ЛАБОРАТОРНАЯ РАБОТА ЭМ-2 ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ПРОВОДНИКА

1. Цель работы

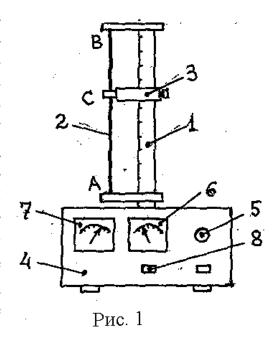
Изучение закона Ома и зависимости электрического сопротивления проводника от его геометрических параметров; опытное определение удельного сопротивления металлического проводника.

2. Подготовка к работе

Изучите теоретический материал по учебнику ([1]: закон Ома, электрическое сопротивление проводников, удельные электрические сопротивления и проводимость, закон Ома в дифференциальной форме, связь плотности тока в проводнике со скоростью упорядоченного движения электронов.

3. Вопросы для допуска к лабораторной работе

- 1. Сформулируйте закон Ома для однородного металлического проводника. Объясните, от каких параметров зависит его электрическое сопротивление.
- 2. Запищите закон Ома в дифференциальной форме. В каких единицах измеряется удельная электрическая проводимость.
- 3. Оцените величину скорости упорядоченного движения электронов в металлической проволоке диаметром 1 мм., по которой протекает ток силой 10 A, если концентрация свободных электронов в металле равна 10^{28} м^{-3} .
- 4. Изобразите две схемы измерения сопротивления, применяемые в лабораторной установке. В какой их этих схем измеряемое значение сопротивления не зависит от внутреннего сопротивления амперметра?
- 5. Каким образом из результатов измерений определяется величина удельного сопротивления проводника?


4. Литература

І. Савельев И.В. Курс общей физики. Т. 2. М.: Наука, 1998 г.

5. Методика проведения эксперимента и описание установки

Внешний вид лабораторной установки показан на рис. 1. Вдоль стойки 1 с делениями натянут проводник 2 в виде металлической проволоки. Вдоль проводника можно передвигать скользящий контакт 3 и, таким образом, включать

в схему измерений часть проводника, расположенную между точками A и C. В измерительном блоке 4 находятся источник постоянного напряжения с регулятором тока 5 и измерительные приборы – амперметр 6 и вольтметр 7. Для измерения сопротивления R_{AC} между точками A и C используется метод амперметра и вольтметра, при этом с помощью переключателя 8 можно выбирать две различные схемы подключения приборов к измеряемому сопротивлению. Эти схемы показаны на рис. 2 (U_0 - Напряжение источника, r_a и r_a - внутреннее сопротивления амперметра и вольтметра). На том же рисунке изображены соответствующие эквивалентные схемы.

В схеме 1 вольтметр показывает напряжение U_1 на параллельном соединении измеряемого сопротивления R_{AC} и вольтметра $r_{\mathfrak{g}}$, поэтому

$$U_1 = I_1 \frac{R_{AC} \cdot r_g}{R_{AC} + r_g}. \tag{1}$$

В схеме 2 показание вольтметра U_2 соответствует напряжению на последовательном соединении R_{AC} и сопротивления амперметра r_a , то есть

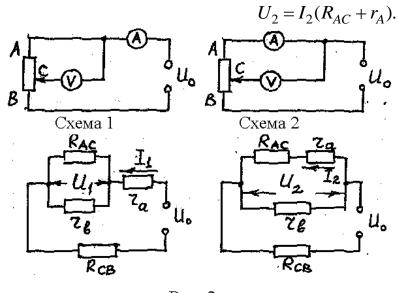


Рис. 2

В соответствии с методом амперметра-вольтметра и законом Ома измеряемые величины сопротивления будут равны

$$R_1 = \frac{U_1}{I_1}$$
 (cxema 1);
 $R_2 = \frac{U_2}{I_2}$ (cxema 2). (3)

(2)

Пользуясь формулами (1), (2), находим истинные значения искомого сопротивления:

$$R_{AC}(1) = \frac{R_1 r_g}{r_g - R_1} \text{ (cxema 1), (4)}$$

$$R_{AC}(2) = R_2 - r_a (\text{cxema } 2).$$
 (5)

Для определения удельного сопротивления проводника р используем известную формулу

$$R_{AC} = \frac{\rho l}{S},\tag{6}$$

где ℓ - длина проводника, определяемая по шкале 1 (см. рис. 1), S - площадь сечения проволоки (указана на стенде). Если, перемещая скользящий контакт, произвести измерения R_{AC} при различных длинах ℓ , то по наклону графика зависимости $R_{AC}(\ell)$ можно найти удельное сопротивление металла ρ :

$$\rho = S(\frac{\Delta R_{AC}}{\Delta l}),\tag{7}$$

где ΔR_{AC} и $\Delta \ell$ - соответствующие приращения величин R_{AC} и ℓ по графику.

6. Порядок выполнения работы

- 1. Привести ручку регулятора тока 5 в крайнее левое положение. Скользящий контакт 3 установить в среднее положение. Переключатель 8 установить в нажатое положение (схема 1).
- 2. Включить установку в сеть (выполняет лаборант). Регулятором тока 5 установить величину тока $I_1 = 150 \text{мA}$.
- 3. Передвигая скользящий контакт 3 вдоль шкалы 1 вниз с шагом 5 см., начиная с ℓ =45 см., произвести измерения напряжений U_1 и токов I_1 в схеме 1. Полученные данные занести в табл. 1.
- 4. Установить скользящий контакт 3 в среднее положение. Перевести переключатель 8 в ненажатое положение (схема 2). Регулятором тока 5 установить величину тока $I_2 = 200 \text{ мA}$.
- 5. Передвигая контакт 3, аналогично пункту 3, произвести измерения напряжений U_2 и токов I_2 в схеме 2. Результаты записать в табл. 1.

7. Оформление отчёта

- 1. По данным табл. 1 рассчитать величины измеряемых сопротивлений R_1 и R_2 (формула (3)), записать полученные данные в табл. 1.
- 2. Пользуясь формулами (4) и (5), рассчитать величины $R_{AC}(1)$ и $R_{AC}(2)$ для схем 1 и 2 соответственно, определить усредненные значения $\left\langle R_{AC} \right\rangle = \frac{R_{AC}(1) + R_{AC}(2)}{2}$. Данные занести в табл. 1.
- 3. Построить график зависимости $\langle R_{AC} \rangle (\ell)$. По наклону графика (формула (7)) найти удельное сопротивление металла ρ .
- 4. По полученным результатам эксперимента сделать выводы.

Таблица 1.

	I		1		I
ℓ , M				•••	
U_1, B				•••	
I_1, A				•••	
U_2, B				•••	
I_2, A				•••	
R_1 , O_M				•••	
R_2 , Ом				•••	
$R_{AC}(1)$				•••	
$R_{AC}(2)$				•••	
$\langle R_{AC} \rangle$ $\rho, OM \cdot M =$					
$\rho, OM \cdot M =$					