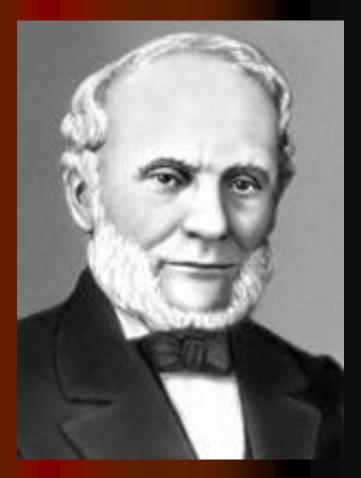
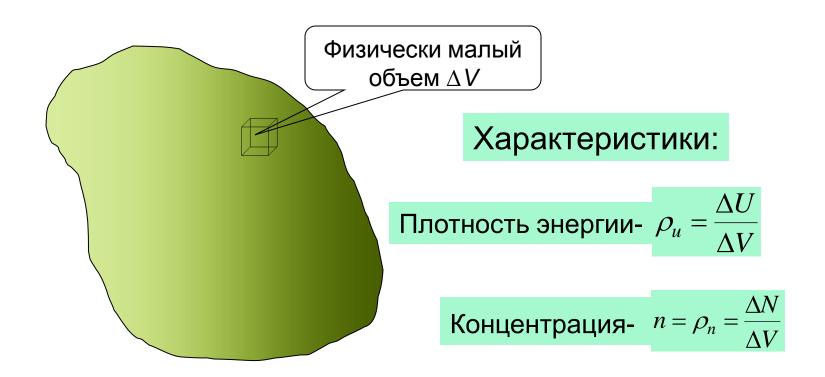
• 6.1. Понятие о явлениях переноса

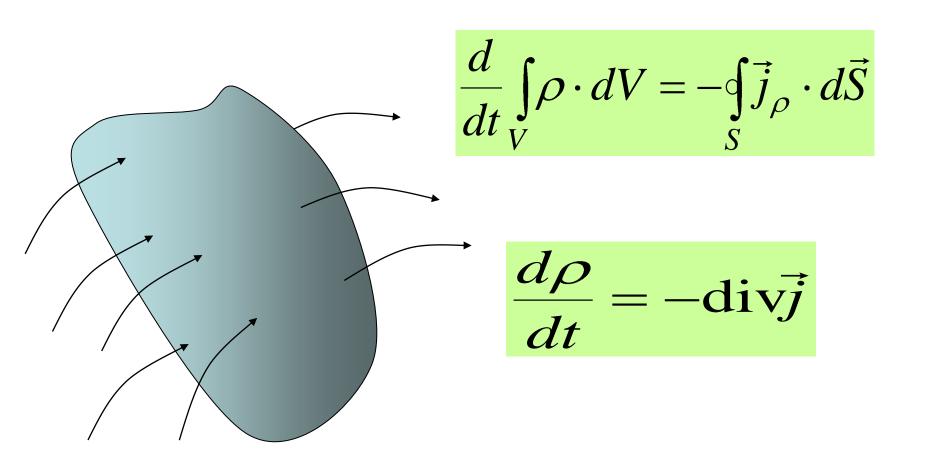


Клаузиус Рудольф (2.I.1822–24.VIII.1888)

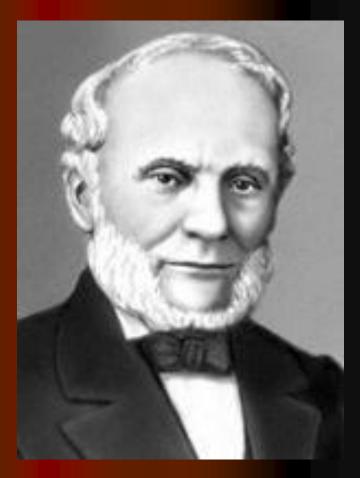
Модель среды:



Уравнение непрерывности (закон сохранения)



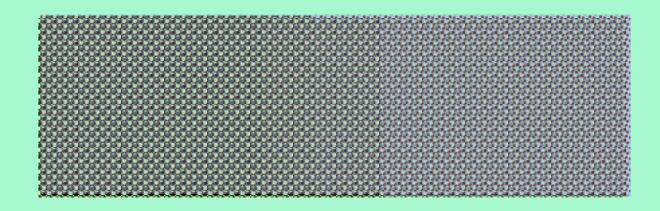
• 6.2. Уравнения явлений переноса



Клаузиус Рудольф (2.I.1822–24.VIII.1888)

а) Диффузия:

 Самопроизвольный процесс выравнивания концентраций в смеси нескольких различных компонент



Диффузия паров брома

Законы Фика:

$$n_1$$
 \vec{r} , t ; n_2 \vec{r} , t

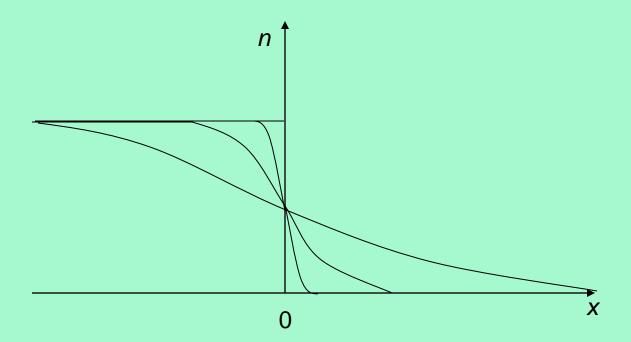
Тогда 1^й закон Фика

$$j = -D\frac{\partial n}{\partial x}$$

$$j = -D \frac{\partial n}{\partial x}$$
 или $\vec{j} = -D \cdot \operatorname{grad} n$

2й закон Фика

$$\frac{dn}{dt} = -\text{div} \triangleleft D \cdot \text{grad} n = D \cdot \nabla^2 n$$



б) Теплопроводность:

 процесс переноса энергии в системе, вызванный неоднородностью температуры в системе при отсутствии диффузии, конвекции и т.п.

Закон Фурье:

Тогда закон Фурье

$$\vec{j}_u = -k \cdot \operatorname{grad} T$$

Уравнение теплопроводности

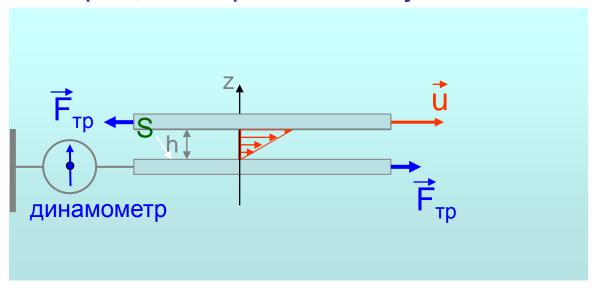
$$\frac{d\rho_u}{dt} = -\text{div} \, \{k \cdot \text{grad} T\} = k \cdot \nabla^2 T$$

Тогда уравнение температуропроводности

$$\frac{dT}{dt} = D_T \cdot \nabla^2 T$$

$$D_T = \frac{k \cdot \mu}{\rho \cdot C_V}$$

в) Вязкость (внутреннее трение): процесс переноса импульса.

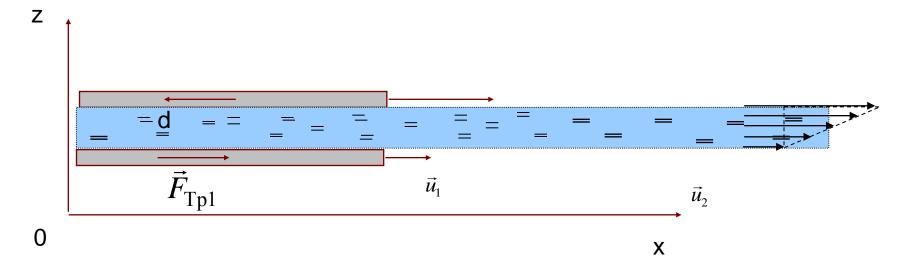


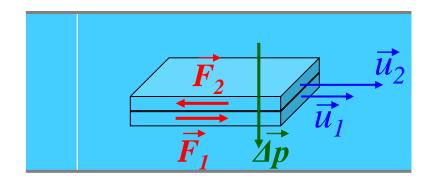
$$F_c = \eta \frac{u_0}{d} S$$

$$F_{mp} = \eta \left| \frac{du}{dz} \right| S$$

η – коэффициент вязкости

$$[\eta] = \kappa \Gamma/(\text{м·c}) \stackrel{\vec{F}_{\text{TI}}}{=} 1 \text{ а·c} \equiv \Pi \ (\Pi \text{уаз})$$





$$\Delta p = -\eta \frac{du}{dz} S \Delta t$$

– уравнение переноса импульса

$$j_p = -\eta \frac{\partial u}{\partial z}$$

 6.3. Диффузия как задача о случайных блужданиях

Расчет среднеквадратичного смещения

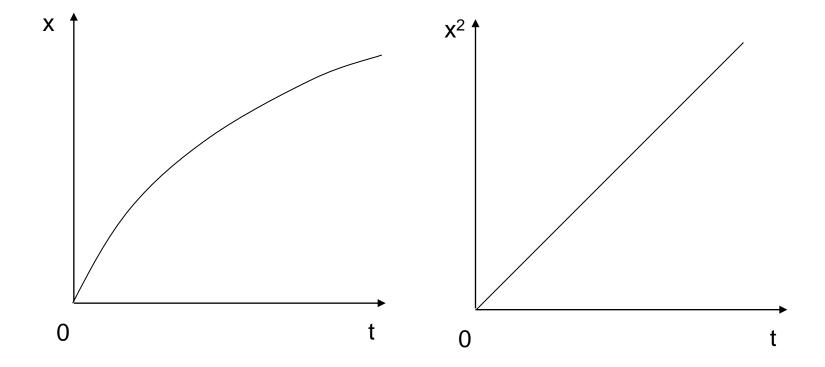
$$\langle L_x \rangle = \langle \sum \delta x_i \rangle = 0$$

Тогда
$$x_{\partial u \phi \phi} = \sqrt{\nu \lambda^2 t} \Longrightarrow$$

 $D \approx \nu \lambda^2$

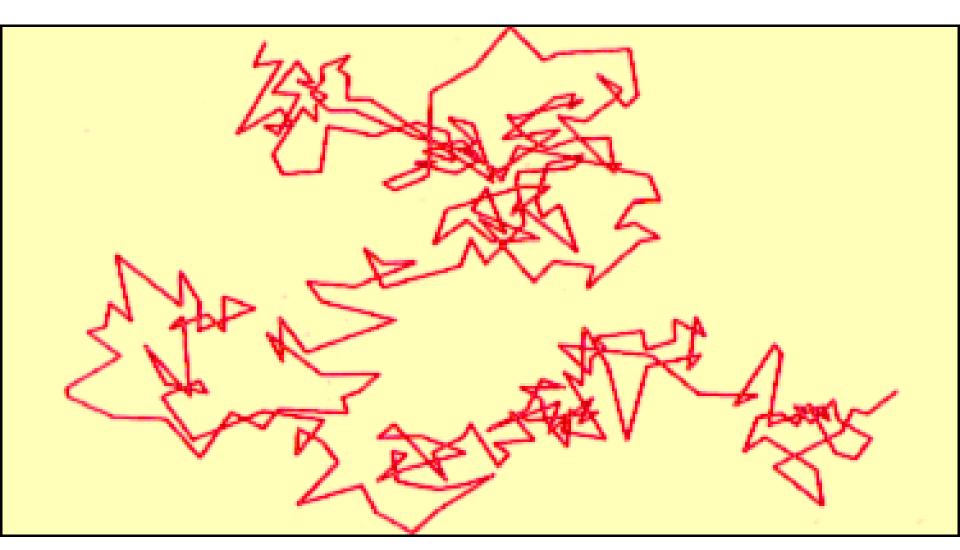
Вывод: время релаксации

$$\tau = \frac{L^2}{\nu \lambda^2}$$

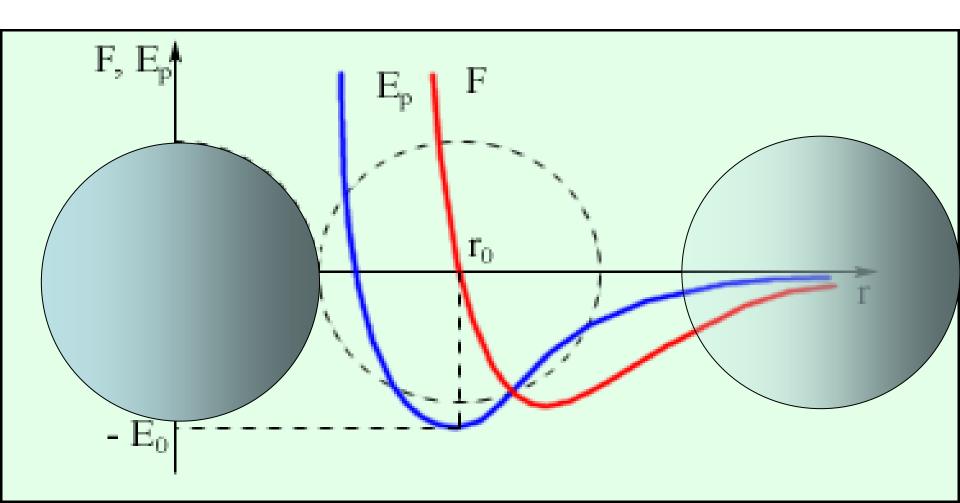


 6.4. Среднее число столкновений и средняя длина свободного пробега молекул

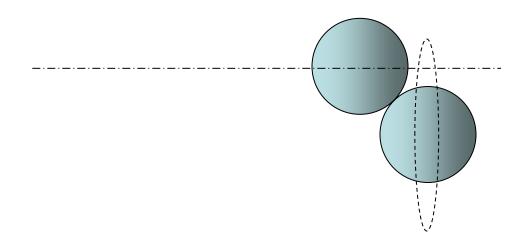
Траектория молекулы



Взаимодействие Ван-дер-Ваальса



Эффективное сечение молекулы

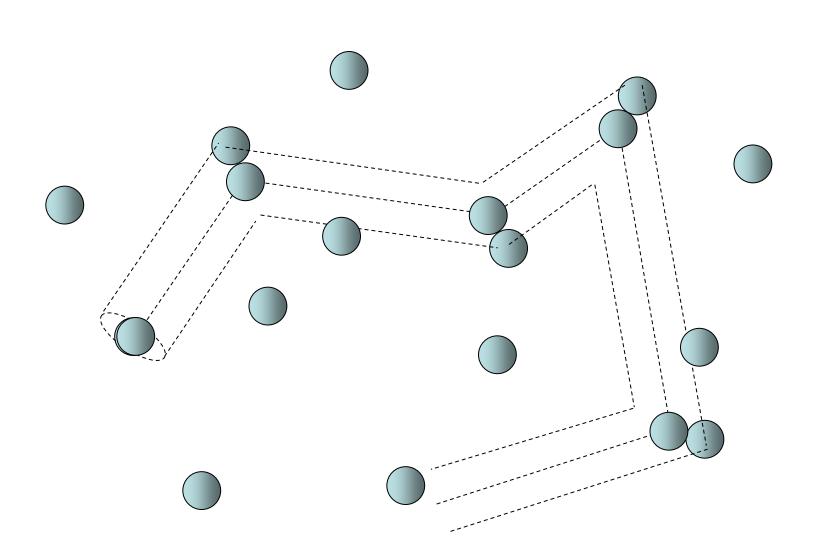


Эффективное сечение столкновения

$$\sigma = \pi d^2$$

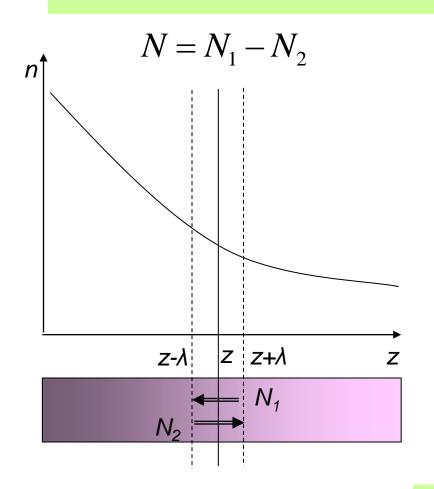
Частота столкновений

$$u = n\sigma \langle V_{ot} \rangle$$



• 6.5. Явления переноса в газах

а) Диффузия газов

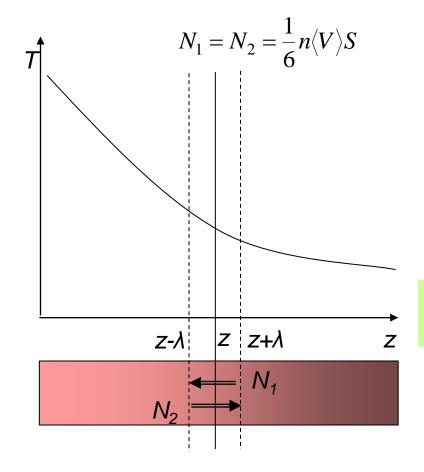


$$D = \frac{1}{3} \langle V \rangle \lambda$$

$$D = \frac{1}{3} \nu \lambda^2$$

$$D \sim \sqrt{\frac{T}{m} \cdot \frac{1}{\sigma n}}$$

б) Теплопроводность газов

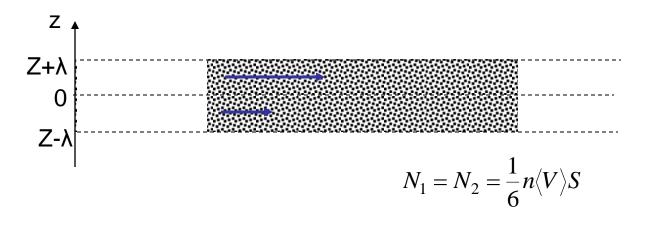


Тогда плотность потока энергии
$$j_q=rac{1}{3}\langle V
angle \lambda
ho c_V rac{\partial T}{\partial z}$$

Коэффициент теплопроводности

$$K = \frac{1}{3} \langle V \rangle \lambda \rho c_V \qquad K \approx \frac{i}{\sigma} \sqrt{\frac{T}{m}}$$

в) Вязкость газов



Коэффициент вязкости
$$\eta = rac{1}{3}
ho \langle V
angle \lambda$$

зависимость вязкости easa. от температуры