МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Б.Л. Резников, А.Б. Зотов

ПОСОБИЕ

к выполнению практических, курсовых и лабораторных работ по дисциплине "ЭЛЕКТРОНИКА"

"КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ УСТРОЙСТВ ЭЛЕКТРОНИКИ" Часть I

Программа Electronics Workbench 5.12 (EWB 5.12)

для студентов 2 курса специальности 220100 дневного обучения

1. Введение

В настоящее время в распоряжении пользователя имеется большое количество программ, позволяющих оперативно проводить виртуальное макетирование и исследование параметров и характеристик электронных схем практически любой степени сложности. Это программы Electronics Workbench 5.12, MicroCap, Disaign Lab, System View и др.

Названные программы позволяют оперативно проектировать электрические принципиальные схемы, анализировать характеристики аналоговых, цифровых, аналого-цифровых устройств. Программы анализируют нелинейные элементы по постоянному току, проводят расчёты переходных процессов и частотных характеристик. При этом возможно наглядное представление результатов.

Для внедрения в учебный процесс был проведен тщательный анализ возможностей каждой из перечисленных выше программ, одним из важных критериев отбора было:

- простота использования;
- наглядность представления результатов работы;
- точность представления.

Сравнительный анализ показал, что наиболее простым и удобным пакетом для обучения студентов второго курса специальности 220100 является Electronics Workbench 5.12, он мобилен в использовании и в тоже время несёт, в основном, достаточное количество информации.

Учебное пособие ориентировано на курс лекций по дисциплине «Электроника» студентам специальности 220100 и содержит информацию, которая потребуется им в процессе обучения в Университете.

Информации, выходящей за рамки курса не будет, дополнительные сведения о возможностях программы EWB 5.12 можно получить в [1.2].

В 2000 – 2001 учебном году лабораторные работы по дисциплине «Электроника» были успешно выполнены студентами в виртуальной лаборатории с использованием EWB 5.12.

2. Руководство пользователя EWB 5.12

2.1 Структура окна.

После установки программы и запуска на экране появляется рабочее окно, внешний вид которого представлен на рис.1.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ST Lectronics Workhanch	
Eile Edit Circuit Analysis Window Help	
	Pause
untitled.ewb	×
$\leq 9 k_{\Omega}$ $\leq 1 k_{\Omega}$	
\overline{T}^{1} \overline{T}^{1}	
-	*
Randu A Tomi: 27	
Areauy	Рис 1
	тис.т.
5	

Как видно из рисунка окно содержит меню (1), линейку библиотек компонентов и контрольно-измерительных приборов (2,3), рабочую область окна (4) и строку состояния (5).

2.2 Работа с меню и выбор компонентов из библиотеки.

Electronics Workbench позволяет осуществлять доступ к элементам меню либо при помощи мыши, выбрав соответствующий пункт меню и нажав левую кнопку мыши, либо с помощью клавиатуры. При этом:

- нажмите и отпустите клавишу Alt, (первый элемент меню выделится другим цветом),
- нажатием клавиш курсора «влево» или «вправо» выделите нужный пункт меню,
- нажмите клавишу курсора «вниз», (откроется выпадающее меню),
- курсором выберите нужный пункт и нажмите Enter.

К библиотеке компонентов и контрольно-измерительных приборов доступ осуществляется только при помощи мыши. Все действия производятся только по щелчку левой кнопки.

2.3 Знакомство с библиотекой компонентов.

Все компоненты (резисторы, диоды, транзисторы и т.д.) содержатся в библиотеке компонентов, Рис.2.

Для удобства поиска библиотека разделена не несколько групп, содержащих близкие по назначению компоненты. Так в Electronics Workbench содержится 13 групп компонентов: «Источники», «Диоды», «Транзисторы» и т.д. Как было сказано выше, в данном пособии материал, выходящий за рамки курса лекций дисциплины «Электроника» рассматриваться не будет, поэтому далее описаны не все компоненты библиотеки, а лишь те, которые входят в состав рассматриваемых схем.

Библиотека Sources.

«Земля». Применяется в схемах для обозначения точки с нулевым потенциалом, т.е. точки схемы, откуда производится отсчет напряжения.

Источник постоянного напряжения. Для задания или изменения напряжения источника необходимо два раза щелкнуть по источнику левой клавишей мыши. В результате на экране появится диалоговое окно «Battery Properties», где в поле Voltage необходимо ввести желаемое значение напряжения.

Battery Properties	? ×
Label Value Fault Display Analysis Setup	
Voltage (V): 12 V ♣ Voltage tolerance: Global % ✓ Use global toleran	ce
ОК Отме	ена

Источник постоянного тока. Изменение или задание выходного тока по аналогии с источником постоянного напряжения.

Источник синусоидального напряжения. Для задания или изменения напряжения источника необходимо два раза щелкнуть на нем левой

клавишей мыши. В результате на экране появится диалоговое окно «AC Voltage Source Properties».

AC Voltage Sour	ce Properti	es	?×
Label Value Fault	Display An	alysis Setup 🛛	
Voltage (V):	120	/	
Frequency:	60 H	lz	
Phase:	0 D	eg	
Voltage tolerance:	Global %		se global tolerance
			Отмена

В поле Voltage – задается желаемое значение действующего значения напряжения. Frequency – частота, Phase – фаза.

О Источник синусоидального тока. Изменение параметров источника по аналогии с источником синусоидального напряжения.

Библиотека Basic.

• Узел в схеме. Если необходимо в схеме создать узел, в который входит от 2-х до 4-х ветвей, то нужно воспользоваться этим компонентом библиотеки.

Резистор (сопротивление). Для задания номинала резистора необходимо два раза щелкнуть левой клавишей мыши на нем. После этого откроется диалоговое окно «Resistor Properties», где в поле Resistance необходимо ввести требуемый номинал. Справа от этого поля расположено поле выбора единиц измерения: Ом, кОм, МОм. Левой клавишей мыши с помощью стрелок «вниз» или «вверх» установите требуемые единицы и нажмите клавишу ОК. Н Конденсатор. Изменение параметров по аналогии с резистором.

Катушка индуктивности. Изменение параметров по аналогии с резистором.

ЗЕ Автотрансформатор. Для изменения параметров трансформатора необходимо выполнить на нем двойной щелчок левой клавишей мыши. Откроется диалоговое окно «Transformer Properties».

Transformer Prop	erties	<u>?×</u>
Label Models Fault Library default audio misc power powrvolt	Display Model ideal pq4-10 pq4-12 pq4-120 pq4-16 pq4-20 pq4-24 pq4-28 pq4-28 pq4-36 pq4-56	New Library Edit Copy Paste Delete Rename
	[ОК Отмена

Оно делится на два окна «Library» и «Model».

В работах будем использовать так называемый идеальный трансформатор. Для этого в окне «Library» выбираем Default(по умолчанию), а в окне «Model» выбираем Ideal. По умолчанию этот трансформатор определен как повышающий с коэффициентом трансформации 2. Если это подходит для вашей схемы, нажмите ОК, если нет, то – Edit в окне «Transformer Properties». Откроется новое диалоговое окно «Transformer Model "ideal"»:

Transformer Model 'ideal'		? ×
Sheet 1		
Primary-to-secondary turns ratio (N): Leakage inductance (LE): Magnetizing inductance (LM): Primary winding resistance (RP): Secondary winding resistance (RS):	2 0.001 5 1e-06 1e-06	Η Η Ω
	ОК	Отмена

В этом окне можно редактировать:

Primary-to-secondary turns ratio – коэффициент трансформации,

Leakage inductance – индуктивность рассеяния,

Magnetizing inductance – индуктивность первичной обмотки,

Primary winding resistance – сопротивление первичной обмотки,

Secondary winding resistance – сопротивление вторичной обмотки.

После необходимых настроек нажмите ОК.

Ключ. Коммутация происходит при нажатии клавиши «пробел».

Резистор переменный. Позволяет в процессе моделирования работы схемы изменять сопротивление по нажатию клавиши R. Настройка параметров осуществляется так же по двойному щелчку левой клавишей мыши. Откроется окно «Potentiometer Properties» содержащее в верхней части четыре закладки: «Label», «Value», «Fault» и «Display». Для задания требуемых параметров нужно выбрать вкладку «Value». Окно настроек имеет вид:

Potentiometer	Properties	? ×
Label Value F	ault Display	
Key:	B	
Resistance (R):	1 kΩ 📮	
Setting:	10 🚆 %	
Increment:	5 🚆 %	
		лтмена

В нём можно редактировать:

Кеу – клавиша, по нажатию которой будет изменяться сопротивление,

Resistance – Максимальное сопротивление.

Setting – При включении моделирования работы схемы сопротивление будет иметь номинал равный проценту указанному в этом поле от Resistance,

Increment - Шаг с которым будет уменьшаться сопротивление по нажатию клавиши.

- Электролитический конденсатор. Изменение параметров по аналогии ⁺₽₽ с резистором.
- ₩
 - Конденсатор переменной емкости. Изменение параметров по аналогии с переменным резистором.

Индуктивность переменная. Изменение параметров по аналогии с переменным резистором.

Библиотека Diodes.

Для выбора диода из библиотеки необходимо щелкнуть два раза по нему левой клавишей мыши. Откроется окно «Diode Properties».

Diode Properties	? ×
Label Models Fault Display Analysis Setup	
Library Model	
default ideal	New Library
general1	Edit
generalz int_shot	Сору
math	Paste
motorol1	<u>D</u> elete
national	<u>R</u> ename
zetex	
ОК	Отмена

В левом окне выбирается требуемая библиотека, а в правом - нужный диод. Как правило в лабораторных работах используется библиотека 1n. После окончания выбора нажмите ОК.

Стабилитрон. Настройки аналогичны полупроводниковым диодам.

Светодиод. Настройки аналогичны полупроводниковым диодам.

Диодный мост. Настройки аналогичны полупроводниковым диодам.

Библиотека Transistors.

Биполярный транзистор n-p-n типа. Указание модели транзистора по аналогии с полупроводниковым диодом.

Биполярный транзистор n-p-n типа. Указание модели транзистора по аналогии с полупроводниковым диодом.

Полевой транзистор с управляющим p-n переходом и каналом n-типа. Указание модели транзистора по аналогии с полупроводниковым диодом.

Полевой транзистор с управляющим p-n переходом и каналом p-типа. Указание модели транзистора по аналогии с полупроводниковым диодом.

Библиотека Analog ICs.

Выбор модели из библиотеки аналогичен выбору полупроводниковых диодов.

Линейный операционный усилитель.

Нелинейный операционный усилитель.

2.4 Знакомство с электронно-измерительными приборами.

В данном пункте будут рассмотрены основные электроизмерительные приборы: вольтметр, амперметр, мультиметр, осциллограф.

<u>Вольтметр</u> – прибор, предназначенный для измерения напряжения между двумя точками схемы. Он находится в библиотеке «Indicators».

Это наиболее простой в использовании прибор, но и он требует предварительной настройки.

Настройке подвергаются два параметра - внутреннее сопротивление и тип измеряемого напряжения: AC – переменное, DC – постоянное.

Доступ к окну настройки, как и у всех элементов, осуществляется по двойному щелчку левой клавишей мыши. Оно имеет вид:

Voltmeter Properties	?×
Label Value Fault Display	
Resistance (R): 1 MΩ ∎ Mode: DC ▼	
OK 0	Ітмена

В поле Resistance указывается внутреннее сопротивление прибора, а в поле Mode – тип напряжения.

Амперметр – прибор для измерения тока в цепи. Настройки полностью идентичны вольтметру.

Мультиметр. Сочетает в себе вольтметр и амперметр. В схеме можно использовать только один прибор. Окно отображения и настройки реализованы совместно и открываются по двойному щелчку левой клавиши мыши.

Пример использования приборов:

Осциллограф. Прибор предназначен для визуального отображения сигналов. Имеет два входа, т.е. на один вход может быть подан входной, а на другой вход выходной сигналы схемы. По полученной осциллограмме можно произвести сравнение сигналов по амплитуде, фазе и т.д. Изучение данного прибора выполним на конкретном примере, в данном случае исследуем работу на примере т.н. фазовращающего звена.

Подключение прибора к схеме:

Лицевая панель осциллографа имеет четыре клеммы:

нижняя левая – вход первого канала,

нижняя правая – вход второго канала,

```
правая верхняя – земля,
```

правая нижняя — служит для подключения внешнего источника сигнала.

Для того, чтобы на экране осциллографа сигналы каналов отображались разными цветами, надо на проводе подключенному ко входу прибора два раза щелкнуть левой клавишей мыши и в открывшемся окне выбрать цвет. Этот цвет и будет использован для отображения сигнала, поданного на этот вход.

Настройка осциллографа:

После подключения осциллографа к схеме пора посмотреть на его экран. Для этого на осциллографе два раза щелкаем левой клавишей мыши. Что же мы видим? А видим мы следующее:

Что-то непонятное скажете вы. Но не будем торопиться и сделаем так, чтобы все стало видно и понятно. Для начала разберемся, что же за элементы управления находятся на панели осциллографа:

Панель содержит четыре группы кнопок: «Time base», «Trigger», «Channel A», «Channel B» и еще отдельно расположенную кнопку Expand. Теперь давайте разберем каждую группу отдельно.

Группа «**Time base**» - предназначена для управления разверткой экрана осциллографа.

Самые нижние три кнопки «Y/T», «B/A» и «A/B» задают режим развертки:

Включен режим «Y/T» - по вертикали напряжение сигнала, по горизонтали время.

Включен режим «В/А» - по вертикали сигнал канала В, по горизонтали А.

Включен режим «А/В» - по вертикали сигнал канала А, по горизонтали В.

Самое верхнее поле этой группы определяет длительность развертки – секунда/деление экрана. По умолчанию стоит 1.00s/div, что означает - одна клетка экрана осциллографа соответствует одной секунде. Попробуем уменьшить значение этого поля до значения 2.00ms/div – т.е. 2 миллисе-кунды на деление. Посмотрим на экран:

Вот и уже сигналы различить можно. Т.е. анализируя наши действия – изменяя длительность развертки можно растягивать или сжимать сигналы вдоль оси ОХ.

И, наконец, третье поле этой группы «Х position» - служит для перемещения сигналов на экране осциллографа вправо или влево вдоль оси ОХ.

Группа «Trigger» - для режима развертки «Y/T» предусмотрен ждущий режим развертки с запуском по переднему фронту или по срезу запускающего сигнала. Выбирается в строке Edge соответственно – передний фронт и срез.

Level – задается уровень запуска. Ниже расположены четыре кнопки которые указывают откуда производится запуск:

AUTO – запуск от канала А или В,

А- запуск от канала А,

В- запуск от канала В,

Ext- запуск от внешнего источника, подключаемого к зажиму в блоке управления Trigger.

Группа «Channel A» и «Channel B» - с помощью этих групп кнопок осуществляется настройка каналов А и В соответственно.

Самые верхние поля этих групп служат для указания того, сколько вольт содержится в одном делении экрана осциллографа, т.е. позволяют масштабировать сигналы вдоль оси ОҮ.

Изменим значения в этих полях на 10V/div. И видим, что сигналы сжались относительно оси ОУ.

Аналогично с полем «X position» группы «Time base», поле «Y position» позволяет смещать сигналы каналов вдоль оси ОУ. Сместим входной сигнал вверх, а выходной вниз.

И, наконец, последние комбинации кнопок этих групп AC, 0, DC необходимые для выбора режима по входу:

АС – наблюдение сигналов только переменного тока,

0 – выходной зажим замыкается на землю,

DC – режим по умолчанию, позволяющий проводить измерения как постоянного так и переменного тока.

Кнопка Expand – при нажатии на эту кнопку экран осциллографа увеличивается и изменяется лицевая панель.

Этот вид экрана осциллографа имеет дополнительные средства для анализа сигналов. Так, по обеим сторонам экрана находятся две визирные планки синего и красного цвета, которые за треугольные ушки (вверху) могут быть передвинуты в любое место экрана.

Как пользоваться визирными линиями.

Как померить амплитуду сигнала.

• Нажимаем кнопку Expand на лицевой панели осциллографа.

- Если исследуемый сигнал поступает с первого канала, то используем 1-ю визирную линию (красного цвета), если со второго – 2-ю визирную линию (синего цвета).
- Подводим мышь к ушку требуемой визирной линии, нажимаем левую кнопку и, не отпуская ее, перемещаем линию в то место экрана, где требуется замерить амплитуду сигнала.

• Отпускаем кнопку.

Информационное окно 1-й визирной линии находится в нижнем левом углу экрана осциллографа и содержит три строки:

T1 – время прошедшее с начала включения и до того где расположена 1-я визирная линия (в нашем примере равное 298.7500ms),

VA1 – амплитуда сигнала 1-го канала (в нашем примере равная 9.3513V),

VB1 - амплитуда сигнала 2-го канала (в нашем примере равная -9.3513V).

Информационное окно 2-й визирной линии находится внизу посередине экрана осциллографа и содержит три строки:

T2 – время прошедшее с начала включения и до того где расположена 2-я визирная линия (в нашем примере равное 1.7531s),

VA2 – амплитуда сигнала 1-го канала (в нашем примере равная -9.8619V),

VB2 - амплитуда сигнала 2-го канала (в нашем примере равная 9.8619V).

Результирующее информационное окно находится в нижнем правом углу экрана осциллографа и содержит три строки:

T2-T1 – интервал времени между визирными линиями (в нашем примере 1.4543s),

VA2-VA1 – разность амплитуд сигнала 1-го канала в нашем примере равная -19.2133V),

VB2-VB1 – разность амплитуд сигнала 2-го канала(в нашем примере равная 19.2133V).

Как померить период сигнала.

- Нажимаем кнопку Expand на лицевой панели осциллографа.
- Если исследуемый сигнал поступает с первого канала, то используем 1-ю визирную линию (красного цвета), если со второго – 2-ю визирную линию (синего цвета).
- Подводим мышь к ушку 1-й визирной линии, нажимаем левую кнопку и, не отпуская ее, перемещаем линию на начало периода сигнала.
- Подводим мышь к ушку 2-й визирной линии, нажимаем левую кнопку и, не отпуская ее, перемещаем линию в конец периода сигнала.
- Отпускаем кнопку.
- В строке T2-T1 результирующего информационного окна будет отображена длительность периода сигнала.

Выше приводится пример измерения периода сигнала, равный 1.0000 секунде.

Как померить коэффициент усиления.

- Нажимаем кнопку Expand на лицевой панели осциллографа.
- Если исследуемый сигнал поступает с первого канала, то используем 1-ю визирную линию (красного цвета), если со второго – 2-ю визирную линию (синего цвета).
- Подводим мышь к ушку 1-й визирной линии, нажимаем левую кнопку и, не отпуская ее, перемещаем линию в точку максимума первого сигнала.
- Подводим мышь к ушку 2-й визирной линии, нажимаем левую кнопку и, не отпуская ее, перемещаем линию в точку максимума второго сигнала.
- Отпускаем кнопку.
- Вычисляем отношение VA1/VB1 что и будет коэффициентом усиления.

В примере приведенном выше коэффициент усиления = 9.9137 / 7.0101

И последнее, что касается панели осциллографа. На панели есть еще три кнопки:

Reduce – вернуться к первоначальному виду экрана осциллографа,

Reverse – инвертировать цвета экрана,

Save – записать осциллограмму в файл.

2.5 Специальные приборы.

В данной главе будет разобран последний прибор, который используется практически во всех лабораторных работах – генератор сигналов.

Найти его можно в библиотеке «Instruments» где он имеет название «Function Generator». С помощью этого универсального средства можно формировать сигналы с нужной амплитудой, частотой, скважностью и уровнем постоянной составляющей. Для настройки генератора под конкретную задачу необходимо выполнить двойной щелчок на нем левой клавишей мыши. Откроется окно настройки:

22

В верхней части расположена группа из трех кнопок с помощью которых задается форма сигнала: синусоидальная (левая кнопка), пилообразная (посередине) и меандр (справа).

Ниже расположены четыре строки:

Frequency – в этом поле задается частота генерируемых колебаний,

Duty cycle – в этом поле задается скважность импульсов,

Amplitude – в этом поле задается амплитуда сигнала,

Offset – в этом поле задается уровень постоянной составляющей.

Пример работы генератора:

На экране осциллографа мы видим сформированный сигнал с амплитудой 10В, скважностью 50%, частота следования 1кГц, постоянная составляющая отсутствует.

2.6 Как развернуть элемент.

Очень часто нам понадобится поворачивать элементы, менять местами выводы для того, чтобы проводники как можно реже пересекались.

23

Для этих целей в верхней части окна есть специальная группа кнопок, предназначенная для управления выделенным компонентом.

Группа состоит из 3-х кнопок: 🔼 🕰

Чтобы воспользоваться этими кнопками, необходимо на элементе один раз нажать левую клавишу мыши (элемент выделится красным цветом), после этого нажать на одну из этих кнопок в соответствии с тем, относительно какой оси вы хотите развернуть элемент.

Первая кнопка – поворот против часовой стрелки.

Вторая кнопка – поворот относительно оси ОУ.

Третья кнопка – поворот относительно оси ОХ.

2.7 Этапы построения схемы.

Для более быстрого усвоения материала процесс построения и моделирования работы схемы разобьем на несколько этапов, каждый из которых будет сопровождаться детальным описанием, иллюстрациями и последовательностью действий для его выполнения.

Пример: Научимся строить схемы на примере однополупериодного выпрямителя, схема которого приводится ниже.

Панель генератора импульсов:

or Functic	on Genera	ttor 🔀
\leq	$\sim\sim$	
Frequency	1	Hz
Duty cycle	50	%
Amplitude	5 🚔	
Offset	0	
-	Common	+
۲	۲	۲

И результаты работы схемы на экране осциллографа:

🚰 Oscilloscope		×
	Expand Time base 0.50 s/div X position 0.00 B/A A/B -Channel A 5 V/Div Y position 0.00 X position 0.00 Channel A	Ground Trigger Edge Level 0.00 Auto A B Ext Channel B 5 V/Div Y position 0.00 AC 0 DC ()

1-й этап – Выбор элементов.

Всякая электронная схема состоит из элементов и первое с чего стоит начать – это подобрать соответствующие элементы. Для того чтобы собрать схему выпрямителя нам понадобятся: диод 1N4001, конденсатор, резистор, три элемента «земля», генератор сигналов, осциллограф.

Постепенно перенесем все элементы на рабочую область экрана, для этого:

• Переместим курсор мыши на пиктограмму библиотеки «Sources» и нажмем левую клавишу мыши.

Electronics Workbench
<u>File E</u> dit <u>C</u> ircuit <u>A</u> nalysis <u>W</u> indow <u>H</u> elp
Untitle 🍄 Sources 🛛 🔀

- В открывшемся окне «Sources» находим элемент «земля» нажимаем левую клавишу мыши и, не отпуская ее, переносим элемент на рабочую область экрана.
- Выполняем предыдущее действие до тех пор, пока все элементы не окажутся на рабочей области

2-й этап – Выбор номиналов элементов.

Выбор номиналов детально описан выше, в пункте «Знакомство с библиотекой компонентов».

После выполнения первых двух этапов, экран выгладит так:

3-й этап – Соединение элементов между собой.

Для соединения двух элементов между собой необходимо:

- Подвести курсор мыши к любому из выводов элемента. В результате должна появиться черная точка.
- Нажать левую клавишу мыши и, не отпуская ее, переместить курсор к выводу другого элемента, с которым нужно соединить первый элемент.
 В результате должна появиться черная точка.
- Отпустить клавишу мыши. Появится проводник, соединяющий два элемента.

После выполнения этого шага внешний вид экрана:

4-й этап – Настройка генератора сигналов.

Как производится настройка описано выше в пункте 6.

5-й этап – Моделирование работы схемы.

Осуществляется включением выключателя в верхнем правом углу экрана.

Далее выполняется работа в соответствии с исходными данными на практические, лабораторные или курсовые работы. 3. Литература

- 1. В.И. Карлащук Электронная лаборатория на IBM PC (Electronics Workbench).М.2000г. «Солон Р»
- Д.И. Панфилов и др. Электроника и электротехника в экспериментах, Том 2, Практикум по Electronics Workbench, Додека», М.2000.
- 3. В.И. Лачин, Н.С. Савёлов Электроника. «Феникс», Ростов-на-Дону, 2000
- 4. В.А. Прянишников Электроника. Курс лекций «Корона принт» С.Петербург, 1998.
- 5. Б.Л. Резников Методические указания по курсовому проектированию по дисциплине «Электроника» для студентов специальности 220100, М. МГТУ ГА, 1996.
- 6. Б.Л. Перельман Справочник по полупроводниковым приборам, М. «Микротех» 1996.

Содержание

1. Введение	3
2. Руководство пользователя EWB 5.12	4
2.1 Структура окна	4
2.2 Работа с меню и выбор компонентов из библиотеки	5
2.3 Знакомство с библиотекой компонентов	5
2.4 Знакомство с электронно-измерительными приборами	12
2.5 Специальные приборы	22
2.6 Как развернуть элемент	23
2.7 Этапы построения схемы	24
3. Литература	28