение экспертизы для решения практических задач летнотехнической эксплуатации.

- 2.2. Перечень практических занятий, их объем в часах: Практические занятия учебным планом не предусмотрены.
- 2.3. Перечень лабораторных работ (занятий), их объем в часах: Лабораторные работы учебным планом не предусмотрены.
- 2.4. Перечень контрольных домашних заданий. Контрольные домашние задания учебным планом не предусмотрены.

3. Рекомендуемая литература:

№		Наименование,
	Автор	издательство,
п/п	1	годиздания
1	2	3
		Основная литература:
1	Кубланов М.С.	Математическое моделирование. Методология
		и методы разработки математических моделей
		механических систем и процессов: Учебное
		пособие. Часть І. Третье издание. – М.: МГТУ
		Γ A, 2004. – 108 c.
2	Кубланов М.С.	Математическое моделирование. Методология
		и методы разработки математических моделей
		механических систем и процессов: Учебное
		пособие. Часть II. Третье издание. – М.: МГТУ
	IC C MC	ΓA, 2004. – 125 c.
3	Кубланов М.С.	Аэродинамика и динамика полета: Учебное
	Π.	пособие. – М., МГТУ ГА, 2000. – 76 с.
4	1	полнительная литература
4	Советов Б.Я.,	Моделирование систем: Учебник для вузов. –
_	Яковлев С.Я.	М.: "Высшая школа", 1998. – 320 с.
5	_	Моделирование систем: Учебное пособие. – Баку: Азинефтехим, 1989. – 83 с.
6	др. Дыхненко Л.М. и	Основы моделирования сложных систем:
0	дыхненко л.м. и	Учебное пособие для втузов. – Киев: Вища
	др.	школа. 1981. – 359 с.
7	Вентцель Е.С.	Теория вероятностей. – М.: Наука, 1964. – 576 с.
8	Савченко А.А.	Введение в математическую статистику с
		применением в гражданской авиации. – Киев:
		МИИГА, 1975 – 132 c.
9	Савченко А.А.	Методические указания и контрольные задания
		по специальным разделам теории вероятностей.
		– M.: МИИГА, 1982. – 44 c.
10	Остославский И.В.,	Динамика полета. Траектории летательных
	Стражева И.В.	аппаратов. – М.: Машиностроение, 1969. – 500
		c.
11	Корн Г., Корн Т.	Справочник по математике (для научных
		работников и инженеров). – М.: Наука, 1973. –
		832 c.

1	2	3
12	Савченко А.А.	Многомерный статистический анализ для
		инженеров гражданской авиации. – М.:
		МИИГА, 1976. – 112 c.
13	Васильев Ф.П.	Численные методы решения экстремальных
		задач. – М.: Наука, 1980. – 520 с.
14	Годунов С.К.,	Разностные схемы (введение в теорию). – М.:
	Рябенький В.С.	Наука, 1973. – 400 c.
15	Добров Г.М. и др.	Экспертные оценки в научно-техническом
		прогнозировании. – Киев: Наукова Думка, 1974.
		– 160 c.
16	Вентцель Е.С.	Исследование операций: задачи, принципы,
		методология. – М.: Наука, 1980. – 208 с.
17	Вилисов В.Я. и др.	Экспертные методы в АСУ производством и
1.0		отработкой ЛА. – М.: МАИ, 1984. – 72 с.
18	Пустыльник Е.И.	Статистические методы анализа и обработки
1.0	T7 1	наблюдений. – М.: Наука, 1968. – 288 c.
19	Хальд А.	Математическая статистика с техническими
		приложениями. – М.: Изд-во иностранной
20	111 D	литературы, 1956. – 664 с.
20	Шторм Р.	Теория вероятностей. Математическая
		статистика. Статистический контроль качества.
21	II DD	– M.: Мир, 1970. – 368 с.
21	Налимов В.В.	Теория эксперимента. – М.: Наука, 1971. – 208 с.

- 4. Рекомендуемые программные средства и компьютерные системы обучения и контроля знаний студентов:
- программа GARLINA для приема экзамена (автор доцент каф. АКПЛА МГТУ ГА Гарбузов В.М.).